
FORMALIZED MATHEMATICS

Volume 13, Number 2, Pages 227–233

University of Bia lystok, 2005

Subsequences of Almost, Weakly and Poorly

One-to-one Finite Sequences1

Robert Milewski

Institute of Computer Science

University of Bia lystok

Akademicka 2, 15-267 Bia lystok, Poland

MML identifier: JORDAN23, version: 7.5.01 4.39.921

The articles [21], [24], [1], [3], [2], [23], [4], [11], [9], [22], [16], [20], [19], [6],

[7], [12], [8], [13], [17], [14], [15], [5], [18], and [10] provide the terminology and

notation for this paper.

In this paper n is a natural number.

The following three propositions are true:

(1) For every finite sequence f of elements of E2
T and for every point p of E2

T

such that p ∈ L̃(f) holds len ⇃ p, f ≥ 1.

(2) For every non empty finite sequence f of elements of E2
T and for every

point p of E2
T holds len ⇂ f, p ≥ 1.

(3) For every finite sequence f of elements of E2
T and for all points p, q of

E2
T holds ⇃⇂ p, f, q 6= ∅.

Let x be a set. One can check that 〈x〉 is one-to-one.

Let f be a finite sequence. We say that f is almost one-to-one if and only

if:

(Def. 1) For all natural numbers i, j such that i ∈ dom f and j ∈ dom f and

i 6= 1 or j 6= len f and i 6= len f or j 6= 1 and f(i) = f(j) holds i = j.

Let f be a finite sequence. We say that f is weakly one-to-one if and only

if:

(Def. 2) For every natural number i such that 1 ≤ i and i < len f holds f(i) 6=

f(i + 1).
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Let f be a finite sequence. We say that f is poorly one-to-one if and only if:

(Def. 3)(i) For every natural number i such that 1 ≤ i and i < len f holds

f(i) 6= f(i + 1) if len f 6= 2,

(ii) TRUE, otherwise.

The following three propositions are true:

(4) Let D be a set and f be a finite sequence of elements of D. Then f

is almost one-to-one if and only if for all natural numbers i, j such that

i ∈ dom f and j ∈ dom f and i 6= 1 or j 6= len f and i 6= len f or j 6= 1

and fi = fj holds i = j.

(5) Let D be a set and f be a finite sequence of elements of D. Then f is

weakly one-to-one if and only if for every natural number i such that 1 ≤ i

and i < len f holds fi 6= fi+1.

(6) Let D be a set and f be a finite sequence of elements of D. Then f is

poorly one-to-one if and only if if len f 6= 2, then for every natural number

i such that 1 ≤ i and i < len f holds fi 6= fi+1.

Let us note that every finite sequence which is one-to-one is also almost

one-to-one.

One can check that every finite sequence which is almost one-to-one is also

poorly one-to-one.

The following proposition is true

(7) For every finite sequence f such that len f 6= 2 holds f is weakly one-to-

one iff f is poorly one-to-one.

Let us note that ∅ is weakly one-to-one.

Let x be a set. One can verify that 〈x〉 is weakly one-to-one.

Let x, y be sets. Observe that 〈x, y〉 is poorly one-to-one.

Let us mention that there exists a finite sequence which is weakly one-to-one

and non empty.

Let D be a non empty set. Observe that there exists a finite sequence of

elements of D which is weakly one-to-one, circular, and non empty.

We now state three propositions:

(8) For every finite sequence f such that f is almost one-to-one holds Rev(f)

is almost one-to-one.

(9) For every finite sequence f such that f is weakly one-to-one holds Rev(f)

is weakly one-to-one.

(10) For every finite sequence f such that f is poorly one-to-one holds Rev(f)

is poorly one-to-one.

Let us observe that there exists a finite sequence which is one-to-one and

non empty.

Let f be an almost one-to-one finite sequence. Observe that Rev(f) is almost

one-to-one.
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Let f be a weakly one-to-one finite sequence. Observe that Rev(f) is weakly

one-to-one.

Let f be a poorly one-to-one finite sequence. Observe that Rev(f) is poorly

one-to-one.

One can prove the following three propositions:

(11) Let D be a non empty set and f be a finite sequence of elements of D.

Suppose f is almost one-to-one. Let p be an element of D. Then f 	 p is

almost one-to-one.

(12) Let D be a non empty set and f be a finite sequence of elements of D.

Suppose f is weakly one-to-one and circular. Let p be an element of D.

Then f 	 p is weakly one-to-one.

(13) Let D be a non empty set and f be a finite sequence of elements of D.

Suppose f is poorly one-to-one and circular. Let p be an element of D.

Then f 	 p is poorly one-to-one.

Let D be a non empty set. One can check that there exists a finite sequence

of elements of D which is one-to-one, circular, and non empty.

Let D be a non empty set, let f be an almost one-to-one finite sequence

of elements of D, and let p be an element of D. Note that f 	 p is almost

one-to-one.

Let D be a non empty set, let f be a circular weakly one-to-one finite

sequence of elements of D, and let p be an element of D. Note that f 	 p is

weakly one-to-one.

Let D be a non empty set, let f be a circular poorly one-to-one finite sequence

of elements of D, and let p be an element of D. One can verify that f 	 p is

poorly one-to-one.

The following proposition is true

(14) Let D be a non empty set and f be a finite sequence of elements of D.

Then f is almost one-to-one if and only if f⇂1 is one-to-one and f↾(len f−′1)

is one-to-one.

Let C be a compact non vertical non horizontal subset of E2
T and let n be a

natural number. Observe that Cage(C, n) is almost one-to-one.

Let C be a compact non vertical non horizontal subset of E2
T and let n be a

natural number. One can check that Cage(C, n) is weakly one-to-one.

The following propositions are true:

(15) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If

p ∈ L̃(f) and f is weakly one-to-one, then ⇃⇂ p, f, p = 〈p〉.

(16) For every finite sequence f such that f is one-to-one holds f is weakly

one-to-one.

One can check that every finite sequence which is one-to-one is also weakly

one-to-one.
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The following propositions are true:

(17) Let f be a finite sequence of elements of E2
T. Suppose f is weakly one-to-

one. Let p, q be points of E2
T. If p ∈ L̃(f) and q ∈ L̃(f), then ⇃⇂ p, f, q =

Rev(⇃⇂ q, f, p).

(18) Let f be a finite sequence of elements of E2
T, p be a point of E2

T, and i1
be a natural number. Suppose f is poorly one-to-one, unfolded, and s.n.c.

and 1 < i1 and i1 ≤ len f and p = f(i1). Then Index(p, f) + 1 = i1.

(19) Let f be a finite sequence of elements of E2
T. Suppose f is weakly one-to-

one. Let p, q be points of E2
T. If p ∈ L̃(f) and q ∈ L̃(f), then (⇃⇂ p, f, q)1 =

p.

(20) Let f be a finite sequence of elements of E2
T. Suppose f is weakly

one-to-one. Let p, q be points of E2
T. If p ∈ L̃(f) and q ∈ L̃(f), then

(⇃⇂ p, f, q)len ⇃⇂p,f,q = q.

(21) For every finite sequence f of elements of E2
T and for every point p of E2

T

such that p ∈ L̃(f) holds L̃(⇃ p, f) ⊆ L̃(f).

(22) Let f be a finite sequence of elements of E2
T and p, q be points of E2

T.

If p ∈ L̃(f) and q ∈ L̃(f) and f is weakly one-to-one, then L̃(⇃⇂ p, f, q) ⊆

L̃(f).

(23) For all finite sequences f , g holds dom f ⊆ dom(f aa g).

(24) For every non empty finite sequence f and for every finite sequence g

holds dom g ⊆ dom(f aa g).

(25) For all finite sequences f , g such that f aa g is constant holds f is

constant.

(26) For all finite sequences f , g such that f aa g is constant and f(len f) =

g(1) and f 6= ∅ holds g is constant.

(27) For every special finite sequence f of elements of E2
T and for all natural

numbers i, j holds mid(f, i, j) is special.

(28) For every unfolded finite sequence f of elements of E2
T and for all natural

numbers i, j holds mid(f, i, j) is unfolded.

(29) Let f be a finite sequence of elements of E2
T. Suppose f is special. Let

p be a point of E2
T. If p ∈ L̃(f), then ⇃ p, f is special.

(30) Let f be a finite sequence of elements of E2
T. Suppose f is special. Let

p be a point of E2
T. If p ∈ L̃(f), then ⇂ f, p is special.

(31) Let f be a finite sequence of elements of E2
T. Suppose f is special and

weakly one-to-one. Let p, q be points of E2
T. If p ∈ L̃(f) and q ∈ L̃(f),

then ⇃⇂ p, f, q is special.

(32) Let f be a finite sequence of elements of E2
T. Suppose f is unfolded. Let

p be a point of E2
T. If p ∈ L̃(f), then ⇃ p, f is unfolded.

(33) Let f be a finite sequence of elements of E2
T. Suppose f is unfolded. Let
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p be a point of E2
T. If p ∈ L̃(f), then ⇂ f, p is unfolded.

(34) Let f be a finite sequence of elements of E2
T. Suppose f is unfolded and

weakly one-to-one. Let p, q be points of E2
T. If p ∈ L̃(f) and q ∈ L̃(f),

then ⇃⇂ p, f, q is unfolded.

(35) Let f , g be finite sequences of elements of E2
T and p be a point of E2

T.

Suppose f is almost one-to-one, special, unfolded, and s.n.c. and p ∈ L̃(f)

and p 6= f(1) and g = (mid(f, 1, Index(p, f))) a 〈p〉. Then g is a special

sequence joining f1, p.

(36) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is poorly one-to-one, unfolded, and s.n.c. and p ∈ L̃(f) and p =

f(Index(p, f)+1) and p 6= f(len f). Then Index(p, Rev(f))+Index(p, f)+

1 = len f.

(37) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. If f is weakly one-to-one and len f ≥ 2, then ⇃ f1, f = f.

(38) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. Suppose f is poorly one-to-one, unfolded, and s.n.c. and p ∈ L̃(f)

and p 6= f(len f). Then ⇃ p, Rev(f) = Rev(⇂ f, p).

(39) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is almost one-to-one, special, unfolded, and s.n.c. and p ∈ L̃(f)

and p 6= f(1). Then ⇂ f, p is a special sequence joining f1, p.

(40) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. Suppose f is almost one-to-one, special, unfolded, and s.n.c. and

p ∈ L̃(f) and p 6= f(len f) and p 6= f(1). Then ⇃ p, f is a special sequence

joining p, flen f .

(41) Let f be a finite sequence of elements of E2
T and p be a point of E2

T.

Suppose f is almost one-to-one, special, unfolded, and s.n.c. and p ∈ L̃(f)

and p 6= f(1). Then ⇂ f, p is a special sequence.

(42) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. Suppose f is almost one-to-one, special, unfolded, and s.n.c. and

p ∈ L̃(f) and p 6= f(len f) and p 6= f(1). Then ⇃ p, f is a special sequence.

(43) Let f be a non empty finite sequence of elements of E2
T and p, q be points

of E2
T. Suppose that f is almost one-to-one, special, unfolded, and s.n.c.

and len f 6= 2 and p ∈ L̃(f) and q ∈ L̃(f) and p 6= q and p 6= f(1) and

q 6= f(1). Then ⇃⇂ p, f, q is a special sequence joining p, q.

(44) Let f be a non empty finite sequence of elements of E2
T and p, q be points

of E2
T. Suppose that f is almost one-to-one, special, unfolded, and s.n.c.

and len f 6= 2 and p ∈ L̃(f) and q ∈ L̃(f) and p 6= q and p 6= f(1) and

q 6= f(1). Then ⇃⇂ p, f, q is a special sequence.

(45) Let C be a compact non vertical non horizontal subset of E2
T and p, q

be points of E2
T. Suppose p ∈ BDD L̃(Cage(C, n)). Then there exists a
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S-sequence B in R
2 such that

(i) B = ⇃⇂South-Bound(p, L̃(Cage(C, n))),

(Cage(C, n) 	 (Cage(C, n))
Index(South-Bound(p, eL(Cage(C,n))),Cage(C,n))

)↾(len

(Cage(C, n) 	 (Cage(C, n))
Index(South-Bound(p, eL(Cage(C,n))),Cage(C,n))

) −′ 1),

North-Bound(p, L̃(Cage(C, n))), and

(ii) there exists a S-sequence P in R
2 such that P is a sequence which el-

ements belong to the Go-board of B aa 〈North-Bound(p, L̃(Cage(C, n))),

South-Bound(p, L̃(Cage(C, n)))〉 and L̃(〈North-Bound(p, L̃(Cage(C, n))),

South-Bound(p, L̃(Cage(C, n)))〉) = L̃(P ) and

P1 = North-Bound(p, L̃(Cage(C, n))) and

Plen P = South-Bound(p, L̃(Cage(C, n))) and lenP ≥ 2 and there ex-

ists a S-sequence B1 in R
2 such that B1 is a sequence which ele-

ments belong to the Go-board of B aa 〈North-Bound(p, L̃(Cage(C, n))),

South-Bound(p, L̃(Cage(C, n)))〉 and L̃(B) = L̃(B1) and B1 = (B1)1 and

Blen B = (B1)len B1
and lenB ≤ len B1 and there exists a non constant

standard special circular sequence g such that g = B1 aa P.
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