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Summary. The article is a translation of chapter 2 of the book Mathe-

matical Morphological Method and Application by Changqing Tang, Hongbo Lu,

Zheng Huang, Fang Zhang, Science Press, China, 1990. In this article, the ba-

sic mathematical morphological operators such as Erosion, Dilation, Adjunction

Opening, Adjunction Closing and their properties are given. And these operators

are usually used in processing and analysing the images.
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The terminology and notation used here are introduced in the following articles:

[5], [1], [2], [6], [4], and [3].

1. The Definition of Erosion and Dilation and Their Algebraic

Properties

In this paper n denotes a natural number and q, y, b denote points of En

T
.

Let us consider n, let p be a point of En

T
, and let X be a subset of En

T
. The

functor X + p yielding a subset of En

T
is defined by:

(Def. 1) X + p = {q + p : q ∈ X}.

Let us consider n and let X be a subset of En

T
. The functor X! yielding a

subset of En

T
is defined as follows:

(Def. 2) X! = {−q : q ∈ X}.

Let us consider n and let X, B be subsets of En

T
. The functor X ⊖ B yields

a subset of En

T
and is defined as follows:
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(Def. 3) X ⊖ B = {y : B + y ⊆ X}.

Let us consider n and let X, B be subsets of En

T
. The functor X ⊕ B yields

a subset of En

T
and is defined as follows:

(Def. 4) X ⊕ B = {y + b : y ∈ X ∧ b ∈ B}.

We follow the rules: n is a natural number, X, Y , Z, B, C, B1, B2 are

subsets of En

T
, and x, y, p are points of En

T
.

One can prove the following propositions:

(1) B!! = B.

(2) {0En

T
} + x = {x}.

(3) If B1 ⊆ B2, then B1 + p ⊆ B2 + p.

(4) For every X such that X = ∅ holds X + x = ∅.

(5) X ⊖ {0En

T
} = X.

(6) X ⊕ {0En

T
} = X.

(7) X ⊕ {x} = X + x.

(8) For all X, Y such that Y = ∅ holds X ⊖ Y = Rn.

(9) If X ⊆ Y, then X ⊖ B ⊆ Y ⊖ B and X ⊕ B ⊆ Y ⊕ B.

(10) If B1 ⊆ B2, then X ⊖ B2 ⊆ X ⊖ B1 and X ⊕ B1 ⊆ X ⊕ B2.

(11) If 0En

T
∈ B, then X ⊖ B ⊆ X and X ⊆ X ⊕ B.

(12) X ⊕ Y = Y ⊕ X.

(13) Y + y ⊆ X + x iff Y + (y − x) ⊆ X.

(14) (X + p) ⊖ Y = X ⊖ Y + p.

(15) (X + p) ⊕ Y = X ⊕ Y + p.

(16) (X + x) + y = X + (x + y).

(17) X ⊖ (Y + p) = X ⊖ Y + −p.

(18) X ⊕ (Y + p) = X ⊕ Y + p.

(19) If x ∈ X, then B + x ⊆ B ⊕ X.

(20) X ⊆ (X ⊕ B) ⊖ B.

(21) X + 0En

T
= X.

(22) X ⊖ {x} = X + −x.

(23) X ⊖ (Y ⊕ Z) = X ⊖ Y ⊖ Z.

(24) X ⊖ (Y ⊕ Z) = X ⊖ Z ⊖ Y.

(25) X ⊕ (Y ⊖ Z) ⊆ (X ⊕ Y ) ⊖ Z.

(26) X ⊕ (Y ⊕ Z) = (X ⊕ Y ) ⊕ Z.

(27) (B ∪ C) + y = (B + y) ∪ (C + y).

(28) B ∩ C + y = (B + y) ∩ (C + y).

(29) X ⊖ (B ∪ C) = (X ⊖ B) ∩ (X ⊖ C).

(30) X ⊕ (B ∪ C) = X ⊕ B ∪ X ⊕ C.
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(31) X ⊖ B ∪ Y ⊖ B ⊆ (X ∪ Y ) ⊖ B.

(32) (X ∪ Y ) ⊕ B = X ⊕ B ∪ Y ⊕ B.

(33) X ∩ Y ⊖ B = (X ⊖ B) ∩ (Y ⊖ B).

(34) X ∩ Y ⊕ B ⊆ (X ⊕ B) ∩ (Y ⊕ B).

(35) B ⊕ X ∩ Y ⊆ (B ⊕ X) ∩ (B ⊕ Y ).

(36) B ⊖ X ∪ B ⊖ Y ⊆ B ⊖ X ∩ Y.

(37) (Xc ⊖ B)c = X ⊕ B!.

(38) (X ⊖ B)c = Xc ⊕ B!.

2. The Definition of Adjunction Opening and Closing and Their

Algebraic Properties

Let n be a natural number and let X, B be subsets of En

T
. The functor

X © B yielding a subset of En

T
is defined by:

(Def. 5) X © B = (X ⊖ B) ⊕ B.

Let n be a natural number and let X, B be subsets of En

T
. The functor

X ⊚ B yielding a subset of En

T
is defined as follows:

(Def. 6) X ⊚ B = (X ⊕ B) ⊖ B.

We now state a number of propositions:

(39) (Xc © B!)c = X ⊚ B.

(40) (Xc
⊚ B!)c = X © B.

(41) X © B ⊆ X and X ⊆ X ⊚ B.

(42) X © X = X.

(43) X © B ⊖ B ⊆ X ⊖ B and X © B ⊕ B ⊆ X ⊕ B.

(44) X ⊖ B ⊆ X ⊚ B ⊖ B and X ⊕ B ⊆ X ⊚ B ⊕ B.

(45) If X ⊆ Y, then X © B ⊆ Y © B and X ⊚ B ⊆ Y ⊚ B.

(46) (X + p) © Y = X © Y + p.

(47) (X + p) ⊚ Y = X ⊚ Y + p.

(48) If C ⊆ B, then X © B ⊆ (X ⊖ C) ⊕ B.

(49) If B ⊆ C, then X ⊚ B ⊆ (X ⊕ C) ⊖ B.

(50) X ⊕ Y = X ⊚ Y ⊕ Y and X ⊖ Y = X © Y ⊖ Y.

(51) X ⊕ Y = (X ⊕ Y ) © Y and X ⊖ Y = (X ⊖ Y ) ⊚ Y.

(52) X © B © B = X © B.

(53) X ⊚ B ⊚ B = X ⊚ B.

(54) X © B ⊆ (X ∪ Y ) © B.

(55) If B = B © B1, then X © B ⊆ X © B1.
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3. The Definition of Scaling Transformation and Its Algebraic

Properties

In the sequel a is a point of En

T
.

Let t be a real number, let us consider n, and let A be a subset of En

T
. The

functor t ⊙ A yields a subset of En

T
and is defined as follows:

(Def. 7) t ⊙ A = {t · a : a ∈ A}.

In the sequel t, s denote real numbers.

One can prove the following propositions:

(56) For every subset X of En

T
such that X = ∅ holds 0 ⊙ X = ∅.

(57) For every non empty subset X of En

T
holds 0 ⊙ X = {0En

T
}.

(58) 1 ⊙ X = X.

(59) 2 ⊙ X ⊆ X ⊕ X.

(60) (t · s) ⊙ X = t ⊙ (s ⊙ X).

(61) If X ⊆ Y, then t ⊙ X ⊆ t ⊙ Y.

(62) t ⊙ (X + x) = t ⊙ X + t · x.

(63) t ⊙ (X ⊕ Y ) = t ⊙ X ⊕ t ⊙ Y.

(64) If t 6= 0, then t ⊙ (X ⊖ Y ) = t ⊙ X ⊖ t ⊙ Y.

(65) If t 6= 0, then t ⊙ (X © Y ) = (t ⊙ X) © (t ⊙ Y ).

(66) If t 6= 0, then t ⊙ (X ⊚ Y ) = (t ⊙ X) ⊚ (t ⊙ Y ).

4. The Definition of Thinning and Thickening and Their

Algebraic Properties

Let n be a natural number and let X, B1, B2 be subsets of En

T
. The functor

X ⊛ (B1, B2) yielding a subset of En

T
is defined as follows:

(Def. 8) X ⊛ (B1, B2) = (X ⊖ B1) ∩ (Xc ⊖ B2).

Let n be a natural number and let X, B1, B2 be subsets of En

T
. The functor

X ⊗ (B1, B2) yields a subset of En

T
and is defined as follows:

(Def. 9) X ⊗ (B1, B2) = X ∪ (X ⊛ (B1, B2)).

Let n be a natural number and let X, B1, B2 be subsets of En

T
. The functor

X ⊛ (B1, B2) yielding a subset of En

T
is defined by:

(Def. 10) X ⊛ (B1, B2) = X \ (X ⊛ (B1, B2)).

The following propositions are true:

(67) If B1 = ∅, then X ⊛ (B1, B2) = Xc ⊖ B2.

(68) If B2 = ∅, then X ⊛ (B1, B2) = X ⊖ B1.

(69) If 0En

T
∈ B1, then X ⊛ (B1, B2) ⊆ X.

(70) If 0En

T
∈ B2, then (X ⊛ (B1, B2)) ∩ X = ∅.



preliminaries to mathematical morphology and . . . 225

(71) If 0En

T
∈ B1, then X ⊗ (B1, B2) = X.

(72) If 0En

T
∈ B2, then X ⊛ (B1, B2) = X.

(73) X ⊗ (B2, B1) = (Xc
⊛ (B1, B2))

c.

(74) X ⊛ (B2, B1) = (Xc ⊗ (B1, B2))
c.

5. Properties of Erosion, Dilation, Adjunction Opening,

Adjunction Closing on Convex Sets

One can prove the following proposition

(75) Let n be a natural number and B be a subset of En

T
. Then B is convex

if and only if for all points x, y of En

T
and for every real number r such

that 0 ≤ r and r ≤ 1 and x ∈ B and y ∈ B holds r · x + (1 − r) · y ∈ B.

Let n be a natural number and let B be a subset of En

T
. Let us observe that

B is convex if and only if:

(Def. 11) For all points x, y of En

T
and for every real number r such that 0 ≤ r

and r ≤ 1 and x ∈ B and y ∈ B holds r · x + (1 − r) · y ∈ B.

One can prove the following propositions:

(76) If X is convex, then X! is convex.

(77) If X is convex and B is convex, then X ⊕ B is convex and X ⊖ B is

convex.

(78) If X is convex and B is convex, then X © B is convex and X ⊚ B is

convex.

(79) If B is convex and 0 < t and 0 < s, then (s + t) ⊙ B = s ⊙ B ⊕ t ⊙ B.
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