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Summary. A concept of “limit of sequence of subsets” is defined here.

This article contains the following items: 1. definition of the superior sequence

and the inferior sequence of sets, 2. definition of the superior limit and the inferior

limit of sets, and additional properties for the sigma-field of sets, 3. definition

of the limit value of a convergent sequence of sets, and additional properties for

the sigma-field of sets.
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The notation and terminology used here are introduced in the following papers:

[9], [1], [13], [2], [10], [6], [11], [4], [12], [14], [8], [7], [3], and [5].

For simplicity, we adopt the following rules: n, m, k, k1, k2 denote natural

numbers, x, X, Y , Z denote sets, A denotes a subset of X, B, A1, A2, A3 denote

sequences of subsets of X, S1 denotes a σ-field of subsets of X, and S, S2, S3,

S4 denote sequences of subsets of S1.

Next we state a number of propositions:

(1) For every function f from N into Y and for every n holds {f(k) : n ≤

k} 6= ∅.

(2) For every function f from N into Y holds f(n + m) ∈ {f(k) : n ≤ k}.

(3) For every function f from N into Y holds {f(k1) : n ≤ k1} = {f(k2) :

n + 1 ≤ k2} ∪ {f(n)}.

(4) Let f be a function from N into Y . Then for every k1 holds x ∈ f(n+k1)

if and only if for every Z such that Z ∈ {f(k2) : n ≤ k2} holds x ∈ Z.

(5) For every non empty set Y and for every function f from N into Y holds

x ∈ rng f iff there exists n such that x = f(n).

(6) For every non empty set Y and for every function f from N into Y holds

rng f = {f(k)}.
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(7) For every non empty set Y and for every function f from N into Y holds

rng(f ↑ k) = {f(n) : k ≤ n}.

(8) x ∈
⋂

rng B iff for every n holds x ∈ B(n).

(9) Intersection B =
⋂

rng B.

(10) Intersection B ⊆
⋃

B.

(11) If for every n holds B(n) = A, then
⋃

B = A.

(12) If for every n holds B(n) = A, then IntersectionB = A.

(13) If B is constant, then
⋃

B = Intersection B.

(14) If B is constant and the value of B = A, then for every n holds
⋃
{B(k) :

n ≤ k} = A.

(15) If B is constant and the value of B = A, then for every n holds
⋂
{B(k) :

n ≤ k} = A.

(16) Let given X, B and f be a function. Suppose dom f = N and for every

n holds f(n) =
⋂
{B(k) : n ≤ k}. Then f is a sequence of subsets of X.

(17) Let X be a set, B be a sequence of subsets of X, and f be a function.

Suppose dom f = N and for every n holds f(n) =
⋃
{B(k) : n ≤ k}. Then

f is a function from N into 2X .

Let us consider X, B. We say that B is monotone if and only if:

(Def. 1) B is non-decreasing or non-increasing.

Let B be a function. The inferior setsequence B yields a function and is

defined by the conditions (Def. 2).

(Def. 2)(i) dom (the inferior setsequence B) = N, and

(ii) for every n holds (the inferior setsequence B)(n) =
⋂
{B(k) : n ≤ k}.

Let X be a set and let B be a sequence of subsets of X. Then the inferior

setsequence B is a sequence of subsets of X.

Let B be a function. The superior setsequence B yields a function and is

defined by the conditions (Def. 3).

(Def. 3)(i) dom (the superior setsequence B) = N, and

(ii) for every n holds (the superior setsequence B)(n) =
⋃
{B(k) : n ≤ k}.

Let X be a set and let B be a sequence of subsets of X. Then the superior

setsequence B is a sequence of subsets of X.

Next we state several propositions:

(18) (The inferior setsequence B)(0) = IntersectionB.

(19) (The superior setsequence B)(0) =
⋃

B.

(20) x ∈ (the inferior setsequence B)(n) iff for every k holds x ∈ B(n + k).

(21) x ∈ (the superior setsequence B)(n) iff there exists k such that x ∈

B(n + k).

(22) (The inferior setsequence B)(n) = (the inferior setsequence B)(n + 1) ∩

B(n).
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(23) (The superior setsequence B)(n) = (the superior setsequence B)(n+1)∪

B(n).

(24) The inferior setsequence B is non-decreasing.

(25) The superior setsequence B is non-increasing.

(26) The inferior setsequence B is monotone and the superior setsequence B

is monotone.

Let X be a set and let A be a sequence of subsets of X. Observe that the

inferior setsequence A is non-decreasing.

Let X be a set and let A be a sequence of subsets of X. Observe that the

superior setsequence A is non-increasing.

The following propositions are true:

(27) Intersection B ⊆ (the inferior setsequence B)(n).

(28) (The superior setsequence B)(n) ⊆
⋃

B.

(29) For all B, n holds {B(k) : n ≤ k} is a family of subsets of X.

(30)
⋃

B = (Intersection Complement B)c.

(31) (The inferior setsequence B)(n) = (the superior setsequence

Complement B)(n)c.

(32) (The superior setsequence B)(n) = (the inferior setsequence

Complement B)(n)c.

(33) Complement (the inferior setsequence B) = the superior setsequence

Complement B.

(34) Complement (the superior setsequence B) = the inferior setsequence

Complement B.

(35) Suppose that for every n holds A3(n) = A1(n)∪A2(n). Let given n. Then

(the inferior setsequence B)(n) ∪ (the inferior setsequence A2)(n) ⊆ (the

inferior setsequence A3)(n).

(36) Suppose that for every n holds A3(n) = A1(n)∩A2(n). Let given n. Then

(the inferior setsequence A3)(n) = (the inferior setsequence A1)(n) ∩ (the

inferior setsequence A2)(n).

(37) Suppose that for every n holds A3(n) = A1(n)∪A2(n). Let given n. Then

(the superior setsequence A3)(n) = (the superior setsequence A1)(n)∪(the

superior setsequence A2)(n).

(38) Suppose that for every n holds A3(n) = A1(n)∩A2(n). Let given n. Then

(the superior setsequence A3)(n) ⊆ (the superior setsequence A1)(n)∩(the

superior setsequence A2)(n).

(39) If B is constant and the value of B = A, then for every n holds (the

inferior setsequence B)(n) = A.

(40) If B is constant and the value of B = A, then for every n holds (the

superior setsequence B)(n) = A.
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(41) If B is non-decreasing, then B(n) ⊆ (the superior setsequence B)(n+1).

(42) If B is non-decreasing, then (the superior setsequence B)(n) = (the

superior setsequence B)(n + 1).

(43) If B is non-decreasing, then (the superior setsequence B)(n) =
⋃

B.

(44) If B is non-decreasing, then Intersection (the superior setsequence B) =
⋃

B.

(45) If B is non-decreasing, then B(n) ⊆ (the inferior setsequence B)(n + 1).

(46) If B is non-decreasing, then (the inferior setsequence B)(n) = B(n).

(47) If B is non-decreasing, then the inferior setsequence B = B.

(48) If B is non-increasing, then (the superior setsequence B)(n+1) ⊆ B(n).

(49) If B is non-increasing, then (the superior setsequence B)(n) = B(n).

(50) If B is non-increasing, then the superior setsequence B = B.

(51) If B is non-increasing, then (the inferior setsequence B)(n + 1) ⊆ B(n).

(52) If B is non-increasing, then (the inferior setsequence B)(n) = (the infe-

rior setsequence B)(n + 1).

(53) If B is non-increasing, then (the inferior setsequence B)(n) =

Intersection B.

(54) If B is non-increasing, then
⋃

(the inferior setsequence B) =

Intersection B.

Let X be a set and let B be a sequence of subsets of X. Then lim inf B can

be characterized by the condition:

(Def. 4) lim inf B =
⋃

(the inferior setsequence B).

Let X be a set and let B be a sequence of subsets of X. Then lim supB can

be characterized by the condition:

(Def. 5) lim supB = Intersection (the superior setsequence B).

Let X be a set and let B be a sequence of subsets of X. We introduce limB

as a synonym of lim supB.

Next we state a number of propositions:

(55) Intersection B ⊆ lim inf B.

(56) lim inf B = lim (the inferior setsequence B).

(57) lim supB = lim (the superior setsequence B).

(58) lim supB = (lim inf ComplementB)c.

(59) If B is constant and the value of B = A, then B is convergent and

limB = A and lim inf B = A and lim supB = A.

(60) If B is non-decreasing, then lim supB =
⋃

B.

(61) If B is non-decreasing, then lim inf B =
⋃

B.

(62) If B is non-increasing, then lim supB = IntersectionB.

(63) If B is non-increasing, then lim inf B = Intersection B.
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(64) If B is non-decreasing, then B is convergent and limB =
⋃

B.

(65) If B is non-increasing, then B is convergent and limB = Intersection B.

(66) If B is monotone, then B is convergent.

Let X be a set, let S1 be a σ-field of subsets of X, and let S be a sequence

of subsets of S1. Let us observe that S is constant if and only if:

(Def. 6) There exists an element A of S1 such that for every n holds S(n) = A.

Let X be a set, let S1 be a σ-field of subsets of X, and let S be a sequence

of subsets of S1. Then the inferior setsequence S is a sequence of subsets of S1.

Let X be a set, let S1 be a σ-field of subsets of X, and let S be a sequence

of subsets of S1. Then the superior setsequence S is a sequence of subsets of S1.

The following propositions are true:

(67) x ∈ lim supS iff for every n there exists k such that x ∈ S(n + k).

(68) x ∈ lim inf S iff there exists n such that for every k holds x ∈ S(n + k).

(69) Intersection S ⊆ lim inf S.

(70) lim supS ⊆
⋃

S.

(71) lim inf S ⊆ lim supS.

Let X be a set, let S1 be a σ-field of subsets of X, and let S be a sequence of

subsets of S1. The functor Sc yields a sequence of subsets of S1 and is defined

by:

(Def. 7) Sc = Complement S.

Next we state a number of propositions:

(72) lim inf S = (lim sup(Sc))c.

(73) lim supS = (lim inf(Sc))c.

(74) If for every n holds S4(n) = S2(n)∪ S3(n), then lim inf S2 ∪ lim inf S3 ⊆

lim inf S4.

(75) If for every n holds S4(n) = S2(n)∩ S3(n), then lim inf S4 = lim inf S2 ∩

lim inf S3.

(76) If for every n holds S4(n) = S2(n)∪S3(n), then lim supS4 = lim supS2∪

lim supS3.

(77) If for every n holds S4(n) = S2(n)∩S3(n), then lim supS4 ⊆ lim supS2∩

lim supS3.

(78) If S is constant and the value of S = A, then S is convergent and

limS = A and lim inf S = A and lim supS = A.

(79) If S is non-decreasing, then lim supS =
⋃

S.

(80) If S is non-decreasing, then lim inf S =
⋃

S.

(81) If S is non-decreasing, then S is convergent and limS =
⋃

S.

(82) If S is non-increasing, then lim supS = Intersection S.

(83) If S is non-increasing, then lim inf S = IntersectionS.
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(84) If S is non-increasing, then S is convergent and limS = IntersectionS.

(85) If S is monotone, then S is convergent.
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