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Summary. The article formalizes a proof of the theorem counting the

fundamental group of a circle taken from [18]. The last result describes an

isomorphism between the additive group of integers and the fundamental group

of a simple closed curve.
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1. Preliminaries

Let us observe that every element of Z
+ is integer.

Let us note that Z
+ is infinite.

Let S be an infinite 1-sorted structure. Note that the carrier of S is infinite.

In the sequel a, r, s denote real numbers.

One can prove the following propositions:

(1) If r ≤ s and 0 < a, then for every point p of [r, s]M holds Ball(p, a) = [r, s]

or Ball(p, a) = [r, p+a[ or Ball(p, a) = ]p−a, s] or Ball(p, a) = ]p−a, p+a[.

1The paper was written during author’s post-doctoral fellowship granted by Shinshu Uni-

versity, Japan.
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(2) Suppose r ≤ s. Then there exists a basis B of [r, s]T such that

(i) there exists a many sorted set f indexed by [r, s]T such that for every

point y of [r, s]M holds f(y) = {Ball(y, 1
n
);n ranges over natural numbers:

n 6= 0} and B =
⋃

f, and

(ii) for every subset X of [r, s]T such that X ∈ B holds X is connected.

(3) For every topological structure T and for every subset A of T and for

every point t of T such that t ∈ A holds skl(t, A) ⊆ A.

Let T be a topological space and let A be an open subset of T . Observe that

T ↾A is open.

Next we state several propositions:

(4) Let T be a topological space, S be a subspace of T , A be a subset of T ,

and B be a subset of S. If A = B, then T ↾A = S↾B.

(5) Let S, T be topological spaces, A, B be subsets of T , and C, D be

subsets of S. Suppose that

(i) the topological structure of S = the topological structure of T ,

(ii) A = C,

(iii) B = D, and

(iv) A and B are separated.

Then C and D are separated.

(6) Let S, T be topological spaces. Suppose the topological structure of S =

the topological structure of T and S is connected. Then T is connected.

(7) Let S, T be topological spaces, A be a subset of S, and B be a subset

of T . Suppose the topological structure of S = the topological structure

of T and A = B and A is connected. Then B is connected.

(8) Let S, T be non empty topological spaces, s be a point of S, t be a point

of T , and A be a neighbourhood of s. Suppose the topological structure of

S = the topological structure of T and s = t. Then A is a neighbourhood

of t.

(9) Let S, T be non empty topological spaces, A be a subset of S, B be a

subset of T , and N be a neighbourhood of A. Suppose the topological

structure of S = the topological structure of T and A = B. Then N is a

neighbourhood of B.

(10) Let S, T be non empty topological spaces, A, B be subsets of T , and

f be a map from S into T . Suppose f is a homeomorphism and A is a

component of B. Then f−1(A) is a component of f−1(B).
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2. Local Connectedness

The following propositions are true:

(11) Let T be a non empty topological space, S be a non empty subspace of

T , A be a non empty subset of T , and B be a non empty subset of S. If

A = B and A is locally connected, then B is locally connected.

(12) Let S, T be non empty topological spaces. Suppose the topological

structure of S = the topological structure of T and S is locally connected.

Then T is locally connected.

(13) For every non empty topological space T holds T is locally connected iff

ΩT is locally connected.

(14) Let T be a non empty topological space and S be a non empty open

subspace of T . If T is locally connected, then S is locally connected.

(15) Let S, T be non empty topological spaces. Suppose S and T are home-

omorphic and S is locally connected. Then T is locally connected.

(16) Let T be a non empty topological space. Given a basis B of T such that

let X be a subset of T . If X ∈ B, then X is connected. Then T is locally

connected.

(17) If r ≤ s, then [r, s]T is locally connected.

Let us mention that I is locally connected.

Let A be a non empty open subset of I. Observe that I↾A is locally connected.

3. Some Useful Functions

Let r be a real number. The functor ExtendInt r yielding a map from I into

R
1 is defined as follows:

(Def. 1) For every point x of I holds (ExtendInt r)(x) = r · x.

Let r be a real number. One can check that ExtendInt r is continuous.

Let r be a real number. Then ExtendInt r is a path from R10 to R1r.

Let S, T , Y be non empty topological spaces, let H be a map from [:S, T :]

into Y , and let t be a point of T . The functor Prj1(t, H) yields a map from S

into Y and is defined by:

(Def. 2) For every point s of S holds (Prj1(t, H))(s) = H(s, t).

Let S, T , Y be non empty topological spaces, let H be a map from [:S, T :]

into Y , and let s be a point of S. The functor Prj2(s,H) yields a map from T

into Y and is defined as follows:

(Def. 3) For every point t of T holds (Prj2(s,H))(t) = H(s, t).

Let S, T , Y be non empty topological spaces, let H be a continuous map

from [:S, T :] into Y , and let t be a point of T . Note that Prj1(t, H) is continuous.
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Let S, T , Y be non empty topological spaces, let H be a continuous map

from [:S, T :] into Y , and let s be a point of S. One can check that Prj2(s,H)

is continuous.

One can prove the following two propositions:

(18) Let T be a non empty topological space, a, b be points of T , P , Q be

paths from a to b, H be a homotopy between P and Q, and t be a point

of I. If H is continuous, then Prj1(t, H) is continuous.

(19) Let T be a non empty topological space, a, b be points of T , P , Q be

paths from a to b, H be a homotopy between P and Q, and s be a point

of I. If H is continuous, then Prj2(s,H) is continuous.

Let r be a real number. The functor cLoop r yielding a map from I into

TopUnitCircle 2 is defined as follows:

(Def. 4) For every point x of I holds (cLoop r)(x) = [cos(2 ·π ·r ·x), sin(2 ·π ·r ·x)].

The following proposition is true

(20) cLoop r = CircleMap ·ExtendInt r.

Let n be an integer. Then cLoopn is a loop of c[10].

4. Main Theorems

Next we state four propositions:

(21) Let U1 be a family of subsets of TopUnitCircle 2. Suppose U1 is a cover

of TopUnitCircle 2 and open. Let Y be a non empty topological space, F

be a continuous map from [:Y, I :] into TopUnitCircle 2, and y be a point

of Y . Then there exists a non empty finite sequence T of elements of R

such that

(i) T (1) = 0,

(ii) T (lenT ) = 1,

(iii) T is increasing, and

(iv) there exists an open subset N of Y such that y ∈ N and for every

natural number i such that i ∈ domT and i + 1 ∈ domT there exists a

non empty subset U2 of TopUnitCircle 2 such that U2 ∈ U1 and F ◦[:N,

[T (i), T (i + 1)] :] ⊆ U2.

(22) Let Y be a non empty topological space, F be a map from [:Y, I :] into

TopUnitCircle 2, and F1 be a map from [:Y, Sspace(0I) :] into R
1. Suppose

F is continuous and F1 is continuous and F ↾[: the carrier of Y , {0} :] =

CircleMap ·F1. Then there exists a map G from [:Y, I :] into R
1 such that

(i) G is continuous,

(ii) F = CircleMap ·G,

(iii) G↾[: the carrier of Y , {0} :] = F1, and

(iv) for every map H from [:Y, I :] into R
1 such that H is continuous and

F = CircleMap ·H and H↾[: the carrier of Y , {0} :] = F1 holds G = H.
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(23) Let x0, y0 be points of TopUnitCircle 2, x1 be a point of R
1, and f be a

path from x0 to y0. Suppose x1 ∈ CircleMap−1({x0}). Then there exists

a map f1 from I into R
1 such that

(i) f1(0) = x1,

(ii) f = CircleMap ·f1,

(iii) f1 is continuous, and

(iv) for every map f2 from I into R
1 such that f2 is continuous and f =

CircleMap ·f2 and f2(0) = x1 holds f1 = f2.

(24) Let x0, y0 be points of TopUnitCircle 2, P , Q be paths from x0 to y0,

F be a homotopy between P and Q, and x1 be a point of R
1. Suppose

P , Q are homotopic and x1 ∈ CircleMap−1({x0}). Then there exists a

point y1 of R
1 and there exist paths P1, Q1 from x1 to y1 and there exists

a homotopy F1 between P1 and Q1 such that P1, Q1 are homotopic and

F = CircleMap ·F1 and y1 ∈ CircleMap−1({y0}) and for every homotopy

F2 between P1 and Q1 such that F = CircleMap ·F2 holds F1 = F2.

The map Ciso from Z
+ into π1(TopUnitCircle 2, c[10]) is defined by:

(Def. 5) For every integer n holds (Ciso)(n) = [cLoopn]EqRel(TopUnitCircle 2,c[10]).

One can prove the following proposition

(25) For every integer i and for every path f from R10 to R1i holds (Ciso)(i) =

[CircleMap ·f ]EqRel(TopUnitCircle 2,c[10]).

Ciso is a homomorphism from Z
+ to π1(TopUnitCircle 2, c[10]).

Let us mention that Ciso is one-to-one and onto.

We now state two propositions:

(26) Ciso is isomorphism.

(27) Let S be a subspace of E2
T satisfying conditions of simple closed curve

and x be a point of S. Then Z
+ and π1(S, x) are isomorphic.

Let S be a subspace of E2
T satisfying conditions of simple closed curve and

let x be a point of S. Note that π1(S, x) is infinite.
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