The Fundamental Group of the Circle

Artur Korniłowicz¹ Institute of Computer Science University of Białystok Sosnowa 64, 15-887 Białystok, Poland

Summary. The article formalizes a proof of the theorem counting the fundamental group of a circle taken from [18]. The last result describes an isomorphism between the additive group of integers and the fundamental group of a simple closed curve.

MML identifier: $\texttt{TOPALG_5},$ version: <code>7.5.01 4.39.921</code>

The notation and terminology used in this paper have been introduced in the following articles: [38], [10], [44], [2], [45], [33], [7], [1], [46], [9], [27], [8], [6], [40], [12], [3], [37], [19], [41], [26], [4], [34], [28], [32], [42], [36], [43], [20], [35], [39], [11], [30], [31], [29], [22], [21], [14], [13], [5], [15], [47], [16], [17], [25], [23], and [24].

1. Preliminaries

Let us observe that every element of \mathbb{Z}^+ is integer.

Let us note that \mathbb{Z}^+ is infinite.

Let S be an infinite 1-sorted structure. Note that the carrier of S is infinite. In the sequel a, r, s denote real numbers.

One can prove the following propositions:

(1) If $r \leq s$ and 0 < a, then for every point p of $[r, s]_{M}$ holds Ball(p, a) = [r, s] or Ball(p, a) = [r, p+a[or Ball(p, a) =]p-a, s] or Ball(p, a) =]p-a, p+a[.

C 2005 University of Białystok ISSN 1426-2630

¹The paper was written during author's post-doctoral fellowship granted by Shinshu University, Japan.

ARTUR KORNIŁOWICZ

- (2) Suppose $r \leq s$. Then there exists a basis B of $[r, s]_T$ such that
- (i) there exists a many sorted set f indexed by $[r, s]_T$ such that for every point y of $[r, s]_M$ holds $f(y) = \{\text{Ball}(y, \frac{1}{n}); n \text{ ranges over natural numbers:} n \neq 0\}$ and $B = \bigcup f$, and
- (ii) for every subset X of $[r, s]_T$ such that $X \in B$ holds X is connected.
- (3) For every topological structure T and for every subset A of T and for every point t of T such that $t \in A$ holds $skl(t, A) \subseteq A$.

Let T be a topological space and let A be an open subset of T. Observe that $T \upharpoonright A$ is open.

Next we state several propositions:

- (4) Let T be a topological space, S be a subspace of T, A be a subset of T, and B be a subset of S. If A = B, then $T \upharpoonright A = S \upharpoonright B$.
- (5) Let S, T be topological spaces, A, B be subsets of T, and C, D be subsets of S. Suppose that
- (i) the topological structure of S = the topological structure of T,
- (ii) A = C,
- (iii) B = D, and
- (iv) A and B are separated. Then C and D are separated.
- (6) Let S, T be topological spaces. Suppose the topological structure of S = the topological structure of T and S is connected. Then T is connected.
- (7) Let S, T be topological spaces, A be a subset of S, and B be a subset of T. Suppose the topological structure of S = the topological structure of T and A = B and A is connected. Then B is connected.
- (8) Let S, T be non empty topological spaces, s be a point of S, t be a point of T, and A be a neighbourhood of s. Suppose the topological structure of S = the topological structure of T and s = t. Then A is a neighbourhood of t.
- (9) Let S, T be non empty topological spaces, A be a subset of S, B be a subset of T, and N be a neighbourhood of A. Suppose the topological structure of S = the topological structure of T and A = B. Then N is a neighbourhood of B.
- (10) Let S, T be non empty topological spaces, A, B be subsets of T, and f be a map from S into T. Suppose f is a homeomorphism and A is a component of B. Then $f^{-1}(A)$ is a component of $f^{-1}(B)$.

2. Local Connectedness

The following propositions are true:

- (11) Let T be a non empty topological space, S be a non empty subspace of T, A be a non empty subset of T, and B be a non empty subset of S. If A = B and A is locally connected, then B is locally connected.
- (12) Let S, T be non empty topological spaces. Suppose the topological structure of S = the topological structure of T and S is locally connected. Then T is locally connected.
- (13) For every non empty topological space T holds T is locally connected iff Ω_T is locally connected.
- (14) Let T be a non empty topological space and S be a non empty open subspace of T. If T is locally connected, then S is locally connected.
- (15) Let S, T be non empty topological spaces. Suppose S and T are homeomorphic and S is locally connected. Then T is locally connected.
- (16) Let T be a non empty topological space. Given a basis B of T such that let X be a subset of T. If $X \in B$, then X is connected. Then T is locally connected.
- (17) If $r \leq s$, then $[r, s]_{T}$ is locally connected.

Let us mention that \mathbb{I} is locally connected.

Let A be a non empty open subset of \mathbb{I} . Observe that $\mathbb{I} \upharpoonright A$ is locally connected.

3. Some Useful Functions

Let r be a real number. The functor ExtendInt r yielding a map from $\mathbb I$ into $\mathbb R^1$ is defined as follows:

- (Def. 1) For every point x of I holds $(\text{ExtendInt } r)(x) = r \cdot x$. Let r be a real number. One can check that ExtendInt r is continuous. Let r be a real number. Then ExtendInt r is a path from R^{10} to $R^{1}r$. Let S, T, Y be non empty topological spaces, let H be a map from [S, T]into Y, and let t be a point of T. The functor Prj1(t, H) yields a map from S into Y and is defined by:
- (Def. 2) For every point s of S holds (Prj1(t, H))(s) = H(s, t).

Let S, T, Y be non empty topological spaces, let H be a map from [S, T] into Y, and let s be a point of S. The functor Prj2(s, H) yields a map from T into Y and is defined as follows:

(Def. 3) For every point t of T holds (Prj2(s, H))(t) = H(s, t).

Let S, T, Y be non empty topological spaces, let H be a continuous map from [S, T] into Y, and let t be a point of T. Note that Prj1(t, H) is continuous.

ARTUR KORNIŁOWICZ

Let S, T, Y be non empty topological spaces, let H be a continuous map from [S, T] into Y, and let s be a point of S. One can check that Prj2(s, H)is continuous.

One can prove the following two propositions:

- (18) Let T be a non empty topological space, a, b be points of T, P, Q be paths from a to b, H be a homotopy between P and Q, and t be a point of I. If H is continuous, then Prj1(t, H) is continuous.
- (19) Let T be a non empty topological space, a, b be points of T, P, Q be paths from a to b, H be a homotopy between P and Q, and s be a point of I. If H is continuous, then Prj2(s, H) is continuous.

Let r be a real number. The functor cLoop r yielding a map from \mathbb{I} into TopUnitCircle 2 is defined as follows:

- (Def. 4) For every point x of I holds $(c \operatorname{Loop} r)(x) = [\cos(2 \cdot \pi \cdot r \cdot x), \sin(2 \cdot \pi \cdot r \cdot x)]$. The following proposition is true
 - (20) $\operatorname{cLoop} r = \operatorname{CircleMap} \cdot \operatorname{ExtendInt} r.$

Let n be an integer. Then cLoop n is a loop of c[10].

4. Main Theorems

Next we state four propositions:

- (21) Let U_1 be a family of subsets of TopUnitCircle 2. Suppose U_1 is a cover of TopUnitCircle 2 and open. Let Y be a non empty topological space, F be a continuous map from $[Y, \mathbb{I}]$ into TopUnitCircle 2, and y be a point of Y. Then there exists a non empty finite sequence T of elements of \mathbb{R} such that
 - (i) T(1) = 0,
- (ii) $T(\operatorname{len} T) = 1$,
- (iii) T is increasing, and
- (iv) there exists an open subset N of Y such that $y \in N$ and for every natural number i such that $i \in \text{dom } T$ and $i + 1 \in \text{dom } T$ there exists a non empty subset U_2 of TopUnitCircle 2 such that $U_2 \in U_1$ and $F^{\circ}[N, [T(i), T(i+1)]] \subseteq U_2$.
- (22) Let Y be a non empty topological space, F be a map from $[Y, \mathbb{I}]$ into TopUnitCircle 2, and F_1 be a map from $[Y, Sspace(0_{\mathbb{I}})]$ into \mathbb{R}^1 . Suppose F is continuous and F_1 is continuous and $F \upharpoonright [$ the carrier of Y, $\{0\}] =$ CircleMap $\cdot F_1$. Then there exists a map G from $[Y, \mathbb{I}]$ into \mathbb{R}^1 such that
- (i) G is continuous,
- (ii) $F = \text{CircleMap} \cdot G$,
- (iii) $G \upharpoonright [$ the carrier of $Y, \{0\}] = F_1$, and
- (iv) for every map H from $[Y, \mathbb{I}]$ into \mathbb{R}^1 such that H is continuous and $F = \text{CircleMap} \cdot H$ and $H \upharpoonright$ the carrier of $Y, \{0\} \ddagger = F_1$ holds G = H.

- (23) Let x_0, y_0 be points of TopUnitCircle 2, x_1 be a point of \mathbb{R}^1 , and f be a path from x_0 to y_0 . Suppose $x_1 \in \text{CircleMap}^{-1}(\{x_0\})$. Then there exists a map f_1 from \mathbb{I} into \mathbb{R}^1 such that
 - (i) $f_1(0) = x_1$,
 - (ii) $f = \operatorname{CircleMap} \cdot f_1,$
- (iii) f_1 is continuous, and
- (iv) for every map f_2 from I into \mathbb{R}^1 such that f_2 is continuous and $f = \text{CircleMap} \cdot f_2$ and $f_2(0) = x_1$ holds $f_1 = f_2$.
- (24) Let x_0, y_0 be points of TopUnitCircle 2, P, Q be paths from x_0 to y_0 , F be a homotopy between P and Q, and x_1 be a point of \mathbb{R}^1 . Suppose P, Q are homotopic and $x_1 \in \text{CircleMap}^{-1}(\{x_0\})$. Then there exists a point y_1 of \mathbb{R}^1 and there exist paths P_1, Q_1 from x_1 to y_1 and there exists a homotopy F_1 between P_1 and Q_1 such that P_1, Q_1 are homotopic and $F = \text{CircleMap} \cdot F_1$ and $y_1 \in \text{CircleMap}^{-1}(\{y_0\})$ and for every homotopy F_2 between P_1 and Q_1 such that $F = \text{CircleMap} \cdot F_2$ holds $F_1 = F_2$.

The map Ciso from \mathbb{Z}^+ into π_1 (TopUnitCircle 2, c[10]) is defined by:

- (Def. 5) For every integer n holds $(Ciso)(n) = [cLoop n]_{EqRel(TopUnitCircle 2, c[10])}$. One can prove the following proposition
 - (25) For every integer *i* and for every path *f* from R^{10} to $R^{1}i$ holds (Ciso)(*i*) = [CircleMap $\cdot f$]_{EqRel(TopUnitCircle 2, c[10])}. Ciso is a homomorphism from \mathbb{Z}^+ to π_1 (TopUnitCircle 2, c[10]). Let us mention that Ciso is one-to-one and onto.

We now state two propositions:

- (26) Ciso is isomorphism.
- (27) Let S be a subspace of \mathcal{E}_{T}^{2} satisfying conditions of simple closed curve and x be a point of S. Then \mathbb{Z}^{+} and $\pi_{1}(S, x)$ are isomorphic.

Let S be a subspace of \mathcal{E}_{T}^{2} satisfying conditions of simple closed curve and let x be a point of S. Note that $\pi_{1}(S, x)$ is infinite.

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–290, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.

ARTUR KORNIŁOWICZ

- [10] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [15] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.
- [16] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55–59, 1999.
- [17] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. Formalized Mathematics, 12(3):251–260, 2004.
- [18] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
- [19] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [20] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [21] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665–674, 1991.
- [22] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125–135, 1993.
- [23] Artur Korniłowicz. The fundamental group of convex subspaces of $\mathcal{E}^n_{\mathrm{T}}$. Formalized Mathematics, 12(3):295–299, 2004.
- [24] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117–124, 2005.
- [25] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261–268, 2004.
- [26] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [27] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [28] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21–22, 2002.
- [29] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. Formalized Mathematics, 5(4):513–517, 1996.
- [30] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [31] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
- [32] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [33] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [34] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [35] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233–236, 1996.
- [36] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623–627, 1991.
- [37] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [38] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [39] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [40] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [41] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [42] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [43] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.

330

- [44] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
 [45] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [46] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, [47] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle
- ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received February 22, 2005