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Summary. In this paper we prove that simple closed curves can be home-

omorphically framed into a given rectangle. We also show that homeomorphisms

preserve the Jordan property.
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The notation and terminology used in this paper are introduced in the following

articles: [20], [21], [1], [3], [22], [4], [5], [19], [10], [18], [7], [17], [11], [2], [8], [9],

[16], [13], [14], [15], [6], [23], and [12].

In this paper p1, p2 are points of E2
T, C is a simple closed curve, and P is a

subset of E2
T.

Let n be a natural number, let A be a subset of En

T, and let a, b be points

of En

T. We say that a and b realize maximal distance in A if and only if:

(Def. 1) a ∈ A and b ∈ A and for all points x, y of En

T such that x ∈ A and y ∈ A

holds ρ(a, b) ≥ ρ(x, y).

Next we state the proposition

(1) There exist p1, p2 such that p1 and p2 realize maximal distance in C.

Let M be a non empty metric structure and let f be a map from Mtop into

Mtop. We say that f is isometric if and only if:

(Def. 2) There exists an isometric map g from M into M such that g = f.

Let M be a non empty metric structure. Note that there exists a map from

Mtop into Mtop which is isometric.

Let M be a non empty metric space. Observe that every map from Mtop

into Mtop which is isometric is also continuous.
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Let M be a non empty metric space. Note that every map from Mtop into

Mtop which is isometric is also homeomorphism.

Let a be a real number. The functor Rotate a yields a map from E2
T into E2

T

and is defined as follows:

(Def. 3) For every point p of E2
T holds (Rotate a)(p) = [ℜ(p1 + p2 · i 	 a),ℑ(p1 +

p2 · i 	 a)], where a = [r1, 0] and r1 = −1.

The following propositions are true:

(2) Let a be a real number. Suppose 0 ≤ a and a < 2·π. Let f be a map from

(E2)top into (E2)top. If f = Rotate a, then f is isometric, where a = [r1, 0]

and r1 = −1.

(3) Let A, B, D be real numbers. Suppose p1 and p2 real-

ize maximal distance in P . Then (AffineMap(A,B, A,D))(p1) and

(AffineMap(A,B, A,D))(p2) realize maximal distance in (AffineMap(A,B,

A,D))◦P.

(4) Let A be a real number. Suppose 0 ≤ A and A < 2 · π and p1 and p2

realize maximal distance in P . Then (Rotate A)(p1) and (RotateA)(p2)

realize maximal distance in (Rotate A)◦P.

(5) For every complex number z and for every real number r holds z 	 −r =

z 	 2 · π − r.

(6) For every real number r holds Rotate(−r) = Rotate(2 · π − r).

(7) There exists a homeomorphism f of E2
T such that [−1, 0] and [1, 0] realize

maximal distance in f◦C.

Let T1, T2 be topological structures and let f be a map from T1 into T2. We

say that f is closed if and only if:

(Def. 4) For every subset A of T1 such that A is closed holds f◦A is closed.

One can prove the following propositions:

(8) Let X, Y be non empty topological spaces and f be a continuous map

from X into Y . Suppose f is one-to-one and onto. Then f is a homeo-

morphism if and only if f is closed.

(9) For every set X and for every subset A of X holds Ac = ∅ iff A = X.

(10) Let T1, T2 be non empty topological spaces and f be a map from T1

into T2. Suppose f is a homeomorphism. Let A be a subset of T1. If A is

connected, then f◦A is connected.

(11) Let T1, T2 be non empty topological spaces and f be a map from T1 into

T2. Suppose f is a homeomorphism. Let A be a subset of T1. If A is a

component of T1, then f◦A is a component of T2.

(12) Let T1, T2 be non empty topological spaces, f be a map from T1 into

T2, and A be a subset of T1. Then f↾A is a map from T1↾A into T2↾f
◦A.

(13) Let T1, T2 be non empty topological spaces and f be a map from T1 into
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T2. Suppose f is continuous. Let A be a subset of T1 and g be a map

from T1↾A into T2↾f
◦A. If g = f↾A, then g is continuous.

(14) Let T1, T2 be non empty topological spaces and f be a map from T1 into

T2. Suppose f is a homeomorphism. Let A be a subset of T1 and g be a

map from T1↾A into T2↾f
◦A. If g = f↾A, then g is a homeomorphism.

(15) Let T1, T2 be non empty topological spaces and f be a map from T1 into

T2. Suppose f is a homeomorphism. Let A, B be subsets of T1. If A is a

component of B, then f◦A is a component of f◦B.

(16) For every subset S of E2
T and for every homeomorphism f of E2

T such

that S is Jordan holds f◦S is Jordan.
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