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The terminology and notation used here are introduced in the following articles:

[21], [8], [24], [25], [6], [26], [7], [3], [14], [2], [5], [1], [20], [22], [4], [23], [15], [16],

[13], [12], [11], [9], [18], [10], [19], and [17].

1. The Real Euclidean Space as a Real Linear Space

In this paper n is a natural number.

Let n be a natural number. The functor 〈En, ‖ · ‖〉 yields a strict non empty

normed structure and is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of 〈En, ‖ · ‖〉 = Rn,

(ii) the zero of 〈En, ‖ · ‖〉 = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉,

(iii) for all elements a, b of Rn holds (the addition of 〈En, ‖·‖〉)(a, b) = a+b,

(iv) for every element r of R and for every element x of Rn holds (the

external multiplication of 〈En, ‖ · ‖〉)(r, x) = r · x, and

(v) for every element x of Rn holds (the norm of 〈En, ‖ · ‖〉)(x) = |x|.

Let n be a natural number. Note that the addition of 〈En, ‖ · ‖〉 is commu-

tative and associative.

Let n be a non empty natural number. Note that 〈En, ‖ · ‖〉 is non trivial.

One can prove the following propositions:

(1) For every vector x of 〈En, ‖ · ‖〉 and for every element y of Rn such that

x = y holds ‖x‖ = |y|.

(2) Let n be a natural number, x, y be vectors of 〈En, ‖ · ‖〉, and a, b be

elements of Rn. If x = a and y = b, then x + y = a + b.

577
c© 2005 University of Bia lystok

ISSN 1426–2630



578 noboru endou and yasunari shidama

(3) For every vector x of 〈En, ‖ · ‖〉 and for every element y of Rn and for

every real number a such that x = y holds a · x = a · y.

Let n be a natural number. Note that 〈En, ‖ · ‖〉 is real normed space-like,

real linear space-like, Abelian, add-associative, right zeroed, and right comple-

mentable.

One can prove the following propositions:

(4) For every vector x of 〈En, ‖ · ‖〉 and for every element a of Rn such that

x = a holds −x = −a.

(5) For all vectors x, y of 〈En, ‖ · ‖〉 and for all elements a, b of Rn such that

x = a and y = b holds x − y = a − b.

(6) For every finite sequence f of elements of R such that dom f = Seg n

holds f is an element of Rn.

(7) Let n be a natural number and x be an element of Rn. Suppose that for

every natural number i such that i ∈ Seg n holds 0 ≤ x(i). Then 0 ≤
∑

x

and for every natural number i such that i ∈ Seg n holds x(i) ≤
∑

x.

(8) For every element x of Rn and for every natural number i such that

i ∈ Seg n holds |x(i)| ≤ |x|.

(9) Let x be a point of 〈En, ‖ · ‖〉 and y be an element of Rn. If x = y, then

for every natural number i such that i ∈ Seg n holds |y(i)| ≤ ‖x‖.

(10) For every element x of Rn+1 holds |x|2 = |x↾n|2 + x(n + 1)2.

Let n be a natural number, let f be a function from N into Rn, and let k

be a natural number. Then f(k) is an element of Rn.

We now state two propositions:

(11) Let n be a natural number, x be a point of 〈En, ‖ · ‖〉, x2 be an element

of Rn, s1 be a sequence of 〈En, ‖ · ‖〉, and x1 be a function from N into

Rn. Suppose x2 = x and x1 = s1. Then s1 is convergent and lim s1 = x

if and only if for every natural number i such that i ∈ Seg n there exists

a sequence r1 of real numbers such that for every natural number k holds

r1(k) = x1(k)(i) and r1 is convergent and x2(i) = lim r1.

(12) For every sequence f of 〈En, ‖ · ‖〉 such that f is Cauchy sequence by

norm holds f is convergent.

Let us consider n. Note that 〈En, ‖ · ‖〉 is complete.

2. The Real Euclidean Space as a Real Normed Space

Let n be a natural number. The functor 〈En, (·|·)〉 yields a strict non empty

unitary space structure and is defined by the conditions (Def. 2).

(Def. 2)(i) The RLS structure of 〈En, (·|·)〉 = the RLS structure of 〈En, ‖·‖〉, and

(ii) for all elements x, y of Rn holds (the scalar product of 〈En, (·|·)〉)(x,

y) =
∑

(x • y).



completeness of the real euclidean space 579

Let n be a non empty natural number. One can verify that 〈En, (·|·)〉 is non

trivial.

Let n be a natural number. Observe that 〈En, (·|·)〉 is real unitary space-like,

real linear space-like, Abelian, add-associative, right zeroed, and right comple-

mentable.

The following propositions are true:

(13) Let n be a natural number, a be a real number, x3, y1 be points of

〈En, ‖ · ‖〉, and x4, y2 be points of 〈En, (·|·)〉. If x3 = x4 and y1 = y2, then

x3 + y1 = x4 + y2 and −x3 = −x4 and a · x3 = a · x4.

(14) For every natural number n and for every point x3 of 〈En, ‖ · ‖〉 and for

every point x4 of 〈En, (·|·)〉 such that x3 = x4 holds ‖x3‖
2 = (x4|x4).

(15) Let n be a natural number and f be a set. Then f is a sequence of

〈En, ‖ · ‖〉 if and only if f is a sequence of 〈En, (·|·)〉.

(16) Let n be a natural number, s2 be a sequence of 〈En, ‖ · ‖〉, and s3 be a

sequence of 〈En, (·|·)〉 such that s2 = s3. Then

(i) if s2 is convergent, then s3 is convergent and lim s2 = lim s3, and

(ii) if s3 is convergent, then s2 is convergent and lim s2 = lim s3.

(17) Let n be a natural number, s2 be a sequence of 〈En, ‖ · ‖〉, and s3 be a

sequence of 〈En, (·|·)〉. If s2 = s3 and s2 is Cauchy sequence by norm, then

s3 is Cauchy.

(18) Let n be a natural number, s2 be a sequence of 〈En, ‖ · ‖〉, and s3 be

a sequence of 〈En, (·|·)〉. If s2 = s3 and s3 is Cauchy, then s2 is Cauchy

sequence by norm.

Let us consider n. Note that 〈En, (·|·)〉 is Hilbert.
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