Completeness of the Real Euclidean Space

Noboru Endou Gifu National College of Technology Japan Yasunari Shidama Shinshu University Nagano, Japan

MML identifier: REAL_NS1, version: 7.6.01 4.50.934

The terminology and notation used here are introduced in the following articles: [21], [8], [24], [25], [6], [26], [7], [3], [14], [2], [5], [1], [20], [22], [4], [23], [15], [16], [13], [12], [11], [9], [18], [10], [19], and [17].

1. THE REAL EUCLIDEAN SPACE AS A REAL LINEAR SPACE

In this paper n is a natural number.

Let *n* be a natural number. The functor $\langle \mathcal{E}^n, \| \cdot \| \rangle$ yields a strict non empty normed structure and is defined by the conditions (Def. 1).

- (Def. 1)(i) The carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle = \mathcal{R}^n$,
 - (ii) the zero of $\langle \mathcal{E}^n, \| \cdot \| \rangle = \langle \underbrace{0, \dots, 0}_n \rangle$,
 - (iii) for all elements a, b of \mathcal{R}^n holds (the addition of $\langle \mathcal{E}^n, \|\cdot\|\rangle$)(a, b) = a+b,
 - (iv) for every element r of \mathbb{R} and for every element x of \mathcal{R}^n holds (the external multiplication of $\langle \mathcal{E}^n, \|\cdot\| \rangle$) $(r, x) = r \cdot x$, and
 - (v) for every element x of \mathcal{R}^n holds (the norm of $\langle \mathcal{E}^n, \|\cdot\|\rangle)(x) = |x|$.

Let n be a natural number. Note that the addition of $\langle \mathcal{E}^n, \|\cdot\|\rangle$ is commutative and associative.

Let *n* be a non empty natural number. Note that $\langle \mathcal{E}^n, \| \cdot \| \rangle$ is non trivial. One can prove the following propositions:

- (1) For every vector x of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and for every element y of \mathcal{R}^n such that x = y holds $\|x\| = |y|$.
- (2) Let n be a natural number, x, y be vectors of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and a, b be elements of \mathcal{R}^n . If x = a and y = b, then x + y = a + b.

C 2005 University of Białystok ISSN 1426-2630 (3) For every vector x of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and for every element y of \mathcal{R}^n and for every real number a such that x = y holds $a \cdot x = a \cdot y$.

Let n be a natural number. Note that $\langle \mathcal{E}^n, \| \cdot \| \rangle$ is real normed space-like, real linear space-like, Abelian, add-associative, right zeroed, and right complementable.

One can prove the following propositions:

- (4) For every vector x of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and for every element a of \mathcal{R}^n such that x = a holds -x = -a.
- (5) For all vectors x, y of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and for all elements a, b of \mathcal{R}^n such that x = a and y = b holds x y = a b.
- (6) For every finite sequence f of elements of \mathbb{R} such that dom f = Seg n holds f is an element of \mathcal{R}^n .
- (7) Let *n* be a natural number and *x* be an element of \mathcal{R}^n . Suppose that for every natural number *i* such that $i \in \text{Seg } n$ holds $0 \leq x(i)$. Then $0 \leq \sum x$ and for every natural number *i* such that $i \in \text{Seg } n$ holds $x(i) \leq \sum x$.
- (8) For every element x of \mathcal{R}^n and for every natural number i such that $i \in \text{Seg } n \text{ holds } |x(i)| \leq |x|.$
- (9) Let x be a point of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and y be an element of \mathcal{R}^n . If x = y, then for every natural number i such that $i \in \text{Seg } n$ holds $|y(i)| \leq \|x\|$.
- (10) For every element x of \mathcal{R}^{n+1} holds $|x|^2 = |x|^n |^2 + x(n+1)^2$.

Let n be a natural number, let f be a function from \mathbb{N} into \mathcal{R}^n , and let k be a natural number. Then f(k) is an element of \mathcal{R}^n .

We now state two propositions:

- (11) Let *n* be a natural number, *x* be a point of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, x_2 be an element of \mathcal{R}^n , s_1 be a sequence of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and x_1 be a function from N into \mathcal{R}^n . Suppose $x_2 = x$ and $x_1 = s_1$. Then s_1 is convergent and $\lim s_1 = x$ if and only if for every natural number *i* such that $i \in \text{Seg } n$ there exists a sequence r_1 of real numbers such that for every natural number *k* holds $r_1(k) = x_1(k)(i)$ and r_1 is convergent and $x_2(i) = \lim r_1$.
- (12) For every sequence f of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ such that f is Cauchy sequence by norm holds f is convergent.

Let us consider n. Note that $\langle \mathcal{E}^n, \| \cdot \| \rangle$ is complete.

2. The Real Euclidean Space as a Real Normed Space

Let *n* be a natural number. The functor $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ yields a strict non empty unitary space structure and is defined by the conditions (Def. 2).

(Def. 2)(i) The RLS structure of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ = the RLS structure of $\langle \mathcal{E}^n, \|\cdot\| \rangle$, and (ii) for all elements x, y of \mathcal{R}^n holds (the scalar product of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$) $(x, y) = \sum (x \bullet y)$.

578

Let n be a non empty natural number. One can verify that $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ is non trivial.

Let n be a natural number. Observe that $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ is real unitary space-like, real linear space-like, Abelian, add-associative, right zeroed, and right complementable.

The following propositions are true:

- (13) Let *n* be a natural number, *a* be a real number, x_3 , y_1 be points of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and x_4 , y_2 be points of $\langle \mathcal{E}^n, (\cdot | \cdot) \rangle$. If $x_3 = x_4$ and $y_1 = y_2$, then $x_3 + y_1 = x_4 + y_2$ and $-x_3 = -x_4$ and $a \cdot x_3 = a \cdot x_4$.
- (14) For every natural number n and for every point x_3 of $\langle \mathcal{E}^n, \|\cdot\| \rangle$ and for every point x_4 of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ such that $x_3 = x_4$ holds $\|x_3\|^2 = (x_4|x_4)$.
- (15) Let *n* be a natural number and *f* be a set. Then *f* is a sequence of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ if and only if *f* is a sequence of $\langle \mathcal{E}^n, (\cdot | \cdot) \rangle$.
- (16) Let *n* be a natural number, s_2 be a sequence of $\langle \mathcal{E}^n, \|\cdot\|\rangle$, and s_3 be a sequence of $\langle \mathcal{E}^n, (\cdot|\cdot)\rangle$ such that $s_2 = s_3$. Then
 - (i) if s_2 is convergent, then s_3 is convergent and $\lim s_2 = \lim s_3$, and
 - (ii) if s_3 is convergent, then s_2 is convergent and $\lim s_2 = \lim s_3$.
- (17) Let *n* be a natural number, s_2 be a sequence of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and s_3 be a sequence of $\langle \mathcal{E}^n, (\cdot | \cdot) \rangle$. If $s_2 = s_3$ and s_2 is Cauchy sequence by norm, then s_3 is Cauchy.
- (18) Let *n* be a natural number, s_2 be a sequence of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and s_3 be a sequence of $\langle \mathcal{E}^n, (\cdot | \cdot) \rangle$. If $s_2 = s_3$ and s_3 is Cauchy, then s_2 is Cauchy sequence by norm.

Let us consider n. Note that $\langle \mathcal{E}^n, (\cdot | \cdot) \rangle$ is Hilbert.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
 [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.

- [13] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [15] Jan Popiołek. Introduction to Banach and Hilbert spaces part I. Formalized Mathematics, 2(4):511–516, 1991.
- [16] Jan Popiołek. Introduction to Banach and Hilbert spaces part II. Formalized Mathematics, 2(4):517–521, 1991.
- [17] Jan Popiołek. Introduction to Banach and Hilbert spaces part III. Formalized Mathematics, 2(4):523–526, 1991.
- [18] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [19] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences. Formalized Mathematics, 11(4):377–380, 2003.
- [20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received December 28, 2005