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Summary. The notions of prime ideals and maximal ideals of a ring are

introduced. Quotient rings are defined. Characterisation of prime and maximal

ideals using quotient rings are proved.
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The articles [18], [10], [22], [17], [2], [19], [6], [23], [24], [7], [9], [8], [25], [15], [3],

[4], [5], [14], [20], [16], [13], [21], [11], [12], and [1] provide the terminology and

notation for this paper.

1. Preliminaries

Let S be a non empty 1-sorted structure. Note that ΩS is non proper.

The following propositions are true:

(1) Let L be an add-associative right zeroed right complementable non

empty loop structure and a, b be elements of L. Then (a − b) + b = a.

(2) Let L be an add-associative right zeroed right complementable Abelian

non empty loop structure and b, c be elements of L. Then c = b− (b− c).

(3) Let L be an add-associative right zeroed right complementable Abelian

non empty loop structure and a, b, c be elements of L. Then a−b−(c−b) =

a − c.
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2. Ideals

Let K be a non empty groupoid and let S be a subset of K. We say that S

is quasi-prime if and only if:

(Def. 1) For all elements a, b of K such that a · b ∈ S holds a ∈ S or b ∈ S.

Let K be a non empty multiplicative loop structure and let S be a subset

of K. We say that S is prime if and only if:

(Def. 2) S is proper and quasi-prime.

Let R be a non empty double loop structure and let I be a subset of R. We

say that I is quasi-maximal if and only if:

(Def. 3) For every ideal J of R such that I ⊆ J holds J = I or J is non proper.

Let R be a non empty double loop structure and let I be a subset of R. We

say that I is maximal if and only if:

(Def. 4) I is proper and quasi-maximal.

Let K be a non empty multiplicative loop structure. Note that every subset

of K which is prime is also proper and quasi-prime and every subset of K which

is proper and quasi-prime is also prime.

Let R be a non empty double loop structure. One can verify that every subset

of R which is maximal is also proper and quasi-maximal and every subset of R

which is proper and quasi-maximal is also maximal.

Let R be a non empty loop structure. One can verify that ΩR is add closed.

Let R be a non empty groupoid. Observe that ΩR is left ideal and right

ideal.

We now state the proposition

(4) For every integral domain R holds {0R} is prime.

3. Equivalence Relation

In the sequel R denotes a ring, I denotes an ideal of R, and a, b denote

elements of R.

Let R be a ring and let I be an ideal of R. The functor ≈I yielding a binary

relation on R is defined by:

(Def. 5) For all elements a, b of R holds 〈〈a, b〉〉 ∈ ≈I iff a − b ∈ I.

Let R be a ring and let I be an ideal of R. One can verify that ≈I is non

empty, total, symmetric, and transitive.

We now state several propositions:

(5) a ∈ [b]≈I
iff a − b ∈ I.

(6) [a]≈I
= [b]≈I

iff a − b ∈ I.

(7) [a]≈ΩR

= the carrier of R.
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(8) ≈ΩR
= {the carrier of R}.

(9) [a]≈{0R}
= {a}.

(10) ≈{0R} = rng(singletonthe carrier of R).

4. Quotient Ring

Let R be a ring and let I be an ideal of R. The functor R/I yields a strict

double loop structure and is defined by the conditions (Def. 6).

(Def. 6)(i) The carrier of R/I = Classes(≈I),

(ii) the unity of R/I = [1R]≈I
,

(iii) the zero of R/I = [0R]≈I
,

(iv) for all elements x, y of R/I there exist elements a, b of R such that

x = [a]≈I
and y = [b]≈I

and (the addition of R/I )(x, y) = [a + b]≈I
, and

(v) for all elements x, y of R/I there exist elements a, b of R such that

x = [a]≈I
and y = [b]≈I

and (the multiplication of R/I )(x, y) = [a · b]≈I
.

Let R be a ring and let I be an ideal of R. Note that R/I is non empty.

In the sequel x, y denote elements of R/I .

We now state several propositions:

(11) There exists an element a of R such that x = [a]≈I
.

(12) [a]≈I
is an element of R/I .

(13) If x = [a]≈I
and y = [b]≈I

, then x + y = [a + b]≈I
.

(14) If x = [a]≈I
and y = [b]≈I

, then x · y = [a · b]≈I
.

(15) [1R]≈I
= 1R/I

.

Let R be a ring and let I be an ideal of R. Observe that R/I is Abelian,

add-associative, and right zeroed.

Let R be a commutative ring and let I be an ideal of R. Note that R/I is

commutative.

The following propositions are true:

(16) I is proper iff R/I is non degenerated.

(17) I is quasi-prime iff R/I is integral domain-like.

(18) For every commutative ring R and for every ideal I of R holds I is prime

iff R/I is an integral domain.

(19) If R is commutative and I is quasi-maximal, then R/I is field-like.

(20) If R/I is field-like, then I is quasi-maximal.

(21) For every commutative ring R and for every ideal I of R holds I is

maximal iff R/I is a skew field.
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Let R be a non degenerated commutative ring. One can check that every

ideal of R which is maximal is also prime.

Let R be a non degenerated ring. Note that there exists an ideal of R which

is maximal.

Let R be a non degenerated commutative ring and let I be a quasi-prime

ideal of R. Observe that R/I is integral domain-like.

Let R be a non degenerated commutative ring and let I be a quasi-maximal

ideal of R. Observe that R/I is field-like.
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