FORMALIZED MATHEMATICS
Volume 14, Number 4, Pages 135-142
University of Bialystok, 2006

Schur’s Theorem on the Stability of
Networks

Christoph Schwarzweller
Institute of Computer Science
University of Gdansk
Wita Stwosza 57, 80-952 Gdansk, Poland

Agnieszka Rowinska-Schwarzweller
Chair of Display Technology
University of Stuttgart
Allmandring 3b, 70569 Stuttgart, Germany

Summary. A complex polynomial is called a Hurwitz polynomial if all
its roots have a real part smaller than zero. This kind of polynomial plays an
all-dominant role in stability checks of electrical networks.

In this article we prove Schur’s criterion [17] that allows to decide whether
a polynomial p(x) is Hurwitz without explicitly computing its roots: Schur’s
recursive algorithm successively constructs polynomials p;(x) of lesser degree by
division with = — ¢, #{c} < 0, such that p;(x) is Hurwitz if and only if p(z) is.
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The articles [20], [25], [26], [18], [13], [5], [6], [1], [22], [23], [21], [19], [24], [16],
[4], [9], [2], [3], [15], [14], [7], [12], [10], [27], [11], and [8] provide the terminology
and notation for this paper.

1. PRELIMINARIES

One can prove the following propositions:
(1) Let L be an add-associative right zeroed right complementable associa-
tive commutative left unital distributive field-like non empty double loop
structure and z be an element of L. If = # 0p, then —z~! = (—z)7%.

@ 2006 University of Bialystok
135 ISSN 1426-2630



136 CHRISTOPH SCHWARZWELLER et al.

(2) Let L be an add-associative right zeroed right complementable asso-
ciative commutative left unital field-like distributive non degenerated non
empty double loop structure and k be an element of N. Then power; (—1p,
k) # 0.

(3) Let L be an associative right unital non empty multiplicative loop struc-
ture, = be an element of L, and kj, k2 be elements of N. Then power (z,
k1) - power (z, ko) = powery (z, k1 + ko).

(4) Let L be an add-associative right zeroed right complementable left unital
distributive non empty double loop structure and k be an element of N.
Then powery(—1z, 2-k) = 1, and powery (-1, 2-k+1) = —1p.

(5) For every element z of Cp and for every element k of N holds
powerc,. (2, k) = powerc, (%, k).

(6) Let F, G be finite sequences of elements of Cp. Suppose len G = len F’
and for every element i of N such that i € dom G holds G; = F;. Then
SG=3F.

(7) Let L be an add-associative right zeroed right complementable Abelian
non empty loop structure and Fi, F5 be finite sequences of elements of L.
Suppose len F; = len F5 and for every element ¢ of N such that ¢ € dom F;
holds (Fl)l = —(Fg)i. Then ZFI = —Z F2.

(8) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure,  be an element of L, and F' be a
finite sequence of elements of L. Then z- Y F = > (z- F).

2. MORE ON POLYNOMIALS

We now state four propositions:

(9) For every add-associative right zeroed right complementable non empty
loop structure L holds —0. L = 0. L.

(10) Let L be an add-associative right zeroed right complementable non
empty loop structure and p be a polynomial of L. Then ——p = p.

(11) Let L be an add-associative right zeroed right complementable Abelian
distributive non empty double loop structure and p;, po be polynomials
of L. Then —(p1 + p2) = —p1 + —p2.

(12) Let L be an add-associative right zeroed right complementable distribu-
tive Abelian non empty double loop structure and p1, ps be polynomials
of L. Then —py * p2 = (—p1) * p2 and —p; * pa = p1 * —pa.

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure, let F' be a finite sequence of elements of
Polynom-Ring L, and let i be an element of N. The functor Coeff(F, 1) yielding
a finite sequence of elements of L is defined by the conditions (Def. 1).
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(Def. 1)(i)  len Coeff(F,i) = len F, and
(ii)  for every element j of N such that j € dom Coeff(F, i) there exists a
polynomial p of L such that p = F(j) and (Coeff(F,7))(j) = p(i).
One can prove the following propositions:

(13) Let L be an add-associative right zeroed right complementable distribu-
tive non empty double loop structure, p be a polynomial of L, and F be a
finite sequence of elements of Polynom-Ring L. If p = > F', then for every
element ¢ of N holds p(i) = > Coeff (F, ).

(14) Let L be an associative non empty double loop structure, p be a poly-
nomial of L, and x1, x2 be elements of L. Then x1 - (z2 - p) = (z1 - x2) - p.

(15) Let L be an add-associative right zeroed right complementable left dis-
tributive non empty double loop structure, p be a polynomial of L, and =
be an element of L. Then —x -p = (—z) - p.

(16) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure, p be a polynomial of L, and
x be an element of L. Then —x-p=x - —p.

(17) Let L be a left distributive non empty double loop structure, p be a
polynomial of L, and z1, x2 be elements of L. Then (x1 + z3) - p =
T1-p+x2-D.

(18) Let L be a right distributive non empty double loop structure, p1, p2 be
polynomials of L, and z be an element of L. Then z-(p1+p2) = x-p1+x-pa.

(19) Let L be an add-associative right zeroed right complementable distribu-
tive commutative associative non empty double loop structure, pi, p2 be
polynomials of L, and z be an element of L. Then p1*(x-p2) = x-(p1*p2).

Let L be a non empty zero structure and let p be a polynomial of L. The
functor degree(p) yields an integer and is defined by:
(Def. 2) degree(p) =lenp — 1.
Let L be a non empty zero structure and let p be a polynomial of L. We
introduce degp as a synonym of degree(p).
We now state several propositions:

(20) For every non empty zero structure L and for every polynomial p of L
holds degp = —1iff p = 0. L.

(21) Let L be an add-associative right zeroed right complementable non
empty loop structure and py, p2 be polynomials of L. If degp; # degpo,
then deg(p1 + p2) = max(deg p1,deg p2).

(22) Let L be an add-associative right zeroed right complementable Abelian
non empty loop structure and pi, p2 be polynomials of L. Then deg(p; +
p2) < max(degpy,degps).

(23) Let L be an add-associative right zeroed right complementable distribu-
tive commutative associative left unital integral domain-like non empty



138 CHRISTOPH SCHWARZWELLER et al.

double loop structure and p;, po be polynomials of L. If p; # 0. L and
p2 # 0. L, then deg(py * p2) = degp1 + degpa.

(24) Let L be an add-associative right zeroed right complementable unital
non empty double loop structure and p be a polynomial of L such that
degp = 0. Then p does not have roots.

Let L be a unital non empty double loop structure, let z be an element of

L, and let k be an element of N. The functor rpoly(k, z) yields a polynomial of
L and is defined by:

(Def. 3) rpoly(k,z) = 0. L+-[0 — —powery(z, k), k— 1L].
One can prove the following propositions:

(25) Let L be a unital non empty double loop structure, z be an element of L,
and k be an element of N. If k # 0, then (rpoly(k, 2))(0) = —power (z, k)
and (rpoly(k, z))(k) = 1L.

(26) Let L be a unital non empty double loop structure, z be an element of L,
and 7, k be elements of N. If ¢ # 0 and i # k, then (rpoly(k,z))(i) = 0p,.

(27) Let L be a unital non degenerated non empty double loop structure, z
be an element of L, and k be an element of N. Then degrpoly(k, z) = k.

(28) Let L be an add-associative right zeroed right complementable left unital
commutative associative distributive field-like non degenerated non empty
double loop structure and p be a polynomial of L. Then degp = 1 if
and only if there exist elements x, z of L such that z # 07 and p =
x - rpoly(1, 2).

(29) Let L be an add-associative right zeroed right complementable Abelian
unital non degenerated non empty double loop structure and z, z be ele-
ments of L. Then eval(rpoly(1, z),z) = = — 2.

(30) Let L be an add-associative right zeroed right complementable unital
Abelian non degenerated non empty double loop structure and z be an
element of L. Then z is a root of rpoly(1, z).

Let L be a unital non empty double loop structure, let z be an element of
L, and let k be an element of N. The functor gpoly(k, z) yielding a polynomial
of L is defined by the conditions (Def. 4).
(Def. 4)(i)  For every element ¢ of N such that ¢ < & holds (qpoly(k,z))(i) =
power (z, k —i— 1), and
(ii)  for every element i of N such that ¢ > k holds (qpoly(k, 2))(i) = 0f.
Next we state three propositions:

(31) Let L be a unital non degenerated non empty double loop structure, z be
an element of L, and k be an element of N. If k£ > 1, then deg qpoly(k, z) =
k—1.

(32) Let L be an add-associative right zeroed right complementable left dis-
tributive unital commutative non empty double loop structure, z be an
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element of L, and k be an element of N. If k& > 1, then rpoly(1, z) *
gpoly(k, z) = rpoly(k, z).

(33) Let L be an Abelian add-associative right zeroed right complementable
unital associative distributive commutative non empty double loop struc-
ture, p be a polynomial of L, and z be an element of L. If z is a root of
p, then there exists a polynomial s of L such that p = rpoly(1, z) * s.

3. DI1vISION OF POLYNOMIALS

Let L be an Abelian add-associative right zeroed right complementable left
unital associative commutative distributive field-like non empty double loop
structure and let p, s be polynomials of L. Let us assume that s # 0. L. The
functor p + s yields a polynomial of L and is defined by:

(Def. 5) There exists a polynomial ¢t of L such that p = (p + s) *x s + ¢ and
degt < degs.

Let L be an Abelian add-associative right zeroed right complementable left
unital associative commutative distributive field-like non empty double loop
structure and let p, s be polynomials of L. The functor p mod s yielding a
polynomial of L is defined by:

(Def. 6) pmods=p— (p+s)*s.
Let L be an Abelian add-associative right zeroed right complementable left

unital associative commutative distributive field-like non empty double loop
structure and let p, s be polynomials of L. The predicate s | p is defined by:

(Def. 7) pmods=0.L.
One can prove the following three propositions:

(34) Let L be an Abelian add-associative right zeroed right complementable
left unital associative commutative distributive field-like non empty double
loop structure and p, s be polynomials of L. Suppose s # 0. L. Then s | p
if and only if there exists a polynomial ¢ of L such that ¢ x s = p.

(35) Let L be an Abelian add-associative right zeroed right complementable
left unital associative commutative distributive field-like non degenerated
non empty double loop structure, p be a polynomial of L, and z be an
element of L. If z is a root of p, then rpoly(1,z2) | p.

(36) Let L be an Abelian add-associative right zeroed right complementable
left unital associative commutative distributive field-like non degenerated
non empty double loop structure, p be a polynomial of L, and z be an
element of L. If p # 0. L and z is a root of p, then deg(p + rpoly(1,2)) =
degp — 1.
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4. SCHUR’S THEOREM

Let f be a polynomial of Cr. We say that f is Hurwitz if and only if:
(Def. 8) For every element z of Cy such that z is a root of f holds £(z) < 0.
We now state several propositions:
(37) 0.(Cg) is non Hurwitz.
(38) For every element z of Cy such that = # Oc,, holds z-1.(Cg) is Hurwitz.

(39) For all elements x, z of Cg such that = # Oc, holds z - rpoly(1, z) is
Hurwitz iff R(z) <0

(40) Let f be a polynomial of Cy and z be an element of Cg. If z # Oc,,
then f is Hurwitz iff z - f is Hurwitz.

(41) For all polynomials f, g of Cg holds f g is Hurwitz iff f is Hurwitz and
g is Hurwitz.

Let f be a polynomial of Cp. The functor f yielding a polynomial of Cp is
defined by:

(Def. 9) For every element i of N holds f (i) = powerc_(—1cy, 1) - f(3).
We now state several propositions:
(42) For every polynomial f of Cy holds deg f = deg f.
(43) For every polynomial f of Cy holds ? =f.

(44) For every polynomial f of Cg and for every element z of Cg holds z - f =
z-f.

(45) For every polynomial f of Cr holds —f = — f.

(46) For all polynomials f, g of Cp holds f+g = f + 7.

(47) For all polynomials f, g of Cy holds f+g = f * 7.

(48) For all elements z, z of Cy holds eval(rpoly(1, 2),z) = —x — Z.

(49) For every polynomial f of Cy such that f is Hurwitz and for every

element z of Cp such that $(z) > 0 holds 0 < |eval(f, z)|.

(50) Let f be a polynomial of Cp. Suppose deg f > 1 and f is Hurwitz. Let
z be an element of Cg. Then
(i) if R(x) <0, then |eval(f,x)| < |eval(f,z)],
(i) if ®(x) > 0, then |eval(f,z)| > |eval(f,z)|, and
(iii)  if R(x) = 0, then |eval(f,x)| = |eval(f,z)|.
Let f be a polynomial of Cr and let z be an element of Cr. The functor
F « (f,z) yields a polynomial of Cg and is defined as follows:

(Def. 10) Fx(f,2) =eval(f,2) - f —eval(f,z)- f.
We now state four propositions:

(51) Let a, b be elements of Cp. Suppose |a| > |b]. Let f be a polynomial of
Cp. If deg f > 1, then f is Hurwitz iff - f — b- f is Hurwitz.
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(52) Let f be a polynomial of Cr. Suppose deg f > 1. Let r; be an element
of Cp. If R(r1) < 0, then if f is Hurwitz, then F « (f,r1) + rpoly(1,71) is
Hurwitz.

(53) Let f be a polynomial of Cr. Suppose deg f > 1. Given an element 7
of Cg such that R(ry) < 0 and |eval(f,r1)| > |eval(f,r1)|. Then f is non
Hurwitz.

(54) Let f be a polynomial of Cp. Suppose deg f > 1. Let r1 be an element
of Cr. Suppose R(r1) < 0 and |eval(f,r1)| < |eval(f,r1)|. Then f is
Hurwitz if and only if F' * (f,r1) + rpoly(1,r1) is Hurwitz.
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