
FORMALIZED MATHEMATICS

Volume 14, Number 4, Pages 171–186

University of Bia lystok, 2006

Model Checking. Part I

Kazuhisa Ishida

Shinshu University

Nagano, Japan

Summary. This text includes definitions of the Kripke structure, CTL

(Computation Tree Logic), and verification of the basic algorithm for Model

Checking based on CTL in [10].

MML identifier: MODELC 1, version: 7.8.03 4.75.958

The articles [21], [20], [16], [9], [18], [14], [6], [7], [4], [3], [5], [11], [2], [8], [13],

[12], [17], [15], [1], and [19] provide the notation and terminology for this paper.

Let x, S be sets and let a be an element of S. The functor k.id(x, S, a) yields

an element of S and is defined by:

(Def. 1) k.id(x, S, a) =

{

x, if x ∈ S,

a, otherwise.

Let x be a set. The functor k.nat x yields an element of N and is defined by:

(Def. 2) k.nat x =

{

x, if x ∈ N,
0, otherwise.

Let f be a function and let x, a be sets. The functor UnivF(x, f, a) yielding

a set is defined by:

(Def. 3) UnivF(x, f, a) =

{

f(x), if x ∈ dom f,

a, otherwise.

Let a be a set. The functor Castboolean a yields a boolean set and is defined

by:

(Def. 4) Castboolean a =

{

a, if a is a boolean set,

false, otherwise.

Let X, a be sets. The functor CastBool(a,X) yielding a subset of X is

defined as follows:

(Def. 5) CastBool(a,X) =

{

a, if a ⊆ X,

∅, otherwise.

171
c© 2006 University of Bia lystok

ISSN 1426–2630

172 kazuhisa ishida

For simplicity, we adopt the following rules: n denotes an element of N, a

denotes a set, D denotes a non empty set, and p, q denote finite sequences of

elements of N.

Let x be a variable. Then 〈x〉 is a finite sequence of elements of N.

Let us consider n. The functor atom. n yields a finite sequence of elements

of N and is defined by:

(Def. 6) atom. n = 〈5 + n〉.

Let us consider p. The functor ¬p yielding a finite sequence of elements of
N is defined by:

(Def. 7) ¬p = 〈0〉 a p.

Let us consider q. The functor p ∧ q yielding a finite sequence of elements of N
is defined by:

(Def. 8) p ∧ q = 〈1〉 a p a q.

Let us consider p. The functor EX p yielding a finite sequence of elements

of N is defined as follows:

(Def. 9) EX p = 〈2〉 a p.

The functor EG p yielding a finite sequence of elements of N is defined by:

(Def. 10) EG p = 〈3〉 a p.

Let us consider q. The functor pEU q yields a finite sequence of elements of N

and is defined as follows:

(Def. 11) pEU q = 〈4〉 a p a q.

The non empty set CTL-WFF is defined by the conditions (Def. 12).

(Def. 12) For every a such that a ∈ CTL-WFF holds a is a finite sequence of

elements of N and for every n holds atom. n ∈ CTL-WFF and for every

p such that p ∈ CTL-WFF holds ¬p ∈ CTL-WFF and for all p, q such

that p ∈ CTL-WFF and q ∈ CTL-WFF holds p ∧ q ∈ CTL-WFF and for

every p such that p ∈ CTL-WFF holds EX p ∈ CTL-WFF and for every

p such that p ∈ CTL-WFF holds EG p ∈ CTL-WFF and for all p, q such

that p ∈ CTL-WFF and q ∈ CTL-WFF holds pEU q ∈ CTL-WFF and for

every D such that for every a such that a ∈ D holds a is a finite sequence

of elements of N and for every n holds atom. n ∈ D and for every p such

that p ∈ D holds ¬p ∈ D and for all p, q such that p ∈ D and q ∈ D holds

p ∧ q ∈ D and for every p such that p ∈ D holds EX p ∈ D and for every

p such that p ∈ D holds EG p ∈ D and for all p, q such that p ∈ D and

q ∈ D holds pEU q ∈ D holds CTL-WFF ⊆ D.

Let I1 be a finite sequence of elements of N. We say that I1 is CTL-formula-

like if and only if:

(Def. 13) I1 is an element of CTL-WFF.

model checking. part i 173

Let us mention that there exists a finite sequence of elements of N which is

CTL-formula-like.

A CTL-formula is a CTL-formula-like finite sequence of elements of N.

One can prove the following proposition

(1) a is a CTL-formula iff a ∈ CTL-WFF .

In the sequel F , G, H, H1, H2 denote CTL-formulae.

Let us consider n. One can verify that atom. n is CTL-formula-like.

Let us consider H. One can verify the following observations:

∗ ¬H is CTL-formula-like,

∗ EXH is CTL-formula-like, and

∗ EGH is CTL-formula-like.

Let us consider G. One can verify that H ∧G is CTL-formula-like and H EUG

is CTL-formula-like.

Let us consider H. We say that H is atomic if and only if:

(Def. 14) There exists n such that H = atom. n.

We say that H is negative if and only if:

(Def. 15) There exists H1 such that H = ¬H1.

We say that H is conjunctive if and only if:

(Def. 16) There exist F , G such that H = F ∧G.

We say that H is exist-next-formula if and only if:

(Def. 17) There exists H1 such that H = EXH1.

We say that H is exist-global-formula if and only if:

(Def. 18) There exists H1 such that H = EGH1.

We say that H is exist-until-formula if and only if:

(Def. 19) There exist F , G such that H = F EUG.

Let us consider F , G. The functor F ∨G yielding a CTL-formula is defined

by:

(Def. 20) F ∨G = ¬(¬F ∧ ¬G).

One can prove the following proposition

(2) H is atomic, or negative, or conjunctive, or exist-next-formula, or exist-

global-formula, or exist-until-formula.

Let us consider H. Let us assume that H is negative, or exist-next-formula,

or exist-global-formula. The functor Arg(H) yielding a CTL-formula is defined

as follows:

(Def. 21)(i) ¬Arg(H) = H if H is negative,

(ii) EXArg(H) = H if H is exist-next-formula,

(iii) EGArg(H) = H, otherwise.

174 kazuhisa ishida

Let us consider H. Let us assume that H is conjunctive or exist-until-

formula. The functor LeftArg(H) yields a CTL-formula and is defined as follows:

(Def. 22)(i) There exists H1 such that LeftArg(H)∧H1 = H if H is conjunctive,

(ii) there exists H1 such that LeftArg(H) EUH1 = H, otherwise.

The functor RightArg(H) yielding a CTL-formula is defined by:

(Def. 23)(i) There exists H1 such that H1∧RightArg(H) = H if H is conjunctive,

(ii) there exists H1 such that H1 EURightArg(H) = H, otherwise.

Let x be a set. The functor CastCTLformulax yields a CTL-formula and is

defined by:

(Def. 24) CastCTLformulax =

{

x, if x ∈ CTL-WFF,

atom. 0, otherwise.

Let P1 be a set. We consider Kripke structures over P1 as systems

〈 worlds, starts, possibilities, a label 〉,

where the worlds constitute a set, the starts constitute a subset of the worlds,

the possibilities constitute a total relation between the worlds and the worlds,

and the label is a function from the worlds into 2P1 .

We introduce CTL model structures which are systems

〈 assignations, basic assignations, a conjunction, a negation, a next-operation,
a global-operation, an until-operation 〉,

where the assignations constitute a non empty set, the basic assignations con-

stitute a non empty subset of the assignations, the conjunction is a binary oper-

ation on the assignations, the negation is a unary operation on the assignations,

the next-operation is a unary operation on the assignations, the global-operation

is a unary operation on the assignations, and the until-operation is a binary op-

eration on the assignations.

Let V be a CTL model structure. An assignation of V is an element of the

assignations of V .

The subset the atomic WFF of CTL-WFF is defined by:

(Def. 25) The atomic WFF = {x;x ranges over CTL-formulae: x is atomic}.

Let V be a CTL model structure, let K1 be a function from the atomic WFF

into the basic assignations of V , and let f be a function from CTL-WFF into

the assignations of V . We say that f is an evaluation for K1 if and only if the

condition (Def. 26) is satisfied.

(Def. 26) Let H be a CTL-formula. Then

(i) if H is atomic, then f(H) = K1(H),

(ii) if H is negative, then f(H) = (the negation of V)(f(Arg(H))),

(iii) ifH is conjunctive, then f(H) = (the conjunction of V)(f(LeftArg(H)),

f(RightArg(H))),

(iv) if H is exist-next-formula, then f(H) = (the next-operation of

V)(f(Arg(H))),

model checking. part i 175

(v) if H is exist-global-formula, then f(H) = (the global-operation of

V)(f(Arg(H))), and

(vi) if H is exist-until-formula, then f(H) = (the until-operation of

V)(f(LeftArg(H)), f(RightArg(H))).

Let V be a CTL model structure, let K1 be a function from the atomic

WFF into the basic assignations of V , let f be a function from CTL-WFF

into the assignations of V , and let n be an element of N. We say that f is a

n-pre-evaluation for K1 if and only if the condition (Def. 27) is satisfied.

(Def. 27) Let H be a CTL-formula such that lenH ≤ n. Then

(i) if H is atomic, then f(H) = K1(H),

(ii) if H is negative, then f(H) = (the negation of V)(f(Arg(H))),

(iii) ifH is conjunctive, then f(H) = (the conjunction of V)(f(LeftArg(H)),

f(RightArg(H))),

(iv) if H is exist-next-formula, then f(H) = (the next-operation of

V)(f(Arg(H))),

(v) if H is exist-global-formula, then f(H) = (the global-operation of

V)(f(Arg(H))), and

(vi) if H is exist-until-formula, then f(H) = (the until-operation of

V)(f(LeftArg(H)), f(RightArg(H))).

Let V be a CTL model structure, let K1 be a function from the atomic WFF

into the basic assignations of V , let f , h be functions from CTL-WFF into the

assignations of V , let n be an element of N, and let H be a CTL-formula. The

functor GraftEval(V,K1, f, h, n,H) yields a set and is defined as follows:

(Def. 28) GraftEval(V,K1, f, h, n,H) =


























































































f(H), if lenH > n+ 1,

K1(H), if lenH = n+ 1 and H is atomic,

(the negation of V)(h(Arg(H))), if lenH = n+ 1 and H is negative,

(the conjunction of V)(h(LeftArg(H)), h(RightArg(H))),

if lenH = n+ 1 and H is conjunctive,

(the next-operation of V)(h(Arg(H))), if lenH = n+ 1 and H is

exist-next-formula,

(the global-operation of V)(h(Arg(H))), if lenH = n+ 1 and H is

exist-global-formula,

(the until-operation of V)(h(LeftArg(H)), h(RightArg(H))),

if lenH = n+ 1 and H is exist-until-formula,

h(H), if lenH < n+ 1,

∅, otherwise.

We follow the rules: V is a CTL model structure, K1 is a function from the

atomic WFF into the basic assignations of V , and f , f1, f2 are functions from

CTL-WFF into the assignations of V .

Let V be a CTL model structure, let K1 be a function from the atomic

176 kazuhisa ishida

WFF into the basic assignations of V , and let n be an element of N. The

functor EvalSet(V,K1, n) yields a non empty set and is defined by:

(Def. 29) EvalSet(V,K1, n) = {h;h ranges over functions from CTL-WFF into the

assignations of V : h is a n-pre-evaluation for K1}.

Let V be a CTL model structure, let v0 be an element of the assignations of

V , and let x be a set. The functor CastEval(V, x, v0) yielding a function from

CTL-WFF into the assignations of V is defined by:

(Def. 30) CastEval(V, x, v0) =

{

x, if x ∈ (the assignations of V)CTL-WFF,

CTL-WFF 7−→ v0, otherwise.

Let V be a CTL model structure and let K1 be a function from the atomic

WFF into the basic assignations of V . The functor EvalFamily(V,K1) yielding

a non empty set is defined by the condition (Def. 31).

(Def. 31) Let p be a set. Then p ∈ EvalFamily(V,K1) if and only if the following

conditions are satisfied:

(i) p ∈ 2(the assignations of V)
CTL-WFF

, and

(ii) there exists an element n of N such that p = EvalSet(V,K1, n).

We now state two propositions:

(3) There exists f which is an evaluation for K1.

(4) If f1 is an evaluation for K1 and f2 is an evaluation for K1, then f1 = f2.

Let V be a CTL model structure, let K1 be a function from the atomic

WFF into the basic assignations of V , and let H be a CTL-formula. The

functor Evaluate(H,K1) yields an assignation of V and is defined by:

(Def. 32) There exists a function f from CTL-WFF into the assignations of V

such that f is an evaluation for K1 and Evaluate(H,K1) = f(H).

Let V be a CTL model structure and let f be an assignation of V . The

functor ¬f yields an assignation of V and is defined as follows:

(Def. 33) ¬f = (the negation of V)(f).

Let V be a CTL model structure and let f , g be assignations of V . The

functor f ∧ g yielding an assignation of V is defined by:

(Def. 34) f ∧ g = (the conjunction of V)(f, g).

Let V be a CTL model structure and let f be an assignation of V . The

functor EX f yields an assignation of V and is defined by:

(Def. 35) EX f = (the next-operation of V)(f).

The functor EG f yielding an assignation of V is defined as follows:

(Def. 36) EG f = (the global-operation of V)(f).

Let V be a CTL model structure and let f , g be assignations of V . The

functor f EU g yields an assignation of V and is defined as follows:

(Def. 37) f EU g = (the until-operation of V)(f, g).

The functor f ∨ g yielding an assignation of V is defined as follows:

model checking. part i 177

(Def. 38) f ∨ g = ¬(¬f ∧ ¬g).

Next we state several propositions:

(5) Evaluate(¬H,K1) = ¬Evaluate(H,K1).

(6) Evaluate(H1 ∧H2,K1) = Evaluate(H1,K1) ∧ Evaluate(H2,K1).

(7) Evaluate(EXH,K1) = EXEvaluate(H,K1).

(8) Evaluate(EGH,K1) = EGEvaluate(H,K1).

(9) Evaluate(H1 EUH2,K1) = Evaluate(H1,K1) EUEvaluate(H2,K1).

(10) Evaluate(H1 ∨H2,K1) = Evaluate(H1,K1) ∨ Evaluate(H2,K1).

Let f be a function and let n be an element of N. We introduce f n as a

synonym of fn.

Let S be a set, let f be a function from S into S, and let n be an element

of N. Then fn is a function from S into S.

We use the following convention: S is a non empty set, R is a total relation

between S and S, and s, s0, s1 are elements of S.

The scheme ExistPath deals with a non empty set A, a total relation B
between A and A, an element C of A, and a unary functor F yielding a set, and

states that:

There exists a function f from N into A such that f(0) = C
and for every element n of N holds 〈〈f(n), f(n + 1)〉〉 ∈ B and

f(n+ 1) ∈ F(f(n))

provided the following requirement is met:

• For every element s of A holds B◦{s}∩F(s) is a non empty subset
of A.

Let S be a non empty set and let R be a total relation between S and S. A

function from N into S is said to be an infinity path of R if:

(Def. 39) For every element n of N holds 〈〈it(n), it(n+ 1)〉〉 ∈ R.

Let S be a non empty set. The functor ModelSPS yields a non empty set

and is defined by:

(Def. 40) ModelSPS = BooleanS .

Let S be a non empty set. Observe that ModelSPS is non empty.

Let S be a non empty set and let f be a set. The functor Fid(f, S) yielding

a function from S into Boolean is defined by:

(Def. 41) Fid(f, S) =

{

f, if f ∈ ModelSPS,

S 7−→ false , otherwise.

Now we present several schemes. The scheme Func1EX deals with a non

empty set A, a function B from A into Boolean , and a binary functor F yielding

a boolean set, and states that:

There exists a set g such that g ∈ ModelSPA and for every set s

such that s ∈ A holds F(s,B) = true iff (Fid(g,A))(s) = true

for all values of the parameters.

178 kazuhisa ishida

The scheme Func1Unique deals with a non empty set A, a function B from

A into Boolean , and a binary functor F yielding a boolean set, and states that:

Let g1, g2 be sets. Suppose that

(i) g1 ∈ModelSPA,

(ii) for every set s such that s ∈ A holds F(s,B) = true iff

(Fid(g1,A))(s) = true,

(iii) g2 ∈ModelSPA, and

(iv) for every set s such that s ∈ A holds F(s,B) = true iff

(Fid(g2,A))(s) = true.

Then g1 = g2
for all values of the parameters.

The scheme UnOpEX deals with a non empty set A and a unary functor F

yielding an element of A, and states that:

There exists a unary operation o on A such that for every set f

such that f ∈ A holds o(f) = F(f)

for all values of the parameters.

The scheme UnOpUnique deals with a non empty set A, a non empty set B,
and a unary functor F yielding an element of B, and states that:

Let o1, o2 be unary operations on B. Suppose for every set f such
that f ∈ B holds o1(f) = F(f) and for every set f such that

f ∈ B holds o2(f) = F(f). Then o1 = o2
for all values of the parameters.

The scheme Func2EX deals with a non empty set A, a function B from

A into Boolean , a function C from A into Boolean , and a ternary functor F
yielding a boolean set, and states that:

There exists a set h such that h ∈ ModelSPA and for every set s

such that s ∈ A holds F(s,B, C) = true iff (Fid(h,A))(s) = true

for all values of the parameters.

The scheme Func2Unique deals with a non empty set A, a function B from

A into Boolean , a function C from A into Boolean , and a ternary functor F
yielding a boolean set, and states that:

Let h1, h2 be sets. Suppose that

(i) h1 ∈ModelSPA,

(ii) for every set s such that s ∈ A holds F(s,B, C) = true iff

(Fid(h1,A))(s) = true,

(iii) h2 ∈ModelSPA, and

(iv) for every set s such that s ∈ A holds F(s,B, C) = true iff

(Fid(h2,A))(s) = true.

Then h1 = h2
for all values of the parameters.

Let S be a non empty set and let f be a set. The functor Not0(f, S) yielding

an element of ModelSPS is defined as follows:

model checking. part i 179

(Def. 42) For every set s such that s ∈ S holds ¬Castboolean(Fid(f, S))(s) = true

iff (Fid(Not0(f, S), S))(s) = true.

Let S be a non empty set. The functor NotS yields a unary operation on

ModelSPS and is defined by:

(Def. 43) For every set f such that f ∈ ModelSPS holds (NotS)(f) = Not0(f, S).

Let S be a non empty set, let R be a total relation between S and S, let f be a

function from S into Boolean , and let x be a set. The functor EneXtuniv(x, f,R)

yielding an element of Boolean is defined by:

(Def. 44) EneXtuniv(x, f,R) =















true,

if x ∈ S and there exists an infinity path p1
of R such that p1(0) = x and f(p1(1)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f be a set. The functor EneXt0(f,R) yielding an element of ModelSPS is

defined as follows:

(Def. 45) For every set s such that s ∈ S holds EneXtuniv(s,Fid(f, S), R) = true

iff (Fid(EneXt0(f,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EneXtR yields a unary operation on ModelSPS and is defined by:

(Def. 46) For every set f such that f ∈ ModelSPS holds (EneXtR)(f) =

EneXt0(f,R).

Let S be a non empty set, let R be a total relation between S and S,

let f be a function from S into Boolean , and let x be a set. The functor

EGlobaluniv(x, f,R) yielding an element of Boolean is defined by:

(Def. 47) EGlobaluniv(x, f,R) =























true,

if x ∈ S and there exists an infinity path

p1 of R such that p1(0) = x and for every

element n of N holds f(p1(n)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f be a set. The functor EGlobal0(f,R) yielding an element of ModelSPS is

defined as follows:

(Def. 48) For every set s such that s ∈ S holds EGlobaluniv(s,Fid(f, S), R) = true

iff (Fid(EGlobal0(f,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EGlobalR yields a unary operation on ModelSPS and is defined

as follows:

(Def. 49) For every set f such that f ∈ ModelSPS holds (EGlobalR)(f) =

EGlobal0(f,R).

180 kazuhisa ishida

Let S be a non empty set and let f , g be sets. The functor And0(f, g, S)

yields an element of ModelSPS and is defined as follows:

(Def. 50) For every set s such that s ∈ S holds Castboolean(Fid(f, S))(s) ∧

Castboolean(Fid(g, S))(s) = true iff (Fid(And0(f, g, S), S))(s) = true.

Let S be a non empty set. The and S yielding a binary operation on

ModelSPS is defined by:

(Def. 51) For all sets f , g such that f ∈ ModelSPS and g ∈ModelSPS holds (the

and S)(f, g) = And0(f, g, S).

Let S be a non empty set, let R be a total relation between S and S,

let f , g be functions from S into Boolean , and let x be a set. The functor

EUntilluniv(x, f, g,R) yielding an element of Boolean is defined as follows:

(Def. 52) EUntilluniv(x, f, g,R) =



































true, if x ∈ S and there exists an infinity path

p1 of R such that p1(0) = x and there exists

an element m of N such that for every

element j of N such that j < m holds

f(p1(j)) = true and g(p1(m)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f , g be sets. The functor EUntill0(f, g,R) yields an element of ModelSPS

and is defined by:

(Def. 53) For every set s such that s ∈ S holds EUntilluniv(s,Fid(f, S),Fid(g, S), R)

= true iff (Fid(EUntill0(f, g,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EUntillR yields a binary operation on ModelSPS and is defined as

follows:

(Def. 54) For all sets f , g such that f ∈ ModelSPS and g ∈ ModelSPS holds

(EUntillR)(f, g) = EUntill0(f, g,R).

Let S be a non empty set, let X be a non empty subset of ModelSPS, and

let s be a set. The functor F-LABEL(s,X) yields a subset of X and is defined

as follows:

(Def. 55) For every set x holds x ∈ F-LABEL(s,X) iff x ∈ X and there exists a

function f from S into Boolean such that f = x and f(s) = true.

Let S be a non empty set and let X be a non empty subset of ModelSPS.

The functor LabelX yields a function from S into 2X and is defined by:

(Def. 56) For every set x such that x ∈ S holds (LabelX)(x) = F-LABEL(x,X).

Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. The functor

KModel(R,S0, P1) yields a Kripke structure over P1 and is defined as follows:

(Def. 57) KModel(R,S0, P1) = 〈S, S0, R,LabelP1〉.

model checking. part i 181

Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. One can

check that the worlds of KModel(R,S0, P1) is non empty.

Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. One can

verify that ModelSP (the worlds of KModel(R,S0, P1)) is non empty.

Let S be a non empty set, let R be a total relation between S and S, and

let B1 be a non empty subset of ModelSPS. The functor CTLModel(R,B1)

yielding a CTL model structure is defined as follows:

(Def. 58) CTLModel(R,B1) = 〈ModelSPS,B1, the and S, NotS,EneXtR,

EGlobalR,EUntillR〉.

In the sequel B1 is a non empty subset of ModelSPS and k1 is a function

from the atomic WFF into the basic assignations of CTLModel(R,B1).

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let s be an element of S, and let f be an

assignation of CTLModel(R,B1). The predicate s |= f is defined by:

(Def. 59) (Fid(f, S))(s) = true.

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let s be an element of S, and let f be an

assignation of CTLModel(R,B1). We introduce s 6|= f as an antonym of s |= f.

Next we state several propositions:

(11) For every assignation a of CTLModel(R,B1) such that a ∈ B1 holds

s |= a iff a ∈ (LabelB1)(s).

(12) For every assignation f of CTLModel(R,B1) holds s |= ¬f iff s 6|= f.

(13) For all assignations f , g of CTLModel(R,B1) holds s |= f ∧ g iff s |= f

and s |= g.

(14) For every assignation f of CTLModel(R,B1) holds s |= EX f iff there

exists an infinity path p1 of R such that p1(0) = s and p1(1) |= f.

(15) Let f be an assignation of CTLModel(R,B1). Then s |= EG f if and

only if there exists an infinity path p1 of R such that p1(0) = s and for

every element n of N holds p1(n) |= f.

(16) Let f , g be assignations of CTLModel(R,B1). Then s |= f EU g if and

only if there exists an infinity path p1 of R such that p1(0) = s and there

exists an element m of N such that for every element j of N such that

j < m holds p1(j) |= f and p1(m) |= g.

(17) For all assignations f , g of CTLModel(R,B1) holds s |= f ∨ g iff s |= f

or s |= g.

Let S be a non empty set, let R be a total relation between S and S, let

B1 be a non empty subset of ModelSPS, let k1 be a function from the atomic

182 kazuhisa ishida

WFF into the basic assignations of CTLModel(R,B1), let s be an element of S,

and let H be a CTL-formula. The predicate s |=k1 H is defined by:

(Def. 60) s |= Evaluate(H, k1).

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let k1 be a function from the atomic WFF

into the basic assignations of CTLModel(R,B1), let s be an element of S, and

let H be a CTL-formula. We introduce s 6|=k1 H as an antonym of s |=k1 H.

The following propositions are true:

(18) If H is atomic, then s |=k1 H iff k1(H) ∈ (LabelB1)(s).

(19) s |=k1 ¬H iff s 6|=k1 H.

(20) s |=k1 H1 ∧H2 iff s |=k1 H1 and s |=k1 H2.

(21) s |=k1 H1 ∨H2 iff s |=k1 H1 or s |=k1 H2.

(22) s |=k1 EXH iff there exists an infinity path p1 of R such that p1(0) = s

and p1(1) |=k1 H.

(23) s |=k1 EGH iff there exists an infinity path p1 of R such that p1(0) = s

and for every element n of N holds p1(n) |=k1 H.

(24) s |=k1 H1 EUH2 if and only if there exists an infinity path p1 of R such

that p1(0) = s and there exists an element m of N such that for every

element j of N such that j < m holds p1(j) |=k1 H1 and p1(m) |=k1 H2.

(25) For every s0 there exists an infinity path p1 of R such that p1(0) = s0.

(26) Let R be a relation between S and S. Then R is total if and only if for

every set x such that x ∈ S there exists a set y such that y ∈ S and 〈〈x,

y〉〉 ∈ R.

Let S be a non empty set, let R be a total relation between S and S, let

s0 be an element of S, let p1 be an infinity path of R, and let n be a set. The

functor PrePath(n, s0, p1) yielding an element of S is defined as follows:

(Def. 61) PrePath(n, s0, p1) =

{

s0, if n = 0,

p1(k.nat(k.natn− 1)), otherwise.

The following propositions are true:

(27) If 〈〈s0, s1〉〉 ∈ R, then there exists an infinity path p1 of R such that

p1(0) = s0 and p1(1) = s1.

(28) For every assignation f of CTLModel(R,B1) holds s |= EX f iff there

exists an element s1 of S such that 〈〈s, s1〉〉 ∈ R and s1 |= f.

Let S be a non empty set, let R be a total relation between S and S, and let

H be a subset of S. The functor Pred(H,R) yields a subset of S and is defined

by:

(Def. 62) Pred(H,R) = {s; s ranges over elements of S:
∨

t : element of S (t ∈ H ∧ 〈〈s,

t〉〉 ∈ R)}.

model checking. part i 183

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f be an assignation of

CTLModel(R,B1). The functor SIGMA f yields a subset of S and is defined as

follows:

(Def. 63) SIGMA f = {s; s ranges over elements of S: s |= f}.

One can prove the following proposition

(29) For all assignations f , g of CTLModel(R,B1) such that SIGMA f =

SIGMA g holds f = g.

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, and let T be a subset of S. The functor

Tau(T,R,B1) yielding an assignation of CTLModel(R,B1) is defined as follows:

(Def. 64) For every set s such that s ∈ S holds (Fid(Tau(T,R,B1), S))(s) =
χT,S(s).

The following propositions are true:

(30) For all subsets T1, T2 of S such that Tau(T1, R,B1) = Tau(T2, R,B1)

holds T1 = T2.

(31) For every assignation f of CTLModel(R,B1) holds

Tau(SIGMA f,R,B1) = f.

(32) For every subset T of S holds SIGMATau(T,R,B1) = T.

(33) For all assignations f , g of CTLModel(R,B1) holds SIGMA¬f = S \
SIGMA f and SIGMA(f∧g) = SIGMA f∩SIGMA g and SIGMA(f∨g) =
SIGMA f ∪ SIGMA g.

(34) For all subsets G1, G2 of S such that G1 ⊆ G2 and for every element s

of S such that s |= Tau(G1, R,B1) holds s |= Tau(G2, R,B1).

(35) For all assignations f1, f2 of CTLModel(R,B1) such that for every ele-

ment s of S such that s |= f1 holds s |= f2 holds SIGMA f1 ⊆ SIGMA f2.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f , g be assignations of

CTLModel(R,B1). The functor Fax(f, g) yielding an assignation of

CTLModel(R,B1) is defined by:

(Def. 65) Fax(f, g) = f ∧ EX g.

Next we state the proposition

(36) Let f , g1, g2 be assignations of CTLModel(R,B1). Suppose that for

every element s of S such that s |= g1 holds s |= g2. Let s be an element

of S. If s |= Fax(f, g1), then s |= Fax(f, g2).

Let S be a non empty set, let R be a total relation between S and S, let B1 be

a non empty subset of ModelSPS, let f be an assignation of CTLModel(R,B1),

and let G be a subset of S. The functor SigFaxTau(f,G,R,B1) yielding a subset

of S is defined by:

184 kazuhisa ishida

(Def. 66) SigFaxTau(f,G,R,B1) = SIGMAFax(f,Tau(G,R,B1)).

One can prove the following proposition

(37) For every assignation f of CTLModel(R,B1) and for all subsets

G1, G2 of S such that G1 ⊆ G2 holds SigFaxTau(f,G1, R,B1) ⊆
SigFaxTau(f,G2, R,B1).

Let S be a non empty set, let R be a total relation between S and S, let p1 be

an infinity path of R, and let k be an element of N. The functor PathShift(p1, k)

yielding an infinity path of R is defined as follows:

(Def. 67) For every element n of N holds (PathShift(p1, k))(n) = p1(n+ k).

Let S be a non empty set, let R be a total relation between S and S, let

p2, p3 be infinity paths of R, and let n, k be elements of N. The functor

PathChange(p2, p3, k, n) yielding a set is defined by:

(Def. 68) PathChange(p2, p3, k, n) =

{

p2(n), if n < k,

p3(n− k), otherwise.

Let S be a non empty set, let R be a total relation between S and S,

let p2, p3 be infinity paths of R, and let k be an element of N. The functor

PathConc(p2, p3, k) yielding a function from N into S is defined as follows:

(Def. 69) For every element n of N holds (PathConc(p2, p3, k))(n) =

PathChange(p2, p3, k, n).

We now state four propositions:

(38) Let p2, p3 be infinity paths of R and k be an element of N. If p2(k) =

p3(0), then PathConc(p2, p3, k) is an infinity path of R.

(39) For every assignation f of CTLModel(R,B1) and for every element s of

S holds s |= EG f iff s |= Fax(f,EG f).

(40) Let g be an assignation of CTLModel(R,B1) and s0 be an element of

S. Suppose s0 |= g. Suppose that for every element s of S such that

s |= g holds s |= EX g. Then there exists an infinity path p1 of R such that

p1(0) = s0 and for every element n of N holds p1(n) |= g.

(41) Let f , g be assignations of CTLModel(R,B1). Suppose that for every

element s of S holds s |= g iff s |= Fax(f, g). Let s be an element of S. If

s |= g, then s |= EG f.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f be an assignation of

CTLModel(R,B1). The functor TransEG f yielding a ⊆-monotone function

from 2S into 2S is defined as follows:

(Def. 70) For every subsetG of S holds (TransEG f)(G) = SigFaxTau(f,G,R,B1).

One can prove the following two propositions:

(42) Let f , g be assignations of CTLModel(R,B1). Then for every element s

of S holds s |= g iff s |= Fax(f, g) if and only if SIGMA g is a fixpoint of

model checking. part i 185

TransEG f.

(43) For every assignation f of CTLModel(R,B1) holds SIGMAEG f =

gfp(S,TransEG f).

Let S be a non empty set, let R be a total relation between S and S, let

B1 be a non empty subset of ModelSPS, and let f , g, h be assignations of

CTLModel(R,B1). The functor Foax(g, f, h) yields an assignation of

CTLModel(R,B1) and is defined as follows:

(Def. 71) Foax(g, f, h) = g ∨ Fax(f, h).

We now state the proposition

(44) Let f , g, h1, h2 be assignations of CTLModel(R,B1). Suppose that for

every element s of S such that s |= h1 holds s |= h2. Let s be an element

of S. If s |= Foax(g, f, h1), then s |= Foax(g, f, h2).

Let S be a non empty set, let R be a total relation between S and S, let B1 be

a non empty subset of ModelSPS, let f , g be assignations of CTLModel(R,B1),

and let H be a subset of S. The functor SigFoaxTau(g, f,H,R,B1) yields a

subset of S and is defined as follows:

(Def. 72) SigFoaxTau(g, f,H,R,B1) = SIGMAFoax(g, f,Tau(H,R,B1)).

Next we state three propositions:

(45) For all assignations f , g of CTLModel(R,B1) and for all subsets

H1, H2 of S such that H1 ⊆ H2 holds SigFoaxTau(g, f,H1, R,B1) ⊆
SigFoaxTau(g, f,H2, R,B1).

(46) For all assignations f , g of CTLModel(R,B1) and for every element s of

S holds s |= f EU g iff s |= Foax(g, f, f EU g).

(47) Let f , g, h be assignations of CTLModel(R,B1). Suppose that for every

element s of S holds s |= h iff s |= Foax(g, f, h). Let s be an element of S.

If s |= f EU g, then s |= h.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f , g be assignations of

CTLModel(R,B1). The functor TransEU(f, g) yields a ⊆-monotone function
from 2S into 2S and is defined by:

(Def. 73) For every subset H of S holds

(TransEU(f, g))(H) = SigFoaxTau(g, f,H,R,B1).

One can prove the following propositions:

(48) Let f , g, h be assignations of CTLModel(R,B1). Then for every element

s of S holds s |= h iff s |= Foax(g, f, h) if and only if SIGMAh is a fixpoint

of TransEU(f, g).

(49) For all assignations f , g of CTLModel(R,B1) holds SIGMA(f EU g) =

lfp(S,TransEU(f, g)).

186 kazuhisa ishida

(50) For every assignation f of CTLModel(R,B1) holds SIGMAEX f =

Pred(SIGMA f,R).

(51) For every assignation f of CTLModel(R,B1) and for every subset X of

S holds (TransEG f)(X) = SIGMA f ∩ Pred(X,R).

(52) For all assignations f , g of CTLModel(R,B1) and for every subset X of

S holds (TransEU(f, g))(X) = SIGMA g ∪ SIGMA f ∩ Pred(X,R).

References

[1] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics,
1(1):131–145, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[4] Czes law Byliński. Basic functions and operations on functions. Formalized Mathematics,
1(1):245–254, 1990.

[5] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[9] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[10] Grumberg, O. and Clarke, E. M. and D. Peled. Model Checking. MIT Press, 2000.
[11] Library Committee of the Association of Mizar Users. Binary operations on numbers. To

appear in Formalized Mathematics.
[12] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-

matics, 6(3):335–338, 1997.
[13] Piotr Rudnicki and Andrzej Trybulec. Fixpoints in complete lattices. Formalized Mathe-

matics, 6(1):109–115, 1997.
[14] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[17] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[19] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received November 14, 2006

