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Let x, S be sets and let a be an element of S. The functor k.id(x, S, a) yields

an element of S and is defined by:

(Def. 1) k.id(x, S, a) =

{

x, if x ∈ S,

a, otherwise.

Let x be a set. The functor k.nat x yields an element of N and is defined by:

(Def. 2) k.nat x =

{

x, if x ∈ N,
0, otherwise.

Let f be a function and let x, a be sets. The functor UnivF(x, f, a) yielding

a set is defined by:

(Def. 3) UnivF(x, f, a) =

{

f(x), if x ∈ dom f,

a, otherwise.

Let a be a set. The functor Castboolean a yields a boolean set and is defined

by:

(Def. 4) Castboolean a =

{

a, if a is a boolean set,

false, otherwise.

Let X, a be sets. The functor CastBool(a,X) yielding a subset of X is

defined as follows:

(Def. 5) CastBool(a,X) =

{

a, if a ⊆ X,

∅, otherwise.
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For simplicity, we adopt the following rules: n denotes an element of N, a

denotes a set, D denotes a non empty set, and p, q denote finite sequences of

elements of N.

Let x be a variable. Then 〈x〉 is a finite sequence of elements of N.

Let us consider n. The functor atom. n yields a finite sequence of elements

of N and is defined by:

(Def. 6) atom. n = 〈5 + n〉.

Let us consider p. The functor ¬p yielding a finite sequence of elements of
N is defined by:

(Def. 7) ¬p = 〈0〉 a p.

Let us consider q. The functor p ∧ q yielding a finite sequence of elements of N
is defined by:

(Def. 8) p ∧ q = 〈1〉 a p a q.

Let us consider p. The functor EX p yielding a finite sequence of elements

of N is defined as follows:

(Def. 9) EX p = 〈2〉 a p.

The functor EG p yielding a finite sequence of elements of N is defined by:

(Def. 10) EG p = 〈3〉 a p.

Let us consider q. The functor pEU q yields a finite sequence of elements of N

and is defined as follows:

(Def. 11) pEU q = 〈4〉 a p a q.

The non empty set CTL-WFF is defined by the conditions (Def. 12).

(Def. 12) For every a such that a ∈ CTL-WFF holds a is a finite sequence of

elements of N and for every n holds atom. n ∈ CTL-WFF and for every

p such that p ∈ CTL-WFF holds ¬p ∈ CTL-WFF and for all p, q such

that p ∈ CTL-WFF and q ∈ CTL-WFF holds p ∧ q ∈ CTL-WFF and for

every p such that p ∈ CTL-WFF holds EX p ∈ CTL-WFF and for every

p such that p ∈ CTL-WFF holds EG p ∈ CTL-WFF and for all p, q such

that p ∈ CTL-WFF and q ∈ CTL-WFF holds pEU q ∈ CTL-WFF and for

every D such that for every a such that a ∈ D holds a is a finite sequence

of elements of N and for every n holds atom. n ∈ D and for every p such

that p ∈ D holds ¬p ∈ D and for all p, q such that p ∈ D and q ∈ D holds

p ∧ q ∈ D and for every p such that p ∈ D holds EX p ∈ D and for every

p such that p ∈ D holds EG p ∈ D and for all p, q such that p ∈ D and

q ∈ D holds pEU q ∈ D holds CTL-WFF ⊆ D.

Let I1 be a finite sequence of elements of N. We say that I1 is CTL-formula-

like if and only if:

(Def. 13) I1 is an element of CTL-WFF.
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Let us mention that there exists a finite sequence of elements of N which is

CTL-formula-like.

A CTL-formula is a CTL-formula-like finite sequence of elements of N.

One can prove the following proposition

(1) a is a CTL-formula iff a ∈ CTL-WFF .

In the sequel F , G, H, H1, H2 denote CTL-formulae.

Let us consider n. One can verify that atom. n is CTL-formula-like.

Let us consider H. One can verify the following observations:

∗ ¬H is CTL-formula-like,

∗ EXH is CTL-formula-like, and

∗ EGH is CTL-formula-like.

Let us consider G. One can verify that H ∧G is CTL-formula-like and H EUG

is CTL-formula-like.

Let us consider H. We say that H is atomic if and only if:

(Def. 14) There exists n such that H = atom. n.

We say that H is negative if and only if:

(Def. 15) There exists H1 such that H = ¬H1.

We say that H is conjunctive if and only if:

(Def. 16) There exist F , G such that H = F ∧G.

We say that H is exist-next-formula if and only if:

(Def. 17) There exists H1 such that H = EXH1.

We say that H is exist-global-formula if and only if:

(Def. 18) There exists H1 such that H = EGH1.

We say that H is exist-until-formula if and only if:

(Def. 19) There exist F , G such that H = F EUG.

Let us consider F , G. The functor F ∨G yielding a CTL-formula is defined

by:

(Def. 20) F ∨G = ¬(¬F ∧ ¬G).

One can prove the following proposition

(2) H is atomic, or negative, or conjunctive, or exist-next-formula, or exist-

global-formula, or exist-until-formula.

Let us consider H. Let us assume that H is negative, or exist-next-formula,

or exist-global-formula. The functor Arg(H) yielding a CTL-formula is defined

as follows:

(Def. 21)(i) ¬Arg(H) = H if H is negative,

(ii) EXArg(H) = H if H is exist-next-formula,

(iii) EGArg(H) = H, otherwise.
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Let us consider H. Let us assume that H is conjunctive or exist-until-

formula. The functor LeftArg(H) yields a CTL-formula and is defined as follows:

(Def. 22)(i) There exists H1 such that LeftArg(H)∧H1 = H if H is conjunctive,

(ii) there exists H1 such that LeftArg(H) EUH1 = H, otherwise.

The functor RightArg(H) yielding a CTL-formula is defined by:

(Def. 23)(i) There exists H1 such that H1∧RightArg(H) = H if H is conjunctive,

(ii) there exists H1 such that H1 EURightArg(H) = H, otherwise.

Let x be a set. The functor CastCTLformulax yields a CTL-formula and is

defined by:

(Def. 24) CastCTLformulax =

{

x, if x ∈ CTL-WFF,

atom. 0, otherwise.

Let P1 be a set. We consider Kripke structures over P1 as systems

〈 worlds, starts, possibilities, a label 〉,

where the worlds constitute a set, the starts constitute a subset of the worlds,

the possibilities constitute a total relation between the worlds and the worlds,

and the label is a function from the worlds into 2P1 .

We introduce CTL model structures which are systems

〈 assignations, basic assignations, a conjunction, a negation, a next-operation,
a global-operation, an until-operation 〉,

where the assignations constitute a non empty set, the basic assignations con-

stitute a non empty subset of the assignations, the conjunction is a binary oper-

ation on the assignations, the negation is a unary operation on the assignations,

the next-operation is a unary operation on the assignations, the global-operation

is a unary operation on the assignations, and the until-operation is a binary op-

eration on the assignations.

Let V be a CTL model structure. An assignation of V is an element of the

assignations of V .

The subset the atomic WFF of CTL-WFF is defined by:

(Def. 25) The atomic WFF = {x;x ranges over CTL-formulae: x is atomic}.

Let V be a CTL model structure, let K1 be a function from the atomic WFF

into the basic assignations of V , and let f be a function from CTL-WFF into

the assignations of V . We say that f is an evaluation for K1 if and only if the

condition (Def. 26) is satisfied.

(Def. 26) Let H be a CTL-formula. Then

(i) if H is atomic, then f(H) = K1(H),

(ii) if H is negative, then f(H) = (the negation of V )(f(Arg(H))),

(iii) ifH is conjunctive, then f(H) = (the conjunction of V )(f(LeftArg(H)),

f(RightArg(H))),

(iv) if H is exist-next-formula, then f(H) = (the next-operation of

V )(f(Arg(H))),
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(v) if H is exist-global-formula, then f(H) = (the global-operation of

V )(f(Arg(H))), and

(vi) if H is exist-until-formula, then f(H) = (the until-operation of

V )(f(LeftArg(H)), f(RightArg(H))).

Let V be a CTL model structure, let K1 be a function from the atomic

WFF into the basic assignations of V , let f be a function from CTL-WFF

into the assignations of V , and let n be an element of N. We say that f is a

n-pre-evaluation for K1 if and only if the condition (Def. 27) is satisfied.

(Def. 27) Let H be a CTL-formula such that lenH ≤ n. Then

(i) if H is atomic, then f(H) = K1(H),

(ii) if H is negative, then f(H) = (the negation of V )(f(Arg(H))),

(iii) ifH is conjunctive, then f(H) = (the conjunction of V )(f(LeftArg(H)),

f(RightArg(H))),

(iv) if H is exist-next-formula, then f(H) = (the next-operation of

V )(f(Arg(H))),

(v) if H is exist-global-formula, then f(H) = (the global-operation of

V )(f(Arg(H))), and

(vi) if H is exist-until-formula, then f(H) = (the until-operation of

V )(f(LeftArg(H)), f(RightArg(H))).

Let V be a CTL model structure, let K1 be a function from the atomic WFF

into the basic assignations of V , let f , h be functions from CTL-WFF into the

assignations of V , let n be an element of N, and let H be a CTL-formula. The

functor GraftEval(V,K1, f, h, n,H) yields a set and is defined as follows:

(Def. 28) GraftEval(V,K1, f, h, n,H) =


























































































f(H), if lenH > n+ 1,

K1(H), if lenH = n+ 1 and H is atomic,

(the negation of V )(h(Arg(H))), if lenH = n+ 1 and H is negative,

(the conjunction of V )(h(LeftArg(H)), h(RightArg(H))),

if lenH = n+ 1 and H is conjunctive,

(the next-operation of V )(h(Arg(H))), if lenH = n+ 1 and H is

exist-next-formula,

(the global-operation of V )(h(Arg(H))), if lenH = n+ 1 and H is

exist-global-formula,

(the until-operation of V )(h(LeftArg(H)), h(RightArg(H))),

if lenH = n+ 1 and H is exist-until-formula,

h(H), if lenH < n+ 1,

∅, otherwise.

We follow the rules: V is a CTL model structure, K1 is a function from the

atomic WFF into the basic assignations of V , and f , f1, f2 are functions from

CTL-WFF into the assignations of V .

Let V be a CTL model structure, let K1 be a function from the atomic
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WFF into the basic assignations of V , and let n be an element of N. The

functor EvalSet(V,K1, n) yields a non empty set and is defined by:

(Def. 29) EvalSet(V,K1, n) = {h;h ranges over functions from CTL-WFF into the

assignations of V : h is a n-pre-evaluation for K1}.

Let V be a CTL model structure, let v0 be an element of the assignations of

V , and let x be a set. The functor CastEval(V, x, v0) yielding a function from

CTL-WFF into the assignations of V is defined by:

(Def. 30) CastEval(V, x, v0) =

{

x, if x ∈ (the assignations of V )CTL-WFF,

CTL-WFF 7−→ v0, otherwise.

Let V be a CTL model structure and let K1 be a function from the atomic

WFF into the basic assignations of V . The functor EvalFamily(V,K1) yielding

a non empty set is defined by the condition (Def. 31).

(Def. 31) Let p be a set. Then p ∈ EvalFamily(V,K1) if and only if the following

conditions are satisfied:

(i) p ∈ 2(the assignations of V )
CTL-WFF

, and

(ii) there exists an element n of N such that p = EvalSet(V,K1, n).

We now state two propositions:

(3) There exists f which is an evaluation for K1.

(4) If f1 is an evaluation for K1 and f2 is an evaluation for K1, then f1 = f2.

Let V be a CTL model structure, let K1 be a function from the atomic

WFF into the basic assignations of V , and let H be a CTL-formula. The

functor Evaluate(H,K1) yields an assignation of V and is defined by:

(Def. 32) There exists a function f from CTL-WFF into the assignations of V

such that f is an evaluation for K1 and Evaluate(H,K1) = f(H).

Let V be a CTL model structure and let f be an assignation of V . The

functor ¬f yields an assignation of V and is defined as follows:

(Def. 33) ¬f = (the negation of V )(f).

Let V be a CTL model structure and let f , g be assignations of V . The

functor f ∧ g yielding an assignation of V is defined by:

(Def. 34) f ∧ g = (the conjunction of V )(f, g).

Let V be a CTL model structure and let f be an assignation of V . The

functor EX f yields an assignation of V and is defined by:

(Def. 35) EX f = (the next-operation of V )(f).

The functor EG f yielding an assignation of V is defined as follows:

(Def. 36) EG f = (the global-operation of V )(f).

Let V be a CTL model structure and let f , g be assignations of V . The

functor f EU g yields an assignation of V and is defined as follows:

(Def. 37) f EU g = (the until-operation of V )(f, g).

The functor f ∨ g yielding an assignation of V is defined as follows:
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(Def. 38) f ∨ g = ¬(¬f ∧ ¬g).

Next we state several propositions:

(5) Evaluate(¬H,K1) = ¬Evaluate(H,K1).

(6) Evaluate(H1 ∧H2,K1) = Evaluate(H1,K1) ∧ Evaluate(H2,K1).

(7) Evaluate(EXH,K1) = EXEvaluate(H,K1).

(8) Evaluate(EGH,K1) = EGEvaluate(H,K1).

(9) Evaluate(H1 EUH2,K1) = Evaluate(H1,K1) EUEvaluate(H2,K1).

(10) Evaluate(H1 ∨H2,K1) = Evaluate(H1,K1) ∨ Evaluate(H2,K1).

Let f be a function and let n be an element of N. We introduce f n as a

synonym of fn.

Let S be a set, let f be a function from S into S, and let n be an element

of N. Then fn is a function from S into S.

We use the following convention: S is a non empty set, R is a total relation

between S and S, and s, s0, s1 are elements of S.

The scheme ExistPath deals with a non empty set A, a total relation B
between A and A, an element C of A, and a unary functor F yielding a set, and

states that:

There exists a function f from N into A such that f(0) = C
and for every element n of N holds 〈〈f(n), f(n + 1)〉〉 ∈ B and

f(n+ 1) ∈ F(f(n))

provided the following requirement is met:

• For every element s of A holds B◦{s}∩F(s) is a non empty subset
of A.

Let S be a non empty set and let R be a total relation between S and S. A

function from N into S is said to be an infinity path of R if:

(Def. 39) For every element n of N holds 〈〈it(n), it(n+ 1)〉〉 ∈ R.

Let S be a non empty set. The functor ModelSPS yields a non empty set

and is defined by:

(Def. 40) ModelSPS = BooleanS .

Let S be a non empty set. Observe that ModelSPS is non empty.

Let S be a non empty set and let f be a set. The functor Fid(f, S) yielding

a function from S into Boolean is defined by:

(Def. 41) Fid(f, S) =

{

f, if f ∈ ModelSPS,

S 7−→ false , otherwise.

Now we present several schemes. The scheme Func1EX deals with a non

empty set A, a function B from A into Boolean , and a binary functor F yielding

a boolean set, and states that:

There exists a set g such that g ∈ ModelSPA and for every set s

such that s ∈ A holds F(s,B) = true iff (Fid(g,A))(s) = true

for all values of the parameters.
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The scheme Func1Unique deals with a non empty set A, a function B from

A into Boolean , and a binary functor F yielding a boolean set, and states that:

Let g1, g2 be sets. Suppose that

(i) g1 ∈ModelSPA,

(ii) for every set s such that s ∈ A holds F(s,B) = true iff

(Fid(g1,A))(s) = true,

(iii) g2 ∈ModelSPA, and

(iv) for every set s such that s ∈ A holds F(s,B) = true iff

(Fid(g2,A))(s) = true.

Then g1 = g2
for all values of the parameters.

The scheme UnOpEX deals with a non empty set A and a unary functor F

yielding an element of A, and states that:

There exists a unary operation o on A such that for every set f

such that f ∈ A holds o(f) = F(f)

for all values of the parameters.

The scheme UnOpUnique deals with a non empty set A, a non empty set B,
and a unary functor F yielding an element of B, and states that:

Let o1, o2 be unary operations on B. Suppose for every set f such
that f ∈ B holds o1(f) = F(f) and for every set f such that

f ∈ B holds o2(f) = F(f). Then o1 = o2
for all values of the parameters.

The scheme Func2EX deals with a non empty set A, a function B from

A into Boolean , a function C from A into Boolean , and a ternary functor F
yielding a boolean set, and states that:

There exists a set h such that h ∈ ModelSPA and for every set s

such that s ∈ A holds F(s,B, C) = true iff (Fid(h,A))(s) = true

for all values of the parameters.

The scheme Func2Unique deals with a non empty set A, a function B from

A into Boolean , a function C from A into Boolean , and a ternary functor F
yielding a boolean set, and states that:

Let h1, h2 be sets. Suppose that

(i) h1 ∈ModelSPA,

(ii) for every set s such that s ∈ A holds F(s,B, C) = true iff

(Fid(h1,A))(s) = true,

(iii) h2 ∈ModelSPA, and

(iv) for every set s such that s ∈ A holds F(s,B, C) = true iff

(Fid(h2,A))(s) = true.

Then h1 = h2
for all values of the parameters.

Let S be a non empty set and let f be a set. The functor Not0(f, S) yielding

an element of ModelSPS is defined as follows:
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(Def. 42) For every set s such that s ∈ S holds ¬Castboolean(Fid(f, S))(s) = true

iff (Fid(Not0(f, S), S))(s) = true.

Let S be a non empty set. The functor NotS yields a unary operation on

ModelSPS and is defined by:

(Def. 43) For every set f such that f ∈ ModelSPS holds (NotS)(f) = Not0(f, S).

Let S be a non empty set, let R be a total relation between S and S, let f be a

function from S into Boolean , and let x be a set. The functor EneXtuniv(x, f,R)

yielding an element of Boolean is defined by:

(Def. 44) EneXtuniv(x, f,R) =















true,

if x ∈ S and there exists an infinity path p1
of R such that p1(0) = x and f(p1(1)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f be a set. The functor EneXt0(f,R) yielding an element of ModelSPS is

defined as follows:

(Def. 45) For every set s such that s ∈ S holds EneXtuniv(s,Fid(f, S), R) = true

iff (Fid(EneXt0(f,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EneXtR yields a unary operation on ModelSPS and is defined by:

(Def. 46) For every set f such that f ∈ ModelSPS holds (EneXtR)(f) =

EneXt0(f,R).

Let S be a non empty set, let R be a total relation between S and S,

let f be a function from S into Boolean , and let x be a set. The functor

EGlobaluniv(x, f,R) yielding an element of Boolean is defined by:

(Def. 47) EGlobaluniv(x, f,R) =























true,

if x ∈ S and there exists an infinity path

p1 of R such that p1(0) = x and for every

element n of N holds f(p1(n)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f be a set. The functor EGlobal0(f,R) yielding an element of ModelSPS is

defined as follows:

(Def. 48) For every set s such that s ∈ S holds EGlobaluniv(s,Fid(f, S), R) = true

iff (Fid(EGlobal0(f,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EGlobalR yields a unary operation on ModelSPS and is defined

as follows:

(Def. 49) For every set f such that f ∈ ModelSPS holds (EGlobalR)(f) =

EGlobal0(f,R).
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Let S be a non empty set and let f , g be sets. The functor And0(f, g, S)

yields an element of ModelSPS and is defined as follows:

(Def. 50) For every set s such that s ∈ S holds Castboolean(Fid(f, S))(s) ∧

Castboolean(Fid(g, S))(s) = true iff (Fid(And0(f, g, S), S))(s) = true.

Let S be a non empty set. The and S yielding a binary operation on

ModelSPS is defined by:

(Def. 51) For all sets f , g such that f ∈ ModelSPS and g ∈ModelSPS holds (the

and S)(f, g) = And0(f, g, S).

Let S be a non empty set, let R be a total relation between S and S,

let f , g be functions from S into Boolean , and let x be a set. The functor

EUntilluniv(x, f, g,R) yielding an element of Boolean is defined as follows:

(Def. 52) EUntilluniv(x, f, g,R) =



































true, if x ∈ S and there exists an infinity path

p1 of R such that p1(0) = x and there exists

an element m of N such that for every

element j of N such that j < m holds

f(p1(j)) = true and g(p1(m)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f , g be sets. The functor EUntill0(f, g,R) yields an element of ModelSPS

and is defined by:

(Def. 53) For every set s such that s ∈ S holds EUntilluniv(s,Fid(f, S),Fid(g, S), R)

= true iff (Fid(EUntill0(f, g,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EUntillR yields a binary operation on ModelSPS and is defined as

follows:

(Def. 54) For all sets f , g such that f ∈ ModelSPS and g ∈ ModelSPS holds

(EUntillR)(f, g) = EUntill0(f, g,R).

Let S be a non empty set, let X be a non empty subset of ModelSPS, and

let s be a set. The functor F-LABEL(s,X) yields a subset of X and is defined

as follows:

(Def. 55) For every set x holds x ∈ F-LABEL(s,X) iff x ∈ X and there exists a

function f from S into Boolean such that f = x and f(s) = true.

Let S be a non empty set and let X be a non empty subset of ModelSPS.

The functor LabelX yields a function from S into 2X and is defined by:

(Def. 56) For every set x such that x ∈ S holds (LabelX)(x) = F-LABEL(x,X).

Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. The functor

KModel(R,S0, P1) yields a Kripke structure over P1 and is defined as follows:

(Def. 57) KModel(R,S0, P1) = 〈S, S0, R,LabelP1〉.
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Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. One can

check that the worlds of KModel(R,S0, P1) is non empty.

Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. One can

verify that ModelSP (the worlds of KModel(R,S0, P1)) is non empty.

Let S be a non empty set, let R be a total relation between S and S, and

let B1 be a non empty subset of ModelSPS. The functor CTLModel(R,B1)

yielding a CTL model structure is defined as follows:

(Def. 58) CTLModel(R,B1) = 〈ModelSPS,B1, the and S, NotS,EneXtR,

EGlobalR,EUntillR〉.

In the sequel B1 is a non empty subset of ModelSPS and k1 is a function

from the atomic WFF into the basic assignations of CTLModel(R,B1).

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let s be an element of S, and let f be an

assignation of CTLModel(R,B1). The predicate s |= f is defined by:

(Def. 59) (Fid(f, S))(s) = true.

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let s be an element of S, and let f be an

assignation of CTLModel(R,B1). We introduce s 6|= f as an antonym of s |= f.

Next we state several propositions:

(11) For every assignation a of CTLModel(R,B1) such that a ∈ B1 holds

s |= a iff a ∈ (LabelB1)(s).

(12) For every assignation f of CTLModel(R,B1) holds s |= ¬f iff s 6|= f.

(13) For all assignations f , g of CTLModel(R,B1) holds s |= f ∧ g iff s |= f

and s |= g.

(14) For every assignation f of CTLModel(R,B1) holds s |= EX f iff there

exists an infinity path p1 of R such that p1(0) = s and p1(1) |= f.

(15) Let f be an assignation of CTLModel(R,B1). Then s |= EG f if and

only if there exists an infinity path p1 of R such that p1(0) = s and for

every element n of N holds p1(n) |= f.

(16) Let f , g be assignations of CTLModel(R,B1). Then s |= f EU g if and

only if there exists an infinity path p1 of R such that p1(0) = s and there

exists an element m of N such that for every element j of N such that

j < m holds p1(j) |= f and p1(m) |= g.

(17) For all assignations f , g of CTLModel(R,B1) holds s |= f ∨ g iff s |= f

or s |= g.

Let S be a non empty set, let R be a total relation between S and S, let

B1 be a non empty subset of ModelSPS, let k1 be a function from the atomic
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WFF into the basic assignations of CTLModel(R,B1), let s be an element of S,

and let H be a CTL-formula. The predicate s |=k1 H is defined by:

(Def. 60) s |= Evaluate(H, k1).

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let k1 be a function from the atomic WFF

into the basic assignations of CTLModel(R,B1), let s be an element of S, and

let H be a CTL-formula. We introduce s 6|=k1 H as an antonym of s |=k1 H.

The following propositions are true:

(18) If H is atomic, then s |=k1 H iff k1(H) ∈ (LabelB1)(s).

(19) s |=k1 ¬H iff s 6|=k1 H.

(20) s |=k1 H1 ∧H2 iff s |=k1 H1 and s |=k1 H2.

(21) s |=k1 H1 ∨H2 iff s |=k1 H1 or s |=k1 H2.

(22) s |=k1 EXH iff there exists an infinity path p1 of R such that p1(0) = s

and p1(1) |=k1 H.

(23) s |=k1 EGH iff there exists an infinity path p1 of R such that p1(0) = s

and for every element n of N holds p1(n) |=k1 H.

(24) s |=k1 H1 EUH2 if and only if there exists an infinity path p1 of R such

that p1(0) = s and there exists an element m of N such that for every

element j of N such that j < m holds p1(j) |=k1 H1 and p1(m) |=k1 H2.

(25) For every s0 there exists an infinity path p1 of R such that p1(0) = s0.

(26) Let R be a relation between S and S. Then R is total if and only if for

every set x such that x ∈ S there exists a set y such that y ∈ S and 〈〈x,

y〉〉 ∈ R.

Let S be a non empty set, let R be a total relation between S and S, let

s0 be an element of S, let p1 be an infinity path of R, and let n be a set. The

functor PrePath(n, s0, p1) yielding an element of S is defined as follows:

(Def. 61) PrePath(n, s0, p1) =

{

s0, if n = 0,

p1(k.nat(k.natn− 1)), otherwise.

The following propositions are true:

(27) If 〈〈s0, s1〉〉 ∈ R, then there exists an infinity path p1 of R such that

p1(0) = s0 and p1(1) = s1.

(28) For every assignation f of CTLModel(R,B1) holds s |= EX f iff there

exists an element s1 of S such that 〈〈s, s1〉〉 ∈ R and s1 |= f.

Let S be a non empty set, let R be a total relation between S and S, and let

H be a subset of S. The functor Pred(H,R) yields a subset of S and is defined

by:

(Def. 62) Pred(H,R) = {s; s ranges over elements of S:
∨

t : element of S (t ∈ H ∧ 〈〈s,

t〉〉 ∈ R)}.
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Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f be an assignation of

CTLModel(R,B1). The functor SIGMA f yields a subset of S and is defined as

follows:

(Def. 63) SIGMA f = {s; s ranges over elements of S: s |= f}.

One can prove the following proposition

(29) For all assignations f , g of CTLModel(R,B1) such that SIGMA f =

SIGMA g holds f = g.

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, and let T be a subset of S. The functor

Tau(T,R,B1) yielding an assignation of CTLModel(R,B1) is defined as follows:

(Def. 64) For every set s such that s ∈ S holds (Fid(Tau(T,R,B1), S))(s) =
χT,S(s).

The following propositions are true:

(30) For all subsets T1, T2 of S such that Tau(T1, R,B1) = Tau(T2, R,B1)

holds T1 = T2.

(31) For every assignation f of CTLModel(R,B1) holds

Tau(SIGMA f,R,B1) = f.

(32) For every subset T of S holds SIGMATau(T,R,B1) = T.

(33) For all assignations f , g of CTLModel(R,B1) holds SIGMA¬f = S \
SIGMA f and SIGMA(f∧g) = SIGMA f∩SIGMA g and SIGMA(f∨g) =
SIGMA f ∪ SIGMA g.

(34) For all subsets G1, G2 of S such that G1 ⊆ G2 and for every element s

of S such that s |= Tau(G1, R,B1) holds s |= Tau(G2, R,B1).

(35) For all assignations f1, f2 of CTLModel(R,B1) such that for every ele-

ment s of S such that s |= f1 holds s |= f2 holds SIGMA f1 ⊆ SIGMA f2.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f , g be assignations of

CTLModel(R,B1). The functor Fax(f, g) yielding an assignation of

CTLModel(R,B1) is defined by:

(Def. 65) Fax(f, g) = f ∧ EX g.

Next we state the proposition

(36) Let f , g1, g2 be assignations of CTLModel(R,B1). Suppose that for

every element s of S such that s |= g1 holds s |= g2. Let s be an element

of S. If s |= Fax(f, g1), then s |= Fax(f, g2).

Let S be a non empty set, let R be a total relation between S and S, let B1 be

a non empty subset of ModelSPS, let f be an assignation of CTLModel(R,B1),

and let G be a subset of S. The functor SigFaxTau(f,G,R,B1) yielding a subset

of S is defined by:
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(Def. 66) SigFaxTau(f,G,R,B1) = SIGMAFax(f,Tau(G,R,B1)).

One can prove the following proposition

(37) For every assignation f of CTLModel(R,B1) and for all subsets

G1, G2 of S such that G1 ⊆ G2 holds SigFaxTau(f,G1, R,B1) ⊆
SigFaxTau(f,G2, R,B1).

Let S be a non empty set, let R be a total relation between S and S, let p1 be

an infinity path of R, and let k be an element of N. The functor PathShift(p1, k)

yielding an infinity path of R is defined as follows:

(Def. 67) For every element n of N holds (PathShift(p1, k))(n) = p1(n+ k).

Let S be a non empty set, let R be a total relation between S and S, let

p2, p3 be infinity paths of R, and let n, k be elements of N. The functor

PathChange(p2, p3, k, n) yielding a set is defined by:

(Def. 68) PathChange(p2, p3, k, n) =

{

p2(n), if n < k,

p3(n− k), otherwise.

Let S be a non empty set, let R be a total relation between S and S,

let p2, p3 be infinity paths of R, and let k be an element of N. The functor

PathConc(p2, p3, k) yielding a function from N into S is defined as follows:

(Def. 69) For every element n of N holds (PathConc(p2, p3, k))(n) =

PathChange(p2, p3, k, n).

We now state four propositions:

(38) Let p2, p3 be infinity paths of R and k be an element of N. If p2(k) =

p3(0), then PathConc(p2, p3, k) is an infinity path of R.

(39) For every assignation f of CTLModel(R,B1) and for every element s of

S holds s |= EG f iff s |= Fax(f,EG f).

(40) Let g be an assignation of CTLModel(R,B1) and s0 be an element of

S. Suppose s0 |= g. Suppose that for every element s of S such that

s |= g holds s |= EX g. Then there exists an infinity path p1 of R such that

p1(0) = s0 and for every element n of N holds p1(n) |= g.

(41) Let f , g be assignations of CTLModel(R,B1). Suppose that for every

element s of S holds s |= g iff s |= Fax(f, g). Let s be an element of S. If

s |= g, then s |= EG f.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f be an assignation of

CTLModel(R,B1). The functor TransEG f yielding a ⊆-monotone function

from 2S into 2S is defined as follows:

(Def. 70) For every subsetG of S holds (TransEG f)(G) = SigFaxTau(f,G,R,B1).

One can prove the following two propositions:

(42) Let f , g be assignations of CTLModel(R,B1). Then for every element s

of S holds s |= g iff s |= Fax(f, g) if and only if SIGMA g is a fixpoint of
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TransEG f.

(43) For every assignation f of CTLModel(R,B1) holds SIGMAEG f =

gfp(S,TransEG f).

Let S be a non empty set, let R be a total relation between S and S, let

B1 be a non empty subset of ModelSPS, and let f , g, h be assignations of

CTLModel(R,B1). The functor Foax(g, f, h) yields an assignation of

CTLModel(R,B1) and is defined as follows:

(Def. 71) Foax(g, f, h) = g ∨ Fax(f, h).

We now state the proposition

(44) Let f , g, h1, h2 be assignations of CTLModel(R,B1). Suppose that for

every element s of S such that s |= h1 holds s |= h2. Let s be an element

of S. If s |= Foax(g, f, h1), then s |= Foax(g, f, h2).

Let S be a non empty set, let R be a total relation between S and S, let B1 be

a non empty subset of ModelSPS, let f , g be assignations of CTLModel(R,B1),

and let H be a subset of S. The functor SigFoaxTau(g, f,H,R,B1) yields a

subset of S and is defined as follows:

(Def. 72) SigFoaxTau(g, f,H,R,B1) = SIGMAFoax(g, f,Tau(H,R,B1)).

Next we state three propositions:

(45) For all assignations f , g of CTLModel(R,B1) and for all subsets

H1, H2 of S such that H1 ⊆ H2 holds SigFoaxTau(g, f,H1, R,B1) ⊆
SigFoaxTau(g, f,H2, R,B1).

(46) For all assignations f , g of CTLModel(R,B1) and for every element s of

S holds s |= f EU g iff s |= Foax(g, f, f EU g).

(47) Let f , g, h be assignations of CTLModel(R,B1). Suppose that for every

element s of S holds s |= h iff s |= Foax(g, f, h). Let s be an element of S.

If s |= f EU g, then s |= h.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f , g be assignations of

CTLModel(R,B1). The functor TransEU(f, g) yields a ⊆-monotone function
from 2S into 2S and is defined by:

(Def. 73) For every subset H of S holds

(TransEU(f, g))(H) = SigFoaxTau(g, f,H,R,B1).

One can prove the following propositions:

(48) Let f , g, h be assignations of CTLModel(R,B1). Then for every element

s of S holds s |= h iff s |= Foax(g, f, h) if and only if SIGMAh is a fixpoint

of TransEU(f, g).

(49) For all assignations f , g of CTLModel(R,B1) holds SIGMA(f EU g) =

lfp(S,TransEU(f, g)).
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(50) For every assignation f of CTLModel(R,B1) holds SIGMAEX f =

Pred(SIGMA f,R).

(51) For every assignation f of CTLModel(R,B1) and for every subset X of

S holds (TransEG f)(X) = SIGMA f ∩ Pred(X,R).

(52) For all assignations f , g of CTLModel(R,B1) and for every subset X of

S holds (TransEU(f, g))(X) = SIGMA g ∪ SIGMA f ∩ Pred(X,R).
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