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Summary. As application of complete metric space, we proved a Baire’s

category theorem. Then we defined some spaces generated from real normed

space and discussed each of them. In the second section, we showed the equiv-

alence of convergence and the continuity of a function. In other sections, we

showed some topological properties of two spaces, which are topological space

and linear topological space generated from real normed space.
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The papers [23], [7], [26], [4], [1], [21], [15], [27], [6], [5], [17], [19], [20], [24], [22],

[2], [25], [9], [10], [13], [16], [12], [11], [3], [18], [8], and [14] provide the notation

and terminology for this paper.

1. Baire’s Category Theorem

The following proposition is true

(1) Let X be a non empty metric space and Y be a sequence of subsets of

X. Suppose X is complete and
⋃

rng Y = the carrier of X and for every

element n of N holds Y (n)c ∈ the open set family of X. Then there exists

an element n0 of N and there exists a real number r and there exists a

point x0 of X such that 0 < r and Ball(x0, r) ⊆ Y (n0).
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2. Metric Space Generated from Real Normed Space

Let X be a real normed space. The distance by norm of X yields a function

from [: the carrier of X, the carrier of X :] into R and is defined as follows:

(Def. 1) For all points x, y of X holds (the distance by norm of X)(x, y) = ‖x−y‖.

Let X be a real normed space. The functor MetricSpaceNorm X yields a

non empty metric space and is defined by:

(Def. 2) MetricSpaceNorm X = 〈the carrier of X, the distance by norm of X〉.

Next we state several propositions:

(2) Let X be a real normed space, z be an element of MetricSpaceNorm X,

and r be a real number. Then there exists a point x of X such that x = z

and Ball(z, r) = {y; y ranges over points of X: ‖x − y‖ < r}.

(3) Let X be a real normed space, z be an element of MetricSpaceNorm X,

and r be a real number. Then there exists a point x of X such that x = z

and Ball(z, r) = {y; y ranges over points of X: ‖x − y‖ ≤ r}.

(4) Let X be a real normed space, S be a sequence of X, S1 be a se-

quence of MetricSpaceNorm X, x be a point of X, and x1 be a point

of MetricSpaceNorm X. Suppose S = S1 and x = x1. Then S1 is conver-

gent to x1 if and only if for every real number r such that 0 < r there

exists an element m of N such that for every element n of N such that

m ≤ n holds ‖S(n) − x‖ < r.

(5) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of MetricSpaceNorm X. If S = S1, then S1 is convergent iff S is

convergent.

(6) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of MetricSpaceNorm X. If S = S1 and S1 is convergent, then

lim S1 = limS.

3. Topological Space Generated from Real Normed Space

Let X be a real normed space. The functor TopSpaceNorm X yields a non

empty topological space and is defined by:

(Def. 3) TopSpaceNorm X = (MetricSpaceNorm X)top.

The following propositions are true:

(7) Let X be a real normed space and V be a subset of TopSpaceNormX.

Then V is open if and only if for every point x of X such that x ∈ V there

exists a real number r such that r > 0 and {y; y ranges over points of X:

‖x − y‖ < r} ⊆ V.
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(8) Let X be a real normed space, x be a point of X, and r be a real number.

Then {y; y ranges over points of X: ‖x − y‖ < r} is an open subset of

TopSpaceNormX.

(9) Let X be a real normed space, x be a point of X, and r be a real number.

Then {y; y ranges over points of X: ‖x − y‖ ≤ r} is a closed subset of

TopSpaceNormX.

(10) For every Hausdorff non empty topological space X such that X is

locally-compact holds X is Baire.

(11) For every real normed space X holds TopSpaceNormX is sequential.

Let X be a real normed space. Observe that TopSpaceNormX is sequential.

One can prove the following propositions:

(12) Let X be a real normed space, S be a sequence of X, S1 be a se-

quence of TopSpaceNormX, x be a point of X, and x1 be a point of

TopSpaceNormX. Suppose S = S1 and x = x1. Then S1 is convergent to

x1 if and only if for every real number r such that 0 < r there exists an

element m of N such that for every element n of N such that m ≤ n holds

‖S(n) − x‖ < r.

(13) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of TopSpaceNorm X. If S = S1, then S1 is convergent iff S is

convergent.

(14) Let X be a real normed space, S be a sequence of X, and S1 be a sequence

of TopSpaceNorm X. If S = S1 and S1 is convergent, then LimS1 =

{lim S} and lim S1 = lim S.

(15) Let X be a real normed space, V be a subset of X, and V1 be a subset

of TopSpaceNorm X. If V = V1, then V is closed iff V1 is closed.

(16) Let X be a real normed space, V be a subset of X, and V1 be a subset

of TopSpaceNorm X. If V = V1, then V is open iff V1 is open.

(17) Let X be a real normed space, U be a subset of X, U1 be a sub-

set of TopSpaceNorm X, x be a point of X, and x1 be a point of

TopSpaceNormX. Suppose U = U1 and x = x1. Then U is a neigh-

bourhood of x if and only if U1 is a neighbourhood of x1.

(18) Let X, Y be real normed spaces, f be a partial function from X to Y , f1

be a function from TopSpaceNormX into TopSpaceNormY, x be a point

of X, and x1 be a point of TopSpaceNormX. Suppose f = f1 and x = x1.

Then f is continuous in x if and only if f1 is continuous at x1.

(19) Let X, Y be real normed spaces, f be a partial function from X to

Y , and f1 be a function from TopSpaceNormX into TopSpaceNorm Y.

Suppose f = f1. Then f is continuous on the carrier of X if and only if f1

is continuous.
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4. Linear Topological Space Generated from Real Normed Space

Let X be a real normed space. The functor LinearTopSpaceNorm X yields a

strict non empty real linear topological structure and is defined by the conditions

(Def. 4).

(Def. 4)(i) The carrier of LinearTopSpaceNormX = the carrier of X,

(ii) the zero of LinearTopSpaceNormX = the zero of X,

(iii) the addition of LinearTopSpaceNorm X = the addition of X,

(iv) the external multiplication of LinearTopSpaceNormX = the external

multiplication of X, and

(v) the topology of LinearTopSpaceNormX = the topology of

TopSpaceNorm X.

Let X be a real normed space. Note that LinearTopSpaceNormX is add-

continuous, mult-continuous, topological space-like, Abelian, add-associative,

right zeroed, right complementable, and real linear space-like.

We now state several propositions:

(20) Let X be a real normed space, V be a subset of TopSpaceNormX, and

V1 be a subset of LinearTopSpaceNormX. If V = V1, then V is open iff

V1 is open.

(21) Let X be a real normed space, V be a subset of TopSpaceNormX, and

V1 be a subset of LinearTopSpaceNormX. If V = V1, then V is closed iff

V1 is closed.

(22) Let X be a real normed space and V be a subset of

LinearTopSpaceNorm X. Then V is open if and only if for every point

x of X such that x ∈ V there exists a real number r such that r > 0 and

{y; y ranges over points of X: ‖x − y‖ < r} ⊆ V.

(23) Let X be a real normed space, x be a point of X, r be a real number,

and V be a subset of LinearTopSpaceNorm X. If V = {y; y ranges over

points of X: ‖x − y‖ < r}, then V is open.

(24) Let X be a real normed space, x be a point of X, r be a real number,

and V be a subset of TopSpaceNorm X. If V = {y; y ranges over points of

X: ‖x − y‖ ≤ r}, then V is closed.

Let X be a real normed space. Observe that LinearTopSpaceNormX is T2

and LinearTopSpaceNormX is sober.

One can prove the following proposition

(25) Let X be a real normed space, S be a family of subsets of

TopSpaceNorm X, S1 be a family of subsets of LinearTopSpaceNormX, x

be a point of TopSpaceNorm X, and x1 be a point of LinearTopSpaceNormX.

Suppose S = S1 and x = x1. Then S1 is a basis of x1 if and only if S is a

basis of x.
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Let X be a real normed space. One can verify the following observations:

∗ LinearTopSpaceNorm X is first-countable,

∗ LinearTopSpaceNorm X is Frechet, and

∗ LinearTopSpaceNorm X is sequential.

Next we state a number of propositions:

(26) Let X be a real normed space, S be a sequence of TopSpaceNorm X,

S1 be a sequence of LinearTopSpaceNorm X, x be a point of

TopSpaceNormX, and x1 be a point of LinearTopSpaceNorm X. Suppose

S = S1 and x = x1. Then S1 is convergent to x1 if and only if S is

convergent to x.

(27) Let X be a real normed space, S be a sequence of TopSpaceNorm X,

and S1 be a sequence of LinearTopSpaceNorm X. If S = S1, then S1 is

convergent iff S is convergent.

(28) Let X be a real normed space, S be a sequence of TopSpaceNorm X,

and S1 be a sequence of LinearTopSpaceNorm X. If S = S1 and S1 is

convergent, then LimS = Lim S1 and lim S = limS1.

(29) Let X be a real normed space, S be a sequence of X, S1 be a se-

quence of LinearTopSpaceNormX, x be a point of X, and x1 be a point

of LinearTopSpaceNormX. Suppose S = S1 and x = x1. Then S1 is con-

vergent to x1 if and only if for every real number r such that 0 < r there

exists an element m of N such that for every element n of N such that

m ≤ n holds ‖S(n) − x‖ < r.

(30) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of LinearTopSpaceNorm X. If S = S1, then S1 is convergent iff

S is convergent.

(31) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of LinearTopSpaceNorm X. If S = S1 and S1 is convergent, then

Lim S1 = {lim S} and limS1 = lim S.

(32) Let X be a real normed space, V be a subset of X, and V1 be a subset

of LinearTopSpaceNorm X. If V = V1, then V is closed iff V1 is closed.

(33) Let X be a real normed space, V be a subset of X, and V1 be a subset

of LinearTopSpaceNorm X. If V = V1, then V is open iff V1 is open.

(34) Let X be a real normed space, U be a subset of TopSpaceNorm X, U1 be

a subset of LinearTopSpaceNorm X, x be a point of TopSpaceNormX, and

x1 be a point of LinearTopSpaceNorm X. Suppose U = U1 and x = x1.

Then U is a neighbourhood of x if and only if U1 is a neighbourhood of

x1.

(35) Let X, Y be real normed spaces, f be a function from TopSpaceNormX

into TopSpaceNormY, f1 be a function from LinearTopSpaceNormX into

LinearTopSpaceNormY, x be a point of TopSpaceNormX, and x1 be a
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point of LinearTopSpaceNormX. Suppose f = f1 and x = x1. Then f is

continuous at x if and only if f1 is continuous at x1.

(36) Let X, Y be real normed spaces, f be a function from TopSpaceNorm X

into TopSpaceNormY, and f1 be a function from LinearTopSpaceNorm X

into LinearTopSpaceNorm Y. If f = f1, then f is continuous iff f1 is con-

tinuous.
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[6] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
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