Baire's Category Theorem and Some Spaces Generated from Real Normed Space¹

Noboru Endou Gifu National College of Technology Japan Yasunari Shidama Shinshu University Nagano, Japan

Katsumasa Okamura Shinshu University Nagano, Japan

Summary. As application of complete metric space, we proved a Baire's category theorem. Then we defined some spaces generated from real normed space and discussed each of them. In the second section, we showed the equivalence of convergence and the continuity of a function. In other sections, we showed some topological properties of two spaces, which are topological space and linear topological space generated from real normed space.

MML identifier: NORMSP_2, version: 7.8.03 4.75.958

The papers [23], [7], [26], [4], [1], [21], [15], [27], [6], [5], [17], [19], [20], [24], [22], [2], [25], [9], [10], [13], [16], [12], [11], [3], [18], [8], and [14] provide the notation and terminology for this paper.

1. BAIRE'S CATEGORY THEOREM

The following proposition is true

(1) Let X be a non empty metric space and Y be a sequence of subsets of X. Suppose X is complete and $\bigcup \operatorname{rng} Y =$ the carrier of X and for every element n of N holds $Y(n)^c \in$ the open set family of X. Then there exists an element n_0 of N and there exists a real number r and there exists a point x_0 of X such that 0 < r and $\operatorname{Ball}(x_0, r) \subseteq Y(n_0)$.

C 2006 University of Białystok ISSN 1426-2630

¹This work has been partially supported by the MEXT grant Grant-in-Aid for Young Scientists (B)16700156.

NOBORU ENDOU et al.

2. Metric Space Generated from Real Normed Space

Let X be a real normed space. The distance by norm of X yields a function from [the carrier of X, the carrier of X] into \mathbb{R} and is defined as follows:

(Def. 1) For all points x, y of X holds (the distance by norm of X)(x, y) = ||x-y||. Let X be a real normed space. The functor MetricSpaceNorm X yields a

non empty metric space and is defined by: (Def. 2) MetricSpaceNorm $X = \langle \text{the carrier of } X, \text{ the distance by norm of } X \rangle$.

Next we state several propositions:

- (2) Let X be a real normed space, z be an element of MetricSpaceNorm X, and r be a real number. Then there exists a point x of X such that x = z and $\text{Ball}(z, r) = \{y; y \text{ ranges over points of } X \colon ||x y|| < r\}.$
- (3) Let X be a real normed space, z be an element of MetricSpaceNorm X, and r be a real number. Then there exists a point x of X such that x = z and $\overline{\text{Ball}}(z,r) = \{y; y \text{ ranges over points of } X \colon ||x y|| \le r\}.$
- (4) Let X be a real normed space, S be a sequence of X, S_1 be a sequence of MetricSpaceNorm X, x be a point of X, and x_1 be a point of MetricSpaceNorm X. Suppose $S = S_1$ and $x = x_1$. Then S_1 is convergent to x_1 if and only if for every real number r such that 0 < r there exists an element m of \mathbb{N} such that for every element n of \mathbb{N} such that $m \le n$ holds ||S(n) x|| < r.
- (5) Let X be a real normed space, S be a sequence of X, and S_1 be a sequence of MetricSpaceNorm X. If $S = S_1$, then S_1 is convergent iff S is convergent.
- (6) Let X be a real normed space, S be a sequence of X, and S_1 be a sequence of MetricSpaceNorm X. If $S = S_1$ and S_1 is convergent, then $\lim S_1 = \lim S$.

3. TOPOLOGICAL SPACE GENERATED FROM REAL NORMED SPACE

Let X be a real normed space. The functor TopSpaceNorm X yields a non empty topological space and is defined by:

(Def. 3) TopSpaceNorm $X = (MetricSpaceNorm X)_{top}$.

The following propositions are true:

(7) Let X be a real normed space and V be a subset of TopSpaceNorm X. Then V is open if and only if for every point x of X such that $x \in V$ there exists a real number r such that r > 0 and $\{y; y \text{ ranges over points of } X:$ $||x - y|| < r\} \subseteq V.$

- (8) Let X be a real normed space, x be a point of X, and r be a real number. Then $\{y; y \text{ ranges over points of } X: ||x - y|| < r\}$ is an open subset of TopSpaceNorm X.
- (9) Let X be a real normed space, x be a point of X, and r be a real number. Then $\{y; y \text{ ranges over points of } X: ||x - y|| \le r\}$ is a closed subset of TopSpaceNorm X.
- (10) For every Hausdorff non empty topological space X such that X is locally-compact holds X is Baire.
- (11) For every real normed space X holds TopSpaceNorm X is sequential.

Let X be a real normed space. Observe that TopSpaceNorm X is sequential. One can prove the following propositions:

- (12) Let X be a real normed space, S be a sequence of X, S_1 be a sequence of TopSpaceNorm X, x be a point of X, and x_1 be a point of TopSpaceNorm X. Suppose $S = S_1$ and $x = x_1$. Then S_1 is convergent to x_1 if and only if for every real number r such that 0 < r there exists an element m of N such that for every element n of N such that $m \le n$ holds ||S(n) x|| < r.
- (13) Let X be a real normed space, S be a sequence of X, and S_1 be a sequence of TopSpaceNorm X. If $S = S_1$, then S_1 is convergent iff S is convergent.
- (14) Let X be a real normed space, S be a sequence of X, and S_1 be a sequence of TopSpaceNorm X. If $S = S_1$ and S_1 is convergent, then $\lim S_1 = \{\lim S\}$ and $\lim S_1 = \lim S$.
- (15) Let X be a real normed space, V be a subset of X, and V_1 be a subset of TopSpaceNorm X. If $V = V_1$, then V is closed iff V_1 is closed.
- (16) Let X be a real normed space, V be a subset of X, and V_1 be a subset of TopSpaceNorm X. If $V = V_1$, then V is open iff V_1 is open.
- (17) Let X be a real normed space, U be a subset of X, U_1 be a subset of TopSpaceNorm X, x be a point of X, and x_1 be a point of TopSpaceNorm X. Suppose $U = U_1$ and $x = x_1$. Then U is a neighbourhood of x if and only if U_1 is a neighbourhood of x_1 .
- (18) Let X, Y be real normed spaces, f be a partial function from X to Y, f_1 be a function from TopSpaceNorm X into TopSpaceNorm Y, x be a point of X, and x_1 be a point of TopSpaceNorm X. Suppose $f = f_1$ and $x = x_1$. Then f is continuous in x if and only if f_1 is continuous at x_1 .
- (19) Let X, Y be real normed spaces, f be a partial function from X to Y, and f_1 be a function from TopSpaceNorm X into TopSpaceNorm Y. Suppose $f = f_1$. Then f is continuous on the carrier of X if and only if f_1 is continuous.

4. LINEAR TOPOLOGICAL SPACE GENERATED FROM REAL NORMED SPACE

Let X be a real normed space. The functor LinearTopSpaceNorm X yields a strict non empty real linear topological structure and is defined by the conditions (Def. 4).

- (Def. 4)(i) The carrier of LinearTopSpaceNorm X = the carrier of X,
 - (ii) the zero of LinearTopSpaceNorm X = the zero of X,
 - (iii) the addition of LinearTopSpaceNorm X = the addition of X,
 - (iv) the external multiplication of LinearTopSpaceNorm X = the external multiplication of X, and
 - (v) the topology of LinearTopSpaceNorm X = the topology of TopSpaceNorm X.

Let X be a real normed space. Note that LinearTopSpaceNorm X is addcontinuous, mult-continuous, topological space-like, Abelian, add-associative, right zeroed, right complementable, and real linear space-like.

We now state several propositions:

- (20) Let X be a real normed space, V be a subset of TopSpaceNorm X, and V_1 be a subset of LinearTopSpaceNorm X. If $V = V_1$, then V is open iff V_1 is open.
- (21) Let X be a real normed space, V be a subset of TopSpaceNorm X, and V_1 be a subset of LinearTopSpaceNorm X. If $V = V_1$, then V is closed iff V_1 is closed.
- (22) Let X be a real normed space and V be a subset of LinearTopSpaceNorm X. Then V is open if and only if for every point x of X such that $x \in V$ there exists a real number r such that r > 0 and $\{y; y \text{ ranges over points of } X \colon ||x y|| < r\} \subseteq V.$
- (23) Let X be a real normed space, x be a point of X, r be a real number, and V be a subset of LinearTopSpaceNorm X. If $V = \{y; y \text{ ranges over points of } X: ||x y|| < r\}$, then V is open.
- (24) Let X be a real normed space, x be a point of X, r be a real number, and V be a subset of TopSpaceNorm X. If $V = \{y; y \text{ ranges over points of } X: ||x y|| \le r\}$, then V is closed.

Let X be a real normed space. Observe that LinearTopSpaceNorm X is T_2 and LinearTopSpaceNorm X is sober.

One can prove the following proposition

(25) Let X be a real normed space, S be a family of subsets of TopSpaceNorm X, S_1 be a family of subsets of LinearTopSpaceNorm X, x be a point of TopSpaceNorm X, and x_1 be a point of LinearTopSpaceNorm X. Suppose $S = S_1$ and $x = x_1$. Then S_1 is a basis of x_1 if and only if S is a basis of x.

Let X be a real normed space. One can verify the following observations:

- * LinearTopSpaceNorm X is first-countable,
- * LinearTopSpaceNorm X is Frechet, and
- * LinearTopSpaceNorm X is sequential.

Next we state a number of propositions:

- (26) Let X be a real normed space, S be a sequence of TopSpaceNorm X, S_1 be a sequence of LinearTopSpaceNorm X, x be a point of TopSpaceNorm X, and x_1 be a point of LinearTopSpaceNorm X. Suppose $S = S_1$ and $x = x_1$. Then S_1 is convergent to x_1 if and only if S is convergent to x.
- (27) Let X be a real normed space, S be a sequence of TopSpaceNorm X, and S_1 be a sequence of LinearTopSpaceNorm X. If $S = S_1$, then S_1 is convergent iff S is convergent.
- (28) Let X be a real normed space, S be a sequence of TopSpaceNorm X, and S_1 be a sequence of LinearTopSpaceNorm X. If $S = S_1$ and S_1 is convergent, then $\text{Lim } S = \text{Lim } S_1$ and $\text{lim } S = \text{lim } S_1$.
- (29) Let X be a real normed space, S be a sequence of X, S_1 be a sequence of LinearTopSpaceNorm X, x be a point of X, and x_1 be a point of LinearTopSpaceNorm X. Suppose $S = S_1$ and $x = x_1$. Then S_1 is convergent to x_1 if and only if for every real number r such that 0 < r there exists an element m of N such that for every element n of N such that $m \le n$ holds ||S(n) x|| < r.
- (30) Let X be a real normed space, S be a sequence of X, and S_1 be a sequence of LinearTopSpaceNorm X. If $S = S_1$, then S_1 is convergent iff S is convergent.
- (31) Let X be a real normed space, S be a sequence of X, and S_1 be a sequence of LinearTopSpaceNorm X. If $S = S_1$ and S_1 is convergent, then $\text{Lim } S_1 = \{\lim S\}$ and $\lim S_1 = \lim S$.
- (32) Let X be a real normed space, V be a subset of X, and V_1 be a subset of LinearTopSpaceNorm X. If $V = V_1$, then V is closed iff V_1 is closed.
- (33) Let X be a real normed space, V be a subset of X, and V_1 be a subset of LinearTopSpaceNorm X. If $V = V_1$, then V is open iff V_1 is open.
- (34) Let X be a real normed space, U be a subset of TopSpaceNorm X, U_1 be a subset of LinearTopSpaceNorm X, x be a point of TopSpaceNorm X, and x_1 be a point of LinearTopSpaceNorm X. Suppose $U = U_1$ and $x = x_1$. Then U is a neighbourhood of x if and only if U_1 is a neighbourhood of x_1 .
- (35) Let X, Y be real normed spaces, f be a function from TopSpaceNorm X into TopSpaceNorm Y, f_1 be a function from LinearTopSpaceNorm X into LinearTopSpaceNorm Y, x be a point of TopSpaceNorm X, and x_1 be a

point of LinearTopSpaceNorm X. Suppose $f = f_1$ and $x = x_1$. Then f is continuous at x if and only if f_1 is continuous at x_1 .

(36) Let X, Y be real normed spaces, f be a function from TopSpaceNorm X into TopSpaceNorm Y, and f_1 be a function from LinearTopSpaceNorm X into LinearTopSpaceNorm Y. If $f = f_1$, then f is continuous iff f_1 is continuous.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169–176, [2]1997.
- [3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 5 1990. Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6]
- [7]Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990
- [8] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
- [9] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [10] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562, 1991.
- [11] Stanisława Kanas and Adam Lecko. Sequences in metric spaces. Formalized Mathematics, 2(**5**):657-661, 1991.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [13] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Math*ematics*, 3(1):1–16, 1992.
- [14]Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
- [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [16] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991. [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
- Formalized Mathematics, 1(1):223–230, 1990.
- [18] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [19] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Math*ematics*, 7(1):81–86, 1998.
- [20] Bartłomiej Skorulski. The sequential closure operator in sequential and Frechet spaces. Formalized Mathematics, 8(1):47–54, 1999.
- Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. [21]
- [22] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [24] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289–294. 1997.
- Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-[25]296, 1990.
- [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received November 21, 2006