The Jordan-Hölder Theorem

Marco Riccardi Casella Postale 49 54038 Montignoso, Italy

Summary. The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and defines the composition series.

MML identifier: GROUP_9, version: 7.8.05 4.84.971

The terminology and notation used here are introduced in the following articles: [17], [25], [3], [26], [7], [27], [8], [9], [4], [10], [1], [12], [18], [2], [6], [21], [20], [22], [19], [15], [23], [11], [14], [16], [13], and [24].

1. Actions and Groups with Operators

Let O, E be sets. An action of O on E is a function from O into E^E .

Let O, E be sets, let A be an action of O on E, and let I_1 be a set. We say that I_1 is stable under the action of A if and only if:

(Def. 1) For every element o of O and for every function f from E into E such that $o \in O$ and f = A(o) holds $f^{\circ}I_1 \subseteq I_1$.

Let O, E be sets, let A be an action of O on E, and let X be a subset of E. The stable subset generated by X yields a subset of E and is defined by the conditions (Def. 2).

- (Def. 2)(i) $X \subseteq$ the stable subset generated by X,
 - (ii) the stable subset generated by X is stable under the action of A, and
 - (iii) for every subset Y of E such that Y is stable under the action of A and $X \subseteq Y$ holds the stable subset generated by $X \subseteq Y$.

C 2007 University of Białystok ISSN 1426-2630 Let O, E be sets, let A be an action of O on E, and let F be a finite sequence of elements of O. The functor Product(F, A) yields a function from E into Eand is defined by:

(Def. 3)(i) $\operatorname{Product}(F, A) = \operatorname{id}_E \operatorname{if} \operatorname{len} F = 0,$

(ii) there exists a finite sequence P_1 of elements of E^E such that $\operatorname{Product}(F, A) = P_1(\operatorname{len} F)$ and $\operatorname{len} P_1 = \operatorname{len} F$ and $P_1(1) = A(F(1))$ and for every natural number n such that $n \neq 0$ and $n < \operatorname{len} F$ there exist functions f, g from E into E such that $f = P_1(n)$ and g = A(F(n+1))and $P_1(n+1) = f \cdot g$, otherwise.

Let O be a set, let G be a group, and let I_1 be an action of O on the carrier of G. We say that I_1 is distributive if and only if:

(Def. 4) For every element o of O such that $o \in O$ holds $I_1(o)$ is a homomorphism from G to G.

Let O be a set. We consider group structures with operators in O as extensions of groupoid as systems

 \langle a carrier, a multiplication, an action \rangle ,

where the carrier is a set, the multiplication is a binary operation on the carrier, and the action is an action of O on the carrier.

Let O be a set. Observe that there exists a group structure with operators in O which is non empty.

Let O be a set and let I_1 be a non empty group structure with operators in O. We say that I_1 is distributive if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let G be a group and a be an action of O on the carrier of G. Suppose a = the action of I_1 and the groupoid of G = the groupoid of I_1 . Then a is distributive.

Let O be a set. Observe that there exists a non empty group structure with operators in O which is strict, distributive, group-like, and associative.

Let O be a set. A group with operators in O is a distributive group-like associative non empty group structure with operators in O.

Let *O* be a set, let *G* be a group with operators in *O*, and let *o* be an element of *O*. The functor $G \cap o$ yields a homomorphism from *G* to *G* and is defined as follows:

(Def. 6)
$$G \cap o = \begin{cases} (\text{the action of } G)(o), \text{ if } o \in O, \\ \text{id}_{\text{the carrier of } G}, \text{ otherwise.} \end{cases}$$

Let O be a set and let G be a group with operators in O. A distributive group-like associative non empty group structure with operators in O is said to be a stable subgroup of G if:

(Def. 7) It is a subgroup of G and for every element o of O holds it $\frown o = (G \frown o) \upharpoonright$ the carrier of it.

Let O be a set and let G be a group with operators in O. Note that there exists a stable subgroup of G which is strict.

Let O be a set and let G be a group with operators in O. The functor $\{1\}_G$ yields a strict stable subgroup of G and is defined by:

(Def. 8) The carrier of $\{\mathbf{1}\}_G = \{\mathbf{1}_G\}$.

Let O be a set and let G be a group with operators in O. The functor Ω_G yielding a strict stable subgroup of G is defined as follows:

(Def. 9) Ω_G = the group structure with operators of G.

Let O be a set, let G be a group with operators in O, and let I_1 be a stable subgroup of G. We say that I_1 is normal if and only if:

(Def. 10) For every strict subgroup H of G such that H = the groupoid of I_1 holds H is normal.

Let O be a set and let G be a group with operators in O. Note that there exists a stable subgroup of G which is strict and normal.

Let O be a set, let G be a group with operators in O, and let H be a stable subgroup of G. Observe that there exists a stable subgroup of H which is normal.

Let O be a set and let G be a group with operators in O. Note that $\{\mathbf{1}\}_G$ is normal and Ω_G is normal.

Let O be a set and let G be a group with operators in O. The stable subgroups of G yields a set and is defined as follows:

(Def. 11) For every set x holds $x \in$ the stable subgroups of G iff x is a strict stable subgroup of G.

Let O be a set and let G be a group with operators in O. Observe that the stable subgroups of G is non empty.

Let I_1 be a group. We say that I_1 is simple if and only if:

(Def. 12) I_1 is not trivial and it is not true that there exists a strict normal subgroup H of I_1 such that $H \neq \Omega_{(I_1)}$ and $H \neq \{\mathbf{1}\}_{(I_1)}$.

Let us note that there exists a group which is strict and simple.

Let O be a set and let I_1 be a group with operators in O. We say that I_1 is simple if and only if:

(Def. 13) I_1 is not trivial and it is not true that there exists a strict normal stable subgroup H of I_1 such that $H \neq \Omega_{(I_1)}$ and $H \neq \{1\}_{(I_1)}$.

Let O be a set. Observe that there exists a group with operators in O which is strict and simple.

Let O be a set, let G be a group with operators in O, and let N be a normal stable subgroup of G. The functor Cosets N yields a set and is defined by:

(Def. 14) For every strict normal subgroup H of G such that H = the groupoid of N holds Cosets N = Cosets H.

Let O be a set, let G be a group with operators in O, and let N be a normal stable subgroup of G. The functor CosOp N yielding a binary operation on Cosets N is defined by:

(Def. 15) For every strict normal subgroup H of G such that H = the groupoid of N holds $\operatorname{CosOp} N = \operatorname{CosOp} H$.

Let O be a set, let G be a group with operators in O, and let N be a normal stable subgroup of G. The functor $\operatorname{CosAc} N$ yielding an action of O on $\operatorname{Cosets} N$ is defined as follows:

For every element o of O holds $(\operatorname{CosAc} N)(o) = \{\langle A, B \rangle; A \}$ (Def. 16)(i)

ranges over elements of $\operatorname{Cosets} N, B$ ranges over elements of $\operatorname{Cosets} N$: $\begin{array}{l} \bigvee_{g,h\,:\, \text{element of }G} (g \in A \land h \in B \land h = (G \cap o)(g)) \} \text{ if } O \text{ is not empty,} \\ (\text{ii}) \quad \text{CosAc}\, N = [\emptyset, \{ \text{id}_{\text{Cosets}\,N} \}], \text{ otherwise.} \end{array}$

Let O be a set, let G be a group with operators in O, and let N be a normal stable subgroup of G. The functor ${}^{G}/_{N}$ yields a group structure with operators in O and is defined as follows:

(Def. 17) $^{G}/_{N} = \langle \operatorname{Cosets} N, \operatorname{CosOp} N, \operatorname{CosAc} N \rangle.$

Let O be a set, let G be a group with operators in O, and let N be a normal stable subgroup of G. Note that $^{G}/_{N}$ is non empty and $^{G}/_{N}$ is distributive. group-like, and associative.

Let O be a set, let G, H be groups with operators in O, and let f be a function from G into H. We say that f is homomorphic if and only if:

(Def. 18) For every element o of O and for every element g of G holds $f((G \cap$ $o)(g)) = (H \cap o)(f(g)).$

Let O be a set and let G, H be groups with operators in O. One can check that there exists a function from G into H which is multiplicative and homomorphic.

Let O be a set and let G, H be groups with operators in O. A homomorphism from G to H is a multiplicative homomorphic function from G into H.

Let O be a set, let G, H, I be groups with operators in O, let h be a homomorphism from G to H, and let h_1 be a homomorphism from H to I. Then $h_1 \cdot h$ is a homomorphism from G to I.

Let O be a set, let G, H be groups with operators in O, and let h be a homomorphism from G to H. We say that h is monomorphism if and only if:

(Def. 19) h is one-to-one.

We say that h is epimorphism if and only if:

(Def. 20) $\operatorname{rng} h = \operatorname{the carrier of} H.$

Let O be a set, let G, H be groups with operators in O, and let h be a homomorphism from G to H. We say that h is isomorphism if and only if:

(Def. 21) h is an epimorphism and a monomorphism.

Let O be a set and let G, H be groups with operators in O. We say that Gand H are isomorphic if and only if:

(Def. 22) There exists a homomorphism from G to H which is an isomorphism.

Let us note that the predicate G and H are isomorphic is reflexive.

Let O be a set and let G, H be groups with operators in O. Let us note that the predicate G and H are isomorphic is symmetric.

Let O be a set, let G be a group with operators in O, and let N be a normal stable subgroup of G. The canonical homomorphism onto cosets of N yields a homomorphism from G to $^{G}/_{N}$ and is defined by the condition (Def. 23).

(Def. 23) Let H be a strict normal subgroup of G. Suppose H = the groupoid of N. Then the canonical homomorphism onto cosets of N = the canonical homomorphism onto cosets of H.

Let O be a set, let G, H be groups with operators in O, and let g be a homomorphism from G to H. The functor Ker g yields a strict stable subgroup of G and is defined as follows:

(Def. 24) The carrier of Ker $g = \{a; a \text{ ranges over elements of } G: g(a) = \mathbf{1}_H \}.$

Let O be a set, let G, H be groups with operators in O, and let g be a homomorphism from G to H. Observe that Ker g is normal.

Let O be a set, let G, H be groups with operators in O, and let g be a homomorphism from G to H. The functor Im g yielding a strict stable subgroup of H is defined by:

(Def. 25) The carrier of $\text{Im } g = g^{\circ}$ (the carrier of G).

Let O be a set, let G be a group with operators in O, and let H be a stable subgroup of G. The functor \overline{H} yielding a subset of G is defined as follows:

(Def. 26) \overline{H} = the carrier of H.

Let O be a set, let G be a group with operators in O, and let H_1 , H_2 be stable subgroups of G. The functor $H_1 \cdot H_2$ yields a subset of G and is defined as follows:

(Def. 27) $H_1 \cdot H_2 = \overline{H_1} \cdot \overline{H_2}$.

Let O be a set, let G be a group with operators in O, and let H_1 , H_2 be stable subgroups of G. The functor $H_1 \cap H_2$ yielding a strict stable subgroup of G is defined by:

(Def. 28) The carrier of $H_1 \cap H_2 = \overline{H_1} \cap \overline{H_2}$.

Let us note that the functor $H_1 \cap H_2$ is commutative.

Let O be a set, let G be a group with operators in O, and let A be a subset of G. The stable subgroup of A yielding a strict stable subgroup of G is defined by the conditions (Def. 29).

(Def. 29)(i) $A \subseteq$ the carrier of the stable subgroup of A, and

(ii) for every strict stable subgroup H of G such that $A \subseteq$ the carrier of H holds the stable subgroup of A is a stable subgroup of H.

Let O be a set, let G be a group with operators in O, and let H_1 , H_2 be stable subgroups of G. The functor $H_1 \sqcup H_2$ yielding a strict stable subgroup of G is defined as follows: (Def. 30) $H_1 \sqcup H_2$ = the stable subgroup of $\overline{H_1} \cup \overline{H_2}$.

2. Some Theorems on Groups Reformulated for Groups with Operators

For simplicity, we follow the rules: x, O are sets, o is an element of O, G, H, I are groups with operators in O, A, B are subsets of G, N is a normal stable subgroup of G, H_1, H_2, H_3 are stable subgroups of G, g_1, g_2 are elements of G, h_1, h_2 are elements of H_1 , and h is a homomorphism from G to H.

One can prove the following propositions:

- (1) If $x \in H_1$, then $x \in G$.
- (2) h_1 is an element of G.
- (3) If $h_1 = g_1$ and $h_2 = g_2$, then $h_1 \cdot h_2 = g_1 \cdot g_2$.
- (4) $\mathbf{1}_G = \mathbf{1}_{(H_1)}$.
- (5) $\mathbf{1}_G \in H_1$.
- (6) If $h_1 = g_1$, then $h_1^{-1} = g_1^{-1}$.
- (7) If $g_1 \in H_1$ and $g_2 \in H_1$, then $g_1 \cdot g_2 \in H_1$.
- (8) If $g_1 \in H_1$, then $g_1^{-1} \in H_1$.
- (9) Suppose that
- (i) $A \neq \emptyset$,
- (ii) for all g_1, g_2 such that $g_1 \in A$ and $g_2 \in A$ holds $g_1 \cdot g_2 \in A$,
- (iii) for every g_1 such that $g_1 \in A$ holds $g_1^{-1} \in A$, and
- (iv) for all o, g_1 such that $g_1 \in A$ holds $(G \cap o)(g_1) \in A$. Then there exists a strict stable subgroup H of G such that the carrier of H = A.
- (10) G is a stable subgroup of G.
- (11) Let G_1 , G_2 , G_3 be groups with operators in O. Suppose G_1 is a stable subgroup of G_2 and G_2 is a stable subgroup of G_3 . Then G_1 is a stable subgroup of G_3 .
- (12) If the carrier of $H_1 \subseteq$ the carrier of H_2 , then H_1 is a stable subgroup of H_2 .
- (13) If for every element g of G such that $g \in H_1$ holds $g \in H_2$, then H_1 is a stable subgroup of H_2 .
- (14) For all strict stable subgroups H_1 , H_2 of G such that the carrier of H_1 = the carrier of H_2 holds $H_1 = H_2$.
- (15) $\{\mathbf{1}\}_G = \{\mathbf{1}\}_{(H_1)}.$
- (16) $\{\mathbf{1}\}_G$ is a stable subgroup of H_1 .
- (17) If $\overline{H_1} \cdot \overline{H_2} = \overline{H_2} \cdot \overline{H_1}$, then there exists a strict stable subgroup H of G such that the carrier of $H = \overline{H_1} \cdot \overline{H_2}$.

- (18)(i) For every stable subgroup H of G such that $H = H_1 \cap H_2$ holds the carrier of H = (the carrier of H_1) \cap (the carrier of H_2), and
 - (ii) for every strict stable subgroup H of G such that the carrier of H = (the carrier of H_1) \cap (the carrier of H_2) holds $H = H_1 \cap H_2$.
- (19) For every strict stable subgroup H of G holds $H \cap H = H$.
- (20) $(H_1 \cap H_2) \cap H_3 = H_1 \cap (H_2 \cap H_3).$
- (21) $\{\mathbf{1}\}_G \cap H_1 = \{\mathbf{1}\}_G$ and $H_1 \cap \{\mathbf{1}\}_G = \{\mathbf{1}\}_G$.
- (22) \bigcup Cosets N = the carrier of G.
- (23) Let N_1 , N_2 be strict normal stable subgroups of G. Then there exists a strict normal stable subgroup N of G such that the carrier of $N = \overline{N_1} \cdot \overline{N_2}$.
- (24) $g_1 \in$ the stable subgroup of A if and only if there exists a finite sequence F of elements of the carrier of G and there exists a finite sequence I of elements of \mathbb{Z} and there exists a subset C of G such that C = the stable subset generated by A and len F = len I and rng $F \subseteq C$ and $\prod(F^I) = g_1$.
- (25) For every strict stable subgroup H of G holds the stable subgroup of $\overline{H} = H$.
- (26) If $A \subseteq B$, then the stable subgroup of A is a stable subgroup of the stable subgroup of B.

The scheme MeetSbgWOpEx deals with a set \mathcal{A} , a group \mathcal{B} with operators in \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

There exists a strict stable subgroup H of \mathcal{B} such that the carrier of $H = \bigcap \{A; A \text{ ranges over subsets of } \mathcal{B} :$ $\bigvee_{K: \text{ strict stable subgroup of } \mathcal{B}} (A = \text{the carrier of } K \land \mathcal{P}[K]) \}$

provided the parameters meet the following requirement:

• There exists a strict stable subgroup H of \mathcal{B} such that $\mathcal{P}[H]$. The following propositions are true:

(27) The carrier of the stable subgroup of $A = \bigcap \{B; B \text{ ranges over subsets}\}$

- of G: $\bigvee_{H: \text{ strict stable subgroup of } G} (B = \text{the carrier of } H \land A \subseteq \overline{H}) \}.$
- (28) For all strict normal stable subgroups N_1 , N_2 of G holds $N_1 \cdot N_2 = N_2 \cdot N_1$.
- (29) $H_1 \sqcup H_2$ = the stable subgroup of $H_1 \cdot H_2$.
- (30) If $H_1 \cdot H_2 = H_2 \cdot H_1$, then the carrier of $H_1 \sqcup H_2 = H_1 \cdot H_2$.
- (31) For all strict normal stable subgroups N_1 , N_2 of G holds the carrier of $N_1 \sqcup N_2 = N_1 \cdot N_2$.
- (32) For all strict normal stable subgroups N_1 , N_2 of G holds $N_1 \sqcup N_2$ is a normal stable subgroup of G.
- (33) For every strict stable subgroup H of G holds $\{\mathbf{1}\}_G \sqcup H = H$ and $H \sqcup \{\mathbf{1}\}_G = H$.
- (34) $\Omega_G \sqcup H_1 = \Omega_G$ and $H_1 \sqcup \Omega_G = \Omega_G$.

- (35) H_1 is a stable subgroup of $H_1 \sqcup H_2$ and H_2 is a stable subgroup of $H_1 \sqcup H_2$.
- (36) For every strict stable subgroup H_2 of G holds H_1 is a stable subgroup of H_2 iff $H_1 \sqcup H_2 = H_2$.
- (37) Let H_3 be a strict stable subgroup of G. Suppose H_1 is a stable subgroup of H_3 and H_2 is a stable subgroup of H_3 . Then $H_1 \sqcup H_2$ is a stable subgroup of H_3 .
- (38) Let H_2 , H_3 be strict stable subgroups of G. Suppose H_1 is a stable subgroup of H_2 . Then $H_1 \sqcup H_3$ is a stable subgroup of $H_2 \sqcup H_3$.
- (39) For all stable subgroups X, Y of H_1 and for all stable subgroups X', Y' of G such that X = X' and Y = Y' holds $X' \cap Y' = X \cap Y$.
- (40) If N is a stable subgroup of H_1 , then N is a normal stable subgroup of H_1 .
- (41) $H_1 \cap N$ is a normal stable subgroup of H_1 and $N \cap H_1$ is a normal stable subgroup of H_1 .
- (42) For every strict group G with operators in O such that G is trivial holds $\{\mathbf{1}\}_G = G$.
- (43) $\mathbf{1}_{G_{N}} = \overline{N}.$
- (44) Let M, N be strict normal stable subgroups of G and M_1 be a normal stable subgroup of N. Suppose $M_1 = M$ and M is a stable subgroup of N. Then N/M_1 is a normal stable subgroup of G/M.
- $(45) \quad h(\mathbf{1}_G) = \mathbf{1}_H.$
- (46) $h(g_1^{-1}) = h(g_1)^{-1}$.
- (47) $g_1 \in \operatorname{Ker} h \text{ iff } h(g_1) = \mathbf{1}_H.$
- (48) For every strict normal stable subgroup N of G holds Ker (the canonical homomorphism onto cosets of N) = N.
- (49) $\operatorname{rng} h = \operatorname{the carrier of Im} h.$
- (50) Im (the canonical homomorphism onto cosets of N) = $^{G}/_{N}$.
- (51) Let H be a strict group with operators in O and h be a homomorphism from G to H. Then h is an epimorphism if and only if Im h = H.
- (52) Let H be a strict group with operators in O and h be a homomorphism from G to H. Suppose h is an epimorphism. Let c be an element of H. Then there exists an element a of G such that h(a) = c.
- (53) The canonical homomorphism onto cosets of N is an epimorphism.
- (54) The canonical homomorphism onto cosets of $\{1\}_G$ is an isomorphism.
- (55) If G and H are isomorphic and H and I are isomorphic, then G and I are isomorphic.
- (56) For every strict group G with operators in O holds G and $^{G}/_{\{1\}_{G}}$ are isomorphic.

42

- (57) For every strict group G with operators in O holds $^{G}/_{\Omega_{G}}$ is trivial.
- (58) Let G, H be strict groups with operators in O. If G and H are isomorphic and G is trivial, then H is trivial.
- (59) $^{G}/_{\operatorname{Ker} h}$ and $\operatorname{Im} h$ are isomorphic.
- (60) Let H, F_1 , F_2 be strict stable subgroups of G. Suppose F_1 is a normal stable subgroup of F_2 . Then $H \cap F_1$ is a normal stable subgroup of $H \cap F_2$.
 - 3. Others Theorems on Actions and Groups with Operators

In the sequel E is a set, A is an action of O on E, C is a subset of G, and N_1 is a normal stable subgroup of H_1 .

One can prove the following propositions:

- (61) Ω_E is stable under the action of A.
- (62) $[O, {\mathrm{id}}_E]$ is an action of O on E.
- (63) Let O be a non empty set, E be a set, o be an element of O, and A be an action of O on E. Then $Product(\langle o \rangle, A) = A(o)$.
- (64) Let O be a non empty set, E be a set, F_1 , F_2 be finite sequences of elements of O, and A be an action of O on E. Then $\operatorname{Product}(F_1 \cap F_2, A) = \operatorname{Product}(F_1, A) \cdot \operatorname{Product}(F_2, A)$.
- (65) Let F be a finite sequence of elements of O and Y be a subset of E. If Y is stable under the action of A, then $(\operatorname{Product}(F, A))^{\circ}Y \subseteq Y$.
- (66) Let E be a non empty set, A be an action of O on E, X be a subset of E, and a be an element of E. Suppose X is not empty. Then $a \in$ the stable subset generated by X if and only if there exists a finite sequence F of elements of O and there exists an element x of X such that $(\operatorname{Product}(F, A))(x) = a$.
- (67) For every strict group G there exists a strict group H with operators in O such that G = the groupoid of H.
- (68) The groupoid of H_1 is a strict subgroup of G.
- (69) The groupoid of N is a strict normal subgroup of G.
- (70) If $g_1 \in H_1$, then $(G \cap o)(g_1) \in H_1$.
- (71) Let O be a set, G, H be groups with operators in O, G' be a strict stable subgroup of G, and f be a homomorphism from G to H. Then there exists a strict stable subgroup H' of H such that the carrier of $H' = f^{\circ}$ (the carrier of G').
- (72) If B is empty, then the stable subgroup of $B = \{1\}_G$.
- (73) If B = the carrier of gr(C), then the stable subgroup of C = the stable subgroup of B.

- (74) Let N' be a normal subgroup of G. Suppose N' = the groupoid of N. Then ${}^{G}/_{N'}$ = the groupoid of ${}^{G}/_{N}$ and $\mathbf{1}_{G}/_{N'} = \mathbf{1}_{G}/_{N}$.
- (75) Suppose the carrier of H_1 = the carrier of H_2 . Then the group structure with operators of H_1 = the group structure with operators of H_2 .
- (76) Suppose ${}^{H_1}/{}_{N_1}$ is trivial. Then the group structure with operators of H_1 = the group structure with operators of N_1 .
- (77) If the carrier of H_1 = the carrier of N_1 , then $\frac{H_1}{N_1}$ is trivial.
- (78) Let G, H be groups with operators in O, N be a stable subgroup of G, H' be a strict stable subgroup of H, and f be a homomorphism from Gto H. Suppose N = Ker f. Then there exists a strict stable subgroup G'of G such that
 - (i) the carrier of $G' = f^{-1}$ (the carrier of H'), and
 - (ii) if H' is normal, then N is a normal stable subgroup of G' and G' is normal.
- (79) Let G, H be groups with operators in O, N be a stable subgroup of G, G' be a strict stable subgroup of G, and f be a homomorphism from G to H. Suppose N = Ker f. Then there exists a strict stable subgroup H' of H such that
 - (i) the carrier of $H' = f^{\circ}$ (the carrier of G'),
 - (ii) f^{-1} (the carrier of H') = the carrier of $G' \sqcup N$, and
- (iii) if f is an epimorphism and G' is normal, then H' is normal.
- (80) Let G be a strict group with operators in O, N be a strict normal stable subgroup of G, and H be a strict stable subgroup of $^{G}/_{N}$. Suppose the carrier of G = (the canonical homomorphism onto cosets of $N)^{-1}$ (the carrier of H). Then $H = \Omega_{G/N}$.
- (81) Let G be a strict group with operators in O, N be a strict normal stable subgroup of G, and H be a strict stable subgroup of $^{G}/_{N}$. Suppose the carrier of N = (the canonical homomorphism onto cosets of N)⁻¹(the carrier of H). Then $H = \{\mathbf{1}\}_{G/_{N}}$.
- (82) Let G, H be strict groups with operators in O. If G and H are isomorphic and G is simple, then H is simple.
- (83) Let G be a group with operators in O, H be a stable subgroup of G, F₃ be a finite sequence of elements of the carrier of G, F₄ be a finite sequence of elements of the carrier of H, and I be a finite sequence of elements of Z. If F₃ = F₄ and len F₃ = len I, then ∏(F₃^I) = ∏(F₄^I).
- (84) Let O, E_1, E_2 be sets, A_1 be an action of O on E_1, A_2 be an action of O on E_2 , and F be a finite sequence of elements of O. Suppose that
 - (i) $E_1 \subseteq E_2$, and
 - (ii) for every element o of O and for every function f_1 from E_1 into E_1 and for every function f_2 from E_2 into E_2 such that $f_1 = A_1(o)$ and $f_2 = A_2(o)$

holds $f_1 = f_2 \upharpoonright E_1$. Then Product $(F, A_1) = \text{Product}(F, A_2) \upharpoonright E_1$.

- (85) Let N_1 , N_2 be strict stable subgroups of H_1 and N'_1 , N'_2 be strict stable subgroups of G. If $N_1 = N'_1$ and $N_2 = N'_2$, then $N'_1 \cdot N'_2 = N_1 \cdot N_2$.
- (86) Let N_1 , N_2 be strict stable subgroups of H_1 and N'_1 , N'_2 be strict stable subgroups of G. If $N_1 = N'_1$ and $N_2 = N'_2$, then $N'_1 \sqcup N'_2 = N_1 \sqcup N_2$.
- (87) Let N_1 , N_2 be strict stable subgroups of G. Suppose N_1 is a normal stable subgroup of H_1 and N_2 is a normal stable subgroup of H_1 . Then $N_1 \sqcup N_2$ is a normal stable subgroup of H_1 .
- (88) Let f be a homomorphism from G to H and g be a homomorphism from H to I. Then the carrier of $\text{Ker}(g \cdot f) = f^{-1}$ (the carrier of Ker g).
- (89) Let G' be a stable subgroup of G, H' be a stable subgroup of H, and f be a homomorphism from G to H. Suppose the carrier of $H' = f^{\circ}$ (the carrier of G') or the carrier of $G' = f^{-1}$ (the carrier of H'). Then $f \upharpoonright$ the carrier of G' is a homomorphism from G' to H'.
- (90) Let G, H be strict groups with operators in O, N, L, G' be strict stable subgroups of G, and f be a homomorphism from G to H. Suppose N =Ker f and L is a strict normal stable subgroup of G'. Then
 - (i) $L \sqcup G' \cap N$ is a normal stable subgroup of G',
- (ii) $L \sqcup N$ is a normal stable subgroup of $G' \sqcup N$, and
- (iii) for every strict normal stable subgroup N_1 of $G' \sqcup N$ and for every strict normal stable subgroup N_2 of G' such that $N_1 = L \sqcup N$ and $N_2 = L \sqcup G' \cap N$ holds $(G' \sqcup N)/_{N_1}$ and $G'/_{N_2}$ are isomorphic.

4. The Zassenhaus Butterfly Lemma

The following propositions are true:

- (91) Let H, K, H', K' be strict stable subgroups of G, J_1 be a normal stable subgroup of $H' \sqcup H \cap K$, and H_4 be a normal stable subgroup of $H \cap K$. Suppose H' is a normal stable subgroup of H and K' is a normal stable subgroup of K and $J_1 = H' \sqcup H \cap K'$ and $H_4 = H' \cap K \sqcup K' \cap H$. Then $(H' \sqcup H \cap K)/J_1$ and $(H \cap K)/H_4$ are isomorphic.
- (92) Let H, K, H', K' be strict stable subgroups of G. Suppose H' is a normal stable subgroup of H and K' is a normal stable subgroup of K. Then $H' \sqcup H \cap K'$ is a normal stable subgroup of $H' \sqcup H \cap K$.
- (93) Let H, K, H', K' be strict stable subgroups of G, J_1 be a normal stable subgroup of $H' \sqcup H \cap K$, and J_2 be a normal stable subgroup of $K' \sqcup K \cap H$. Suppose $J_1 = H' \sqcup H \cap K'$ and $J_2 = K' \sqcup K \cap H'$ and H' is a normal stable subgroup of H and K' is a normal stable subgroup of K. Then $(H' \sqcup H \cap K)/J_1$ and $(K' \sqcup K \cap H)/J_2$ are isomorphic.

5. Composition Series

Let O be a set, let G be a group with operators in O, and let I_1 be a finite sequence of elements of the stable subgroups of G. We say that I_1 is composition series if and only if the conditions (Def. 31) are satisfied.

- (Def. 31)(i) $I_1(1) = \Omega_G$,
 - (ii) $I_1(\text{len }I_1) = \{\mathbf{1}\}_G$, and
 - (iii) for every natural number i such that $i \in \text{dom } I_1$ and $i + 1 \in \text{dom } I_1$ and for all stable subgroups H_1 , H_2 of G such that $H_1 = I_1(i)$ and $H_2 = I_1(i+1)$ holds H_2 is a normal stable subgroup of H_1 .

Let O be a set and let G be a group with operators in O. One can verify that there exists a finite sequence of elements of the stable subgroups of G which is composition series.

Let O be a set and let G be a group with operators in O. A composition series of G is a composition series finite sequence of elements of the stable subgroups of G.

Let O be a set, let G be a group with operators in O, and let s_1 , s_2 be composition series of G. We say that s_1 is finer than s_2 if and only if:

(Def. 32) There exists a set x such that $x \subseteq \text{dom } s_1$ and $s_2 = s_1 \cdot \text{Sgm } x$.

Let us note that the predicate s_1 is finer than s_2 is reflexive.

Let O be a set, let G be a group with operators in O, and let I_1 be a composition series of G. We say that I_1 is strictly decreasing if and only if the condition (Def. 33) is satisfied.

(Def. 33) Let *i* be a natural number. Suppose $i \in \text{dom } I_1$ and $i + 1 \in \text{dom } I_1$. Let H be a stable subgroup of G and N be a normal stable subgroup of H. If $H = I_1(i)$ and $N = I_1(i+1)$, then H/N is not trivial.

Let O be a set, let G be a group with operators in O, and let I_1 be a composition series of G. We say that I_1 is Jordan-Hölder if and only if the conditions (Def. 34) are satisfied.

- (Def. 34)(i) I_1 is strictly decreasing, and
 - (ii) it is not true that there exists a composition series s of G such that $s \neq I_1$ and s is strictly decreasing and finer than I_1 .

Let O be a set, let G_1 , G_2 be groups with operators in O, let s_1 be a composition series of G_1 , and let s_2 be a composition series of G_2 . We say that s_1 is equivalent with s_2 if and only if the conditions (Def. 35) are satisfied.

(Def. 35)(i) $\ln s_1 = \ln s_2$, and

(ii) for every natural number n such that $n + 1 = \operatorname{len} s_1$ there exists a permutation p of $\operatorname{Seg} n$ such that for every stable subgroup H_1 of G_1 and for every stable subgroup H_2 of G_2 and for every normal stable subgroup N_1 of H_1 and for every normal stable subgroup N_2 of H_2 and for all natural numbers i, j such that $1 \leq i$ and $i \leq n$ and j = p(i) and $H_1 = s_1(i)$ and

 $H_2 = s_2(j)$ and $N_1 = s_1(i+1)$ and $N_2 = s_2(j+1)$ holds H_1/N_1 and H_2/N_2 are isomorphic.

Let O be a set, let G be a group with operators in O, and let s be a composition series of G. The series of quotients of s yielding a finite sequence is defined as follows:

- (Def. 36)(i) len s = len (the series of quotients of s) + 1 and for every natural number i such that $i \in$ dom (the series of quotients of s) and for every stable subgroup H of G and for every normal stable subgroup N of Hsuch that H = s(i) and N = s(i + 1) holds (the series of quotients of s) $(i) = {}^{H}/{}_{N}$ if len s > 1,
 - (ii) the series of quotients of $s = \emptyset$, otherwise.

Let O be a set, let f_1 , f_2 be finite sequences, and let p be a permutation of dom f_1 . We say that f_1 and f_2 are equivalent under p in O if and only if the conditions (Def. 37) are satisfied.

(Def. 37)(i) $\ln f_1 = \ln f_2$, and

(ii) for all groups H_1 , H_2 with operators in O and for all natural numbers i, j such that $i \in \text{dom } f_1$ and $j = p^{-1}(i)$ and $H_1 = f_1(i)$ and $H_2 = f_2(j)$ holds H_1 and H_2 are isomorphic.

For simplicity, we follow the rules: y is a set, s_1 , s'_1 , s_2 , s'_2 are composition series of G, f_3 is a finite sequence of elements of the stable subgroups of G, f_1 , f_2 are finite sequences, and i, j, n are natural numbers.

We now state a number of propositions:

- (94) If $i \in \text{dom } s_1$ and $i + 1 \in \text{dom } s_1$ and $s_1(i) = s_1(i+1)$ and $f_3 = (s_1)_{|i|}$, then f_3 is composition series.
- (95) If s_1 is finer than s_2 , then there exists n such that $\operatorname{len} s_1 = \operatorname{len} s_2 + n$.
- (96) If len $s_2 = \text{len } s_1$ and s_2 is finer than s_1 , then $s_1 = s_2$.
- (97) If s_1 is not empty and s_2 is finer than s_1 , then s_2 is not empty.
- (98) If s_1 is finer than s_2 and Jordan-Hölder and s_2 is Jordan-Hölder, then $s_1 = s_2$.
- (99) If $i \in \text{dom} s_1$ and $i + 1 \in \text{dom} s_1$ and $s_1(i) = s_1(i+1)$ and $s'_1 = (s_1)_{|i|}$ and s_2 is Jordan-Hölder and s_1 is finer than s_2 , then s'_1 is finer than s_2 .
- (100) Suppose len $s_1 > 1$ and $s_2 \neq s_1$ and s_2 is strictly decreasing and finer than s_1 . Then there exist i, j such that $i \in \text{dom } s_1$ and $i \in \text{dom } s_2$ and $i+1 \in \text{dom } s_1$ and $i+1 \in \text{dom } s_2$ and $j \in \text{dom } s_2$ and i+1 < j and $s_1(i) = s_2(i)$ and $s_1(i+1) \neq s_2(i+1)$ and $s_1(i+1) = s_2(j)$.
- (101) If $i \in \text{dom } s_1$ and $j \in \text{dom } s_1$ and $i \leq j$ and $H_1 = s_1(i)$ and $H_2 = s_1(j)$, then H_2 is a stable subgroup of H_1 .
- (102) If $y \in \operatorname{rng}(\text{the series of quotients of } s_1)$, then y is a strict group with operators in O.

- (103) Suppose $i \in \text{dom}$ (the series of quotients of s_1) and for every H such that $H = (\text{the series of quotients of } s_1)(i)$ holds H is trivial. Then $i \in \text{dom } s_1$ and $i + 1 \in \text{dom } s_1$ and $s_1(i) = s_1(i + 1)$.
- (104) Suppose $i \in \text{dom } s_1$ and $i + 1 \in \text{dom } s_1$ and $s_1(i) = s_1(i + 1)$ and $s_2 = (s_1)_{\mid i}$. Then the series of quotients of $s_2 = (\text{the series of quotients of } s_1)_{\mid i}$.
- (105) Suppose f_1 = the series of quotients of s_1 and $i \in \text{dom } f_1$ and for every H such that $H = f_1(i)$ holds H is trivial. Then $(s_1)_{\mid i}$ is a composition series of G and for every s_2 such that $s_2 = (s_1)_{\mid i}$ holds the series of quotients of $s_2 = (f_1)_{\mid i}$.
- (106) Suppose that
 - (i) f_1 = the series of quotients of s_1 ,
 - (ii) $f_2 =$ the series of quotients of s_2 ,
 - (iii) $i \in \operatorname{dom} f_1$,
 - (iv) for every H such that $H = f_1(i)$ holds H is trivial, and
 - (v) there exists a permutation p of dom f_1 such that f_1 and f_2 are equivalent under p in O and $j = p^{-1}(i)$.

Then there exists a permutation p' of dom $((f_1)_{\uparrow i})$ such that $(f_1)_{\uparrow i}$ and $(f_2)_{\uparrow j}$ are equivalent under p' in O.

- (107) Let G_1 , G_2 be groups with operators in O, s_1 be a composition series of G_1 , and s_2 be a composition series of G_2 . If s_1 is empty and s_2 is empty, then s_1 is equivalent with s_2 .
- (108) Let G_1 , G_2 be groups with operators in O, s_1 be a composition series of G_1 , and s_2 be a composition series of G_2 . Suppose s_1 is not empty and s_2 is not empty. Then s_1 is equivalent with s_2 if and only if there exists a permutation p of dom (the series of quotients of s_1) such that the series of quotients of s_1 and the series of quotients of s_2 are equivalent under p in O.
- (109) Suppose s_1 is finer than s_2 and s_2 is Jordan-Hölder and len $s_1 > \text{len } s_2$. Then there exists i such that $i \in \text{dom}$ (the series of quotients of s_1) and for every H such that $H = (\text{the series of quotients of } s_1)(i)$ holds H is trivial.
- (110) Suppose len $s_1 > 1$. Then s_1 is Jordan-Hölder if and only if for every i such that $i \in \text{dom}$ (the series of quotients of s_1) holds (the series of quotients of s_1)(i) is a strict simple group with operators in O.
- (111) Suppose $1 \le i$ and $i \le \text{len } s_1 1$. Then $s_1(i)$ is a strict stable subgroup of G and $s_1(i+1)$ is a strict stable subgroup of G.
- (112) If $1 \le i$ and $i \le \operatorname{len} s_1 1$ and $H_1 = s_1(i)$ and $H_2 = s_1(i+1)$, then H_2 is a normal stable subgroup of H_1 .
- (113) s_1 is equivalent with s_1 .

48

- (114) If $\operatorname{len} s_1 \leq 1$ or $\operatorname{len} s_2 \leq 1$ and if $\operatorname{len} s_1 \leq \operatorname{len} s_2$, then s_2 is finer than s_1 .
- (115) If s_1 is equivalent with s_2 and Jordan-Hölder, then s_2 is Jordan-Hölder.

6. The Schreier Refinement Theorem

Let us consider O, G, s_1, s_2 . Let us assume that len $s_1 > 1$ and len $s_2 > 1$. The Schreier series of s_1 and s_2 yielding a composition series of G is defined by the condition (Def. 38).

- (Def. 38) Let k, i, j be natural numbers and H_1, H_2, H_3 be stable subgroups of G. Then
 - (i) if $k = (i-1) \cdot (\operatorname{len} s_2 1) + j$ and $1 \le i$ and $i \le \operatorname{len} s_1 1$ and $1 \le j$ and $j \le \operatorname{len} s_2 - 1$ and $H_1 = s_1(i+1)$ and $H_2 = s_1(i)$ and $H_3 = s_2(j)$, then (the Schreier series of s_1 and $s_2(k) = H_1 \sqcup H_2 \cap H_3$,
 - (ii) if $k = (\operatorname{len} s_1 1) \cdot (\operatorname{len} s_2 1) + 1$, then (the Schreier series of s_1 and $s_2)(k) = \{\mathbf{1}\}_G$, and
 - (iii) len (the Schreier series of s_1 and s_2) = (len $s_1 1$) \cdot (len $s_2 1$) + 1. Next we state three propositions:
 - (116) If len $s_1 > 1$ and len $s_2 > 1$, then the Schreier series of s_1 and s_2 is finer than s_1 .
 - (117) If len $s_1 > 1$ and len $s_2 > 1$, then the Schreier series of s_1 and s_2 is equivalent with the Schreier series of s_2 and s_1 .
 - (118) There exist s'_1 , s'_2 such that s'_1 is finer than s_1 and s'_2 is finer than s_2 and s'_1 is equivalent with s'_2 .

7. THE JORDAN-HÖLDER THEOREM

One can prove the following proposition

(119) If s_1 is Jordan-Hölder and s_2 is Jordan-Hölder, then s_1 is equivalent with s_2 .

8. Appendix

Next we state several propositions:

- (120) For all binary relations P, R holds $P = \operatorname{rng} P \upharpoonright R$ iff $P^{\sim} = R^{\sim} \upharpoonright \operatorname{dom}(P^{\sim})$.
- (121) For every set X and for all binary relations P, R holds $P \cdot (R \upharpoonright X) = (X \upharpoonright P) \cdot R$.
- (122) Let *n* be a natural number, *X* be a set, and *f* be a partial function from \mathbb{R} to \mathbb{R} . If $X \subseteq \text{Seg } n$ and $X \subseteq \text{dom } f$ and *f* is increasing on *X* and $f^{\circ}X \subseteq \mathbb{N} \setminus \{0\}$, then $\text{Sgm}(f^{\circ}X) = f \cdot \text{Sgm } X$.

- (123) Let y be a set and i, n be natural numbers. Suppose $y \subseteq \text{Seg}(n+1)$ and $i \in \text{Seg}(n+1)$ and $i \notin y$. Then there exists x such that Sgm x = $(\operatorname{Sgm}(\operatorname{Seg}(n+1) \setminus \{i\}))^{-1} \cdot \operatorname{Sgm} y \text{ and } x \subseteq \operatorname{Seg} n.$
- (124) Let D be a non empty set, f be a finite sequence of elements of D, p be an element of D, and n be an element of N. If $n \in \text{dom } f$, then $f = (\operatorname{Ins}(f, n, p))_{\restriction n+1}.$
- (125) Let G, H be groups, F_1 be a finite sequence of elements of the carrier of G, F_2 be a finite sequence of elements of the carrier of H, I be a finite sequence of elements of \mathbb{Z} , and f be a homomorphism from G to H. Suppose for every element k of N such that $k \in \text{Seg len } F_1$ holds $F_2(k) =$ $f(F_1(k))$ and len $F_1 = \operatorname{len} I$ and len $F_2 = \operatorname{len} I$. Then $f(\prod (F_1^I)) = \prod (F_2^I)$.

References

- Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2]Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe*matics*, 1(1):41–46, 1990.
- Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-[7]65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, [8] 1990.
- Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990
- [11] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [13] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Math*ematics*, 2(**5**):711–717, 1991.
- Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, [14]1990.[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [16] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- 1990.[18]Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [19]Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
- [20] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [21] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, [22]1(5):855-864, 1990.
- [23] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41–47, 1991.
- [24] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

50

- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
 [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received April 20, 2007