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Summary. In the article, I introduce the notions of the compactification

of topological spaces and the Alexandroff one point compactification. Some prop-

erties of the locally compact spaces and one point compactification are proved.
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The articles [15], [5], [16], [17], [4], [18], [1], [8], [14], [13], [19], [7], [9], [10], [6],

[12], [2], [3], and [11] provide the notation and terminology for this paper.

Let X be a topological space and let P be a family of subsets of X. We say

that P is compact if and only if:

(Def. 1) For every subset U of X such that U ∈ P holds U is compact.

Let X be a topological space and let U be a subset of X. We say that U is

relatively-compact if and only if:

(Def. 2) U is compact.

Let X be a topological space. Note that ∅X is relatively-compact.

Let X be a topological space. Observe that there exists a subset of X which

is relatively-compact.

Let X be a topological space and let U be a relatively-compact subset of X.

Observe that U is compact.

Let X be a topological space and let U be a subset of X. We introduce U

is pre-compact as a synonym of U is relatively-compact.

Let X be a non empty topological space. We introduce X is liminally-

compact as a synonym of X is locally-compact.

Let X be a non empty topological space. Let us observe that X is liminally-

compact if and only if:

(Def. 3) For every point x of X holds there exists a generalized basis of x which

is compact.
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Let X be a non empty topological space. We say that X is locally-relatively-

compact if and only if:

(Def. 4) For every point x of X holds there exists a neighbourhood of x which is

relatively-compact.

LetX be a non empty topological space. We say thatX is locally-closed/com-

pact if and only if:

(Def. 5) For every point x of X holds there exists a neighbourhood of x which is

closed and compact.

Let X be a non empty topological space. We say that X is locally-compact

if and only if:

(Def. 6) For every point x of X holds there exists a neighbourhood of x which is

compact.

Let us observe that every non empty topological space which is liminally-

compact is also locally-compact.

Let us note that every non empty T3 topological space which is locally-

compact is also liminally-compact.

One can verify that every non empty topological space which is locally-

relatively-compact is also locally-closed/compact.

Let us observe that every non empty topological space which is locally-

closed/compact is also locally-relatively-compact.

Let us observe that every non empty topological space which is locally-

relatively-compact is also locally-compact.

One can verify that every non empty Hausdorff topological space which is

locally-compact is also locally-relatively-compact.

One can check that every non empty topological space which is compact is

also locally-compact.

Let us observe that every non empty topological space which is discrete is

also locally-compact.

Let us mention that there exists a topological space which is discrete and

non empty.

Let X be a locally-compact non empty topological space and let C be a

closed non empty subset of X. Note that X�C is locally-compact.

Let X be a locally-compact non empty T3 topological space and let P be an

open non empty subset of X. Note that X�P is locally-compact.

One can prove the following two propositions:

(1) Let X be a Hausdorff non empty topological space and E be a non empty

subset of X. If X�E is dense and locally-compact, then X�E is open.

(2) For all topological spaces X, Y and for every subset A of X such that

ΩX ⊆ ΩY holds (incl(X,Y ))◦A = A.
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Let X, Y be topological spaces and let f be a function from X into Y . We

say that f is embedding if and only if:

(Def. 7) There exists a function h from X into Y � rng f such that h = f and h

is a homeomorphism.

The following proposition is true

(3) Let X, Y be topological spaces. Suppose ΩX ⊆ ΩY and there exists

a subset X1 of Y such that X1 = ΩX and the topology of Y �X1 = the

topology of X. Then incl(X,Y ) is embedding.

Let X be a topological space, let Y be a topological space, and let h be a

function from X into Y . We say that h is compactification if and only if:

(Def. 8) h is embedding and Y is compact and h◦(ΩX) is dense.

Let X be a topological space and let Y be a topological space. Note that

every function from X into Y which is compactification is also embedding.

Let X be a topological structure. The one-point compactification of X yields

a strict topological structure and is defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of the one-point compactification of X = succ(ΩX), and

(ii) the topology of the one-point compactification of X = (the topology of

X)∪{U ∪{ΩX};U ranges over subsets of X: U is open ∧ U c is compact}.
Let X be a topological structure. Note that the one-point compactification

of X is non empty.

We now state the proposition

(4) For every topological structure X holds

ΩX ⊆ Ωthe one-point compactification of X .

Let X be a topological space. Note that the one-point compactification of

X is topological space-like.

Next we state the proposition

(5) Every topological structure X is a subspace of the one-point compacti-

fication of X.

Let X be a topological space. One can verify that the one-point compacti-

fication of X is compact.

One can prove the following propositions:

(6) Let X be a non empty topological space. Then X is Hausdorff and

locally-compact if and only if the one-point compactification of X is Haus-

dorff.

(7) Let X be a non empty topological space. Then X is non compact if

and only if there exists a subset X ′ of the one-point compactification of

X such that X ′ = ΩX and X ′ is dense.

(8) Let X be a non empty topological space. Suppose X is non compact.

Then incl(X, the one-point compactification of X) is compactification.
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