Linear Map of Matrices

Karol Pąk Institute of Computer Science University of Białystok Poland

Summary. The paper is concerned with a generalization of concepts introduced in [13], i.e. introduced are matrices of linear transformations over a finitedimensional vector space. Introduced are linear transformations over a finitedimensional vector space depending on a given matrix of the transformation. Finally, I prove that the rank of linear transformations over a finite-dimensional vector space is the same as the rank of the matrix of that transformation.

MML identifier: MATRLIN2, version: 7.9.03 4.104.1021

The notation and terminology used here are introduced in the following papers: [24], [2], [3], [9], [25], [6], [8], [7], [4], [23], [19], [12], [10], [27], [28], [26], [22], [20], [18], [29], [5], [15], [13], [17], [11], [14], [21], [1], and [16].

1. Preliminaries

We adopt the following rules: i, j, m, n are natural numbers, K is a field, and a is an element of K.

One can prove the following propositions:

- (1) Let V be a vector space over K, W_1 , W_2 , W_{12} be subspaces of V, and U_1 , U_2 be subspaces of W_{12} . If $U_1 = W_1$ and $U_2 = W_2$, then $W_1 \cap W_2 = U_1 \cap U_2$ and $W_1 + W_2 = U_1 + U_2$.
- (2) Let V be a vector space over K and W_1 , W_2 be subspaces of V. Suppose $W_1 \cap W_2 = \mathbf{0}_V$. Let B_1 be a linearly independent subset of W_1 and B_2 be a linearly independent subset of W_2 . Then $B_1 \cup B_2$ is a linearly independent subset of $W_1 + W_2$.

C 2008 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

KAROL PĄK

- (3) Let V be a vector space over K and W_1 , W_2 be subspaces of V. Suppose $W_1 \cap W_2 = \mathbf{0}_V$. Let B_1 be a basis of W_1 and B_2 be a basis of W_2 . Then $B_1 \cup B_2$ is a basis of $W_1 + W_2$.
- (4) For every finite dimensional vector space V over K holds every ordered basis of Ω_V is an ordered basis of V.
- (5) Let V_1 be a vector space over K and A be a finite subset of V_1 . If $\dim(\operatorname{Lin}(A)) = \operatorname{card} A$, then A is linearly independent.
- (6) For every vector space V over K and for every finite subset A of V holds $\dim(\operatorname{Lin}(A)) \leq \operatorname{card} A$.

2. More on the Product of Finite Sequence of Scalars and Vectors

For simplicity, we follow the rules: V_1 , V_2 , V_3 are finite dimensional vector spaces over K, f is a function from V_1 into V_2 , b_1 , b'_1 are ordered bases of V_1 , B_1 is a finite sequence of elements of V_1 , b_2 is an ordered basis of V_2 , B_2 is a finite sequence of elements of V_2 , B_3 is a finite sequence of elements of V_3 , v_1 , w_1 are elements of V_1 , R, R_1 , R_2 are finite sequences of elements of V_1 , and p, p_1 , p_2 are finite sequences of elements of K.

We now state a number of propositions:

- (7) $\operatorname{lmlt}(p_1 + p_2, R) = \operatorname{lmlt}(p_1, R) + \operatorname{lmlt}(p_2, R).$
- (8) $\operatorname{lmlt}(p, R_1 + R_2) = \operatorname{lmlt}(p, R_1) + \operatorname{lmlt}(p, R_2).$
- (9) If $\operatorname{len} p_1 = \operatorname{len} R_1$ and $\operatorname{len} p_2 = \operatorname{len} R_2$, then $\operatorname{lmlt}(p_1 \cap p_2, R_1 \cap R_2) = (\operatorname{lmlt}(p_1, R_1)) \cap \operatorname{lmlt}(p_2, R_2).$
- (10) If len $R_1 = \text{len } R_2$, then $\sum (R_1 + R_2) = (\sum R_1) + \sum R_2$.
- (11) $\sum \text{lmlt}(\text{len } R \mapsto a, R) = a \cdot \sum R.$
- (12) $\sum \operatorname{lmlt}(p, \operatorname{len} p \mapsto v_1) = (\sum p) \cdot v_1.$
- (13) $\sum \operatorname{lmlt}(a \cdot p, R) = a \cdot \sum \operatorname{lmlt}(p, R).$
- (14) Let B_1 be a finite sequence of elements of V_1 , W_1 be a subspace of V_1 , and B_2 be a finite sequence of elements of W_1 . If $B_1 = B_2$, then $\operatorname{lmlt}(p, B_1) = \operatorname{lmlt}(p, B_2)$.
- (15) Let B_1 be a finite sequence of elements of V_1 , W_1 be a subspace of V_1 , and B_2 be a finite sequence of elements of W_1 . If $B_1 = B_2$, then $\sum B_1 = \sum B_2$.
- (16) If $i \in \text{dom } R$, then $\sum \text{lmlt}(\text{Line}(I_K^{\text{len } R \times \text{len } R}, i), R) = R_i$.

3. More on the Decomposition of a Vector in a Basis

We now state a number of propositions:

(17) $v_1 + w_1 \to b_1 = (v_1 \to b_1) + (w_1 \to b_1).$

270

- (18) $a \cdot v_1 \rightarrow b_1 = a \cdot (v_1 \rightarrow b_1).$
- (19) If $i \in \operatorname{dom} b_1$, then $(b_1)_i \to b_1 = \operatorname{Line}(I_K^{\operatorname{len} b_1 \times \operatorname{len} b_1}, i)$.
- $(20) \quad 0_{(V_1)} \to b_1 = \operatorname{len} b_1 \mapsto 0_K.$
- (21) $\operatorname{len} b_1 = \dim(V_1).$
- (22)(i) $\operatorname{rng}(b_1 \upharpoonright m)$ is a linearly independent subset of V_1 , and
- (ii) for every subset A of V_1 such that $A = \operatorname{rng}(b_1 \upharpoonright m)$ holds $b_1 \upharpoonright m$ is an ordered basis of $\operatorname{Lin}(A)$.
- (23)(i) $\operatorname{rng}((b_1)_{\mid m})$ is a linearly independent subset of V_1 , and
- (ii) for every subset A of V_1 such that $A = \operatorname{rng}((b_1)_{|m|})$ holds $(b_1)_{|m|}$ is an ordered basis of $\operatorname{Lin}(A)$.
- (24) Let W_1 , W_2 be subspaces of V_1 . Suppose $W_1 \cap W_2 = \mathbf{0}_{(V_1)}$. Let b_1 be an ordered basis of W_1 , b_2 be an ordered basis of W_2 , and b be an ordered basis of $W_1 + W_2$. Suppose $b = b_1 \cap b_2$. Let v, v_1, v_2 be vectors of $W_1 + W_2$, w_1 be a vector of W_1 , and w_2 be a vector of W_2 . If $v = v_1 + v_2$ and $v_1 = w_1$ and $v_2 = w_2$, then $v \to b = (w_1 \to b_1) \cap (w_2 \to b_2)$.
- (25) Let W_1 be a subspace of V_1 . Suppose $W_1 = \Omega_{(V_1)}$. Let w be a vector of W_1 , v be a vector of V_1 , and w_1 be an ordered basis of W_1 . If v = w and $b_1 = w_1$, then $v \to b_1 = w \to w_1$.
- (26) Let W_1 , W_2 be subspaces of V_1 . Suppose $W_1 \cap W_2 = \mathbf{0}_{(V_1)}$. Let w_1 be an ordered basis of W_1 and w_2 be an ordered basis of W_2 . Then $w_1 \cap w_2$ is an ordered basis of $W_1 + W_2$.

4. Properties of Matrices of Linear Transformations

Let us consider K, V_1 , V_2 , f, B_1 , b_2 . Then AutMt (f, B_1, b_2) is a matrix over K of dimension len $B_1 \times \text{len } b_2$.

Let S be a 1-sorted structure and let R be a binary relation. The functor $R \upharpoonright S$ is defined as follows:

(Def. 1) $R \upharpoonright S = R \upharpoonright$ the carrier of S.

The following proposition is true

(27) Let f be a linear transformation from V_1 to V_2 , W_1 , W_2 be subspaces of V_1 , and U_1 , U_2 be subspaces of V_2 . Suppose if dim $(W_1) = 0$, then dim $(U_1) = 0$ and if dim $(W_2) = 0$, then dim $(U_2) = 0$ and V_2 is the direct sum of U_1 and U_2 . Let f_1 be a linear transformation from W_1 to U_1 and f_2 be a linear transformation from W_2 to U_2 . Suppose $f_1 = f \upharpoonright W_1$ and $f_2 = f \upharpoonright W_2$. Let w_1 be an ordered basis of W_1 , w_2 be an ordered basis of W_2 , u_1 be an ordered basis of U_1 , and u_2 be an ordered basis of U_2 . Suppose $w_1 \cap w_2 = b_1$ and $u_1 \cap u_2 = b_2$. Then AutMt $(f, b_1, b_2) =$ the 0_K -block diagonal of $\langle AutMt(f_1, w_1, u_1), AutMt(f_2, w_2, u_2) \rangle$. Let us consider K, V_1 , V_2 , let f be a function from V_1 into V_2 , let B_1 be a finite sequence of elements of V_1 , and let b_2 be an ordered basis of V_2 . Let us assume that len $B_1 = \text{len } b_2$. The functor $\text{AutEqMt}(f, B_1, b_2)$ yielding a matrix over K of dimension len $B_1 \times \text{len } B_1$ is defined by:

(Def. 2) AutEqMt (f, B_1, b_2) = AutMt (f, B_1, b_2) .

The following propositions are true:

- (28) AutMt(id_(V1), $b_1, b_1) = I_K^{\operatorname{len} b_1 \times \operatorname{len} b_1}$.
- (29) AutEqMt $(id_{(V_1)}, b_1, b'_1)$ is invertible and AutEqMt $(id_{(V_1)}, b'_1, b_1) = (AutEqMt(id_{(V_1)}, b_1, b'_1))^{\sim}$.
- (30) If len $p_1 = \text{len } p_2$ and len $p_1 = \text{len } B_1$ and len $p_1 > 0$ and $j \in \text{dom } b_1$ and for every i such that $i \in \text{dom } p_2$ holds $p_2(i) = ((B_1)_i \to b_1)(j)$, then $p_1 \cdot p_2 = (\sum \text{lmlt}(p_1, B_1) \to b_1)(j)$.
- (31) If len $b_1 > 0$ and f is linear, then LineVec2Mx $(v_1 \rightarrow b_1) \cdot$ AutMt $(f, b_1, b_2) =$ LineVec2Mx $(f(v_1) \rightarrow b_2)$.

5. Linear Transformations of Matrices

Let us consider K, V_1 , V_2 , b_1 , B_2 and let M be a matrix over K of dimension len $b_1 \times \text{len } B_2$. The functor Mx2Tran (M, b_1, B_2) yielding a function from V_1 into V_2 is defined by:

(Def. 3) For every vector v of V_1 holds $(Mx2Tran(M, b_1, B_2))(v) = \sum lmlt(Line(LineVec2Mx(v \to b_1) \cdot M, 1), B_2).$

Next we state two propositions:

- (32) For every matrix M over K of dimension $\operatorname{len} b_1 \times \operatorname{len} b_2$ such that $\operatorname{len} b_1 > 0$ holds $\operatorname{LineVec2Mx}((\operatorname{Mx2Tran}(M, b_1, b_2))(v_1) \to b_2) = \operatorname{LineVec2Mx}(v_1 \to b_1) \cdot M.$
- (33) For every matrix M over K of dimension $\operatorname{len} b_1 \times \operatorname{len} B_2$ such that $\operatorname{len} b_1 = 0$ holds $(\operatorname{Mx2Tran}(M, b_1, B_2))(v_1) = 0_{(V_2)}$.

Let us consider K, V_1 , V_2 , b_1 , B_2 and let M be a matrix over K of dimension len $b_1 \times \text{len } B_2$. Then Mx2Tran (M, b_1, B_2) is a linear transformation from V_1 to V_2 .

Next we state three propositions:

- (34) If f is linear, then $Mx2Tran(AutMt(f, b_1, b_2), b_1, b_2) = f$.
- (35) For all matrices A, B over K such that $i \in \text{dom } A$ and width A = len B holds $\text{LineVec2Mx Line}(A, i) \cdot B = \text{LineVec2Mx Line}(A \cdot B, i)$.
- (36) For every matrix M over K of dimension len $b_1 \times \text{len } b_2$ holds AutMt(Mx2Tran $(M, b_1, b_2), b_1, b_2$) = M.

Let us consider n, m, K, let A be a matrix over K of dimension $n \times m$, and let B be a matrix over K. Then A + B is a matrix over K of dimension $n \times m$.

The following propositions are true:

- (37) For all matrices A, B over K of dimension $\operatorname{len} b_1 \times \operatorname{len} B_2$ holds Mx2Tran $(A + B, b_1, B_2) = \operatorname{Mx2Tran}(A, b_1, B_2) + \operatorname{Mx2Tran}(B, b_1, B_2).$
- (38) For every matrix A over K of dimension len $b_1 \times \text{len } B_2$ holds $a \cdot \text{Mx2Tran}(A, b_1, B_2) = \text{Mx2Tran}(a \cdot A, b_1, B_2).$
- (39) For all matrices A, B over K of dimension $\operatorname{len} b_1 \times \operatorname{len} b_2$ such that $\operatorname{Mx2Tran}(A, b_1, b_2) = \operatorname{Mx2Tran}(B, b_1, b_2)$ holds A = B.
- (40) Let A be a matrix over K of dimension $\operatorname{len} b_1 \times \operatorname{len} b_2$ and B be a matrix over K of dimension $\operatorname{len} b_2 \times \operatorname{len} B_3$. Suppose width $A = \operatorname{len} B$. Let A_1 be a matrix over K of dimension $\operatorname{len} b_1 \times \operatorname{len} B_3$. If $A_1 = A \cdot B$, then $\operatorname{Mx2Tran}(A_1, b_1, B_3) = \operatorname{Mx2Tran}(B, b_2, B_3) \cdot \operatorname{Mx2Tran}(A, b_1, b_2)$.
- (41) Let A be a matrix over K of dimension len $b_1 \times \text{len} b_2$. Suppose len $b_1 > 0$ and len $b_2 > 0$. Then $v_1 \in \text{ker Mx2Tran}(A, b_1, b_2)$ if and only if $v_1 \to b_1 \in$ the space of solutions of A^{T} .
- (42) V_1 is trivial iff dim $(V_1) = 0$.
- (43) Let V_1 , V_2 be vector spaces over K and f be a linear transformation from V_1 to V_2 . Then f is one-to-one if and only if ker $f = \mathbf{0}_{(V_1)}$.

Let us consider K and let V_1 be a vector space over K. Then $id_{(V_1)}$ is a linear transformation from V_1 to V_1 .

Let us consider K, let V_1 , V_2 be vector spaces over K, and let f, g be linear transformations from V_1 to V_2 . Then f + g is a linear transformation from V_1 to V_2 .

Let us consider K, let V_1 , V_2 be vector spaces over K, let f be a linear transformation from V_1 to V_2 , and let us consider a. Then $a \cdot f$ is a linear transformation from V_1 to V_2 .

Let us consider K, let V_1 , V_2 , V_3 be vector spaces over K, let f_3 be a linear transformation from V_1 to V_2 , and let f_4 be a linear transformation from V_2 to V_3 . Then $f_4 \cdot f_3$ is a linear transformation from V_1 to V_3 .

One can prove the following propositions:

- (44) For every matrix A over K of dimension $\operatorname{len} b_1 \times \operatorname{len} b_2$ such that $\operatorname{rk}(A) = \operatorname{len} b_1$ holds Mx2Tran (A, b_1, b_2) is one-to-one.
- (45) MX2FinS $(I_K^{n \times n})$ is an ordered basis of the *n*-dimension vector space over K.
- (46) Let M be an ordered basis of the len b_2 -dimension vector space over K. Suppose $M = MX2FinS(I_K^{len b_2 \times len b_2})$. Let v_1 be a vector of the len b_2 -dimension vector space over K. Then $v_1 \to M = v_1$.
- (47) Let M be an ordered basis of the len b_2 -dimension vector space over K. Suppose $M = \text{MX2FinS}(I_K^{\text{len}\,b_2 \times \text{len}\,b_2})$. Let A be a matrix over K of dimension len $b_1 \times \text{len}\,M$. If $A = \text{AutMt}(f, b_1, b_2)$ and f is linear, then $(\text{Mx2Tran}(A, b_1, M))(v_1) = f(v_1) \to b_2$.

KAROL PĄK

Let K be an add-associative right zeroed right complementable Abelian associative well unital distributive non empty double loop structure, let V_1 , V_2 be Abelian add-associative right zeroed right complementable vector space-like non empty vector space structures over K, let W be a subspace of V_1 , and let f be a function from V_1 into V_2 . Then $f \upharpoonright W$ is a function from W into V_2 .

Let K be a field, let V_1 , V_2 be vector spaces over K, let W be a subspace of V_1 , and let f be a linear transformation from V_1 to V_2 . Then $f \upharpoonright W$ is a linear transformation from W to V_2 .

6. The Main Theorems

The following propositions are true:

- (48) For every linear transformation f from V_1 to V_2 holds rank $f = \text{rk}(\text{AutMt}(f, b_1, b_2)).$
- (49) For every matrix M over K of dimension $\operatorname{len} b_1 \times \operatorname{len} b_2$ holds $\operatorname{rank} \operatorname{Mx2Tran}(M, b_1, b_2) = \operatorname{rk}(M).$
- (50) For every linear transformation f from V_1 to V_2 such that $\dim(V_1) = \dim(V_2)$ holds ker f is non trivial iff Det AutEqMt $(f, b_1, b_2) = 0_K$.
- (51) Let f be a linear transformation from V_1 to V_2 and g be a linear transformation from V_2 to V_3 . If $g \upharpoonright \inf f$ is one-to-one, then $\operatorname{rank}(g \cdot f) = \operatorname{rank} f$ and $\operatorname{nullity}(g \cdot f) = \operatorname{nullity} f$.

References

- [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137–142, 2007.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
- [12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [13] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339– 345, 1996.
- [14] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579–585, 1991.

- [15] Karol Pak. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199–211, 2007.
- [16] Karol Pąk. Block diagonal matrices. Formalized Mathematics, 16(3):259-267, 2008.
- [17] Karol Pak. Solutions of linear equations. Formalized Mathematics, 16(1):81–90, 2008.
- [18] Wojciech A. Trybulec. Basis of vector space. *Formalized Mathematics*, 1(5):883–885, 1990.
- [19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [20] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877–882, 1990.
- [21] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871–876, 1990.
- [22] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.
- [23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [24] Žinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
 [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
- 1(1):73–83, 1990.[26] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matri-
- ces. Formalized Mathematics, 13(4):541–547, 2005.
- [27] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205–211, 1992.
- [28] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.
- [29] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423–428, 1996.

Received May 13, 2008