
FORMALIZED MATHEMATICS

Vol. 16, No. 3, Pages 231–245, 2008

Model Checking. Part II

Kazuhisa Ishida
Shinshu University
Nagano, Japan

Summary. This article provides the definition of linear temporal logic
(LTL) and its properties relevant to model checking based on [9]. Mizar formali-
zation of LTL language and satisfiability is based on [2, 3].

MML identifier: MODELC 2, version: 7.9.01 4.101.1015

The articles [8], [11], [6], [5], [7], [1], [4], [12], and [10] provide the notation and
terminology for this paper.
Let x be a set. The functor CastNatx yielding a natural number is defined

by:

(Def. 1) CastNatx =

{
x, if x is a natural number,
0, otherwise.

Let W1 be a set. A sequence of W1 is a function from N into W1.
For simplicity, we adopt the following rules: k, n denote natural numbers, a

denotes a set, D, S denote non empty sets, and p, q denote finite sequences of
elements of N.
Let us consider n. The functor atom. n yielding a finite sequence of elements

of N is defined as follows:
(Def. 2) atom. n = 〈6 + n〉.

Let us consider p. The functor ¬p yielding a finite sequence of elements of
N is defined by:
(Def. 3) ¬p = 〈0〉 a p.

Let us consider q. The functor p∧q yields a finite sequence of elements of N and
is defined by:

(Def. 4) p ∧ q = 〈1〉 a p a q.

The functor p ∨ q yielding a finite sequence of elements of N is defined by:

231
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://ftp.mizar.org/
http://fm.mizar.org/miz/modelc_2.miz

232 kazuhisa ishida

(Def. 5) p ∨ q = 〈2〉 a p a q.

Let us consider p. The functor X p yielding a finite sequence of elements of
N is defined as follows:
(Def. 6) X p = 〈3〉 a p.

Let us consider q. The functor p U q yielding a finite sequence of elements of N
is defined by:

(Def. 7) p U q = 〈4〉 a p a q.

The functor p R q yields a finite sequence of elements of N and is defined as
follows:

(Def. 8) pR q = 〈5〉 a p a q.

The non empty set WFFLTL is defined by the conditions (Def. 9).

(Def. 9) For every a such that a ∈WFFLTL holds a is a finite sequence of elements
of N and for every n holds atom. n ∈ WFFLTL and for every p such that
p ∈WFFLTL holds ¬p ∈WFFLTL and for all p, q such that p, q ∈WFFLTL
holds p ∧ q ∈ WFFLTL and for all p, q such that p, q ∈ WFFLTL holds
p ∨ q ∈ WFFLTL and for every p such that p ∈ WFFLTL holds X p ∈
WFFLTL and for all p, q such that p, q ∈WFFLTL holds p U q ∈WFFLTL
and for all p, q such that p, q ∈ WFFLTL holds pR q ∈ WFFLTL and for
every D such that for every a such that a ∈ D holds a is a finite sequence
of elements of N and for every n holds atom. n ∈ D and for every p such
that p ∈ D holds ¬p ∈ D and for all p, q such that p, q ∈ D holds p∧q ∈ D
and for all p, q such that p, q ∈ D holds p∨q ∈ D and for every p such that
p ∈ D holds X p ∈ D and for all p, q such that p, q ∈ D holds p U q ∈ D
and for all p, q such that p, q ∈ D holds pR q ∈ D holds WFFLTL ⊆ D.
Let I1 be a finite sequence of elements of N. We say that I1 is LTL-formula-

like if and only if:

(Def. 10) I1 is an element of WFFLTL.

Let us observe that there exists a finite sequence of elements of N which is
LTL-formula-like.
An LTL-formula is a LTL-formula-like finite sequence of elements of N.
Next we state the proposition

(1) a is an LTL-formula iff a ∈WFFLTL.
In the sequel F , F1, G, H, H1, H2 denote LTL-formulae.
Let us consider n. Observe that atom. n is LTL-formula-like.
Let us consider H. Note that ¬H is LTL-formula-like and X H is LTL-

formula-like. Let us consider G. One can check the following observations:

∗ H ∧G is LTL-formula-like,
∗ H ∨G is LTL-formula-like,
∗ H U G is LTL-formula-like, and

model checking. Part II 233

∗ H RG is LTL-formula-like.
Let us consider H. We say that H is atomic if and only if:

(Def. 11) There exists n such that H = atom. n.

We say that H is negative if and only if:

(Def. 12) There exists H1 such that H = ¬H1.
We say that H is conjunctive if and only if:

(Def. 13) There exist F , G such that H = F ∧G.
We say that H is disjunctive if and only if:

(Def. 14) There exist F , G such that H = F ∨G.
We say that H has next operator if and only if:

(Def. 15) There exists H1 such that H = X H1.
We say that H has until operator if and only if:

(Def. 16) There exist F , G such that H = F U G.
We say that H has release operator if and only if:

(Def. 17) There exist F , G such that H = F RG.
Next we state two propositions:

(2) H is either atomic, or negative, or conjunctive, or disjunctive, or has
next operator, or until operator, or release operator.

(3) 1 ≤ lenH.
Let us consider H. Let us assume that H is either negative or has next

operator. The functor Arg(H) yields an LTL-formula and is defined by:

(Def. 18)(i) ¬Arg(H) = H if H is negative,
(ii) X Arg(H) = H, otherwise.
Let us consider H. Let us assume that H is either conjunctive or disjunctive

or has until operator or release operator. The functor LeftArg(H) yielding an
LTL-formula is defined as follows:

(Def. 19)(i) There exists H1 such that LeftArg(H)∧H1 = H if H is conjunctive,
(ii) there exists H1 such that LeftArg(H) ∨H1 = H if H is disjunctive,
(iii) there exists H1 such that LeftArg(H)UH1 = H if H has until operator,
(iv) there exists H1 such that LeftArg(H)RH1 = H, otherwise.
The functor RightArg(H) yields an LTL-formula and is defined by:

(Def. 20)(i) There exists H1 such that H1∧RightArg(H) = H if H is conjunctive,
(ii) there exists H1 such that H1 ∨ RightArg(H) = H if H is disjunctive,
(iii) there exists H1 such that H1 U RightArg(H) = H if H has until ope-
rator,

(iv) there exists H1 such that H1 R RightArg(H) = H, otherwise.
The following propositions are true:

(4) If H is negative, then H = ¬Arg(H).

234 kazuhisa ishida

(5) If H has next operator, then H = X Arg(H).
(6) If H is conjunctive, then H = LeftArg(H) ∧ RightArg(H).
(7) If H is disjunctive, then H = LeftArg(H) ∨ RightArg(H).
(8) If H has until operator, then H = LeftArg(H) U RightArg(H).
(9) If H has release operator, then H = LeftArg(H)R RightArg(H).
(10) If H is either negative or has next operator, then lenH = 1+lenArg(H)
and lenArg(H) < lenH.

(11) Suppose H is either conjunctive or disjunctive or has until operator or
release operator. Then lenH = 1+lenLeftArg(H)+ lenRightArg(H) and
lenLeftArg(H) < lenH and lenRightArg(H) < lenH.

Let us consider H, F . We say that H is an immediate constituent of F if
and only if:

(Def. 21) F = ¬H or F = X H or there exists H1 such that F = H ∧ H1 or
F = H1∧H or F = H ∨H1 or F = H1∨H or F = H UH1 or F = H1UH
or F = H RH1 or F = H1 RH.
We now state a number of propositions:

(12) For all F , G holds (¬F)(1) = 0 and (F ∧G)(1) = 1 and (F ∨G)(1) = 2
and (X F)(1) = 3 and (F U G)(1) = 4 and (F RG)(1) = 5.

(13) H is an immediate constituent of ¬F iff H = F.
(14) H is an immediate constituent of X F iff H = F.
(15) H is an immediate constituent of F ∧G iff H = F or H = G.
(16) H is an immediate constituent of F ∨G iff H = F or H = G.
(17) H is an immediate constituent of F U G iff H = F or H = G.
(18) H is an immediate constituent of F RG iff H = F or H = G.
(19) If F is atomic, then H is not an immediate constituent of F .

(20) If F is negative, thenH is an immediate constituent of F iffH = Arg(F).

(21) If F has next operator, then H is an immediate constituent of F iff
H = Arg(F).

(22) If F is conjunctive, then H is an immediate constituent of F iff H =
LeftArg(F) or H = RightArg(F).

(23) If F is disjunctive, then H is an immediate constituent of F iff H =
LeftArg(F) or H = RightArg(F).

(24) If F has until operator, then H is an immediate constituent of F iff
H = LeftArg(F) or H = RightArg(F).

(25) If F has release operator, then H is an immediate constituent of F iff
H = LeftArg(F) or H = RightArg(F).

(26) Suppose H is an immediate constituent of F . Then F is either negative,
or conjunctive, or disjunctive, or has next operator, or until operator, or

model checking. Part II 235

release operator.

In the sequel L denotes a finite sequence.
Let us consider H, F . We say that H is a subformula of F if and only if the

condition (Def. 22) is satisfied.

(Def. 22) There exist n, L such that
(i) 1 ≤ n,
(ii) lenL = n,
(iii) L(1) = H,
(iv) L(n) = F, and
(v) for every k such that 1 ≤ k < n there exist H1, F1 such that L(k) = H1
and L(k + 1) = F1 and H1 is an immediate constituent of F1.

We now state the proposition

(27) H is a subformula of H.

Let us consider H, F . We say that H is a proper subformula of F if and
only if:

(Def. 23) H is a subformula of F and H 6= F.
One can prove the following propositions:

(28) If H is an immediate constituent of F , then lenH < lenF.

(29) If H is an immediate constituent of F , then H is a proper subformula
of F .

(30) If G is either negative or has next operator, then Arg(G) is a subformula
of G.

(31) Suppose G is either conjunctive or disjunctive or has until operator or
release operator. Then LeftArg(G) is a subformula of G and RightArg(G)
is a subformula of G.

(32) If H is a proper subformula of F , then lenH < lenF.

(33) If H is a proper subformula of F , then there exists G which is an imme-
diate constituent of F .

(34) If F is a proper subformula of G and G is a proper subformula of H,
then F is a proper subformula of H.

(35) If F is a subformula of G and G is a subformula of H, then F is a
subformula of H.

(36) If G is a subformula of H and H is a subformula of G, then G = H.

(37) If G is either negative or has next operator and F is a proper subformula
of G, then F is a subformula of Arg(G).

(38) Suppose that
(i) G is either conjunctive or disjunctive or has until operator or release
operator, and

(ii) F is a proper subformula of G.

236 kazuhisa ishida

Then F is a subformula of LeftArg(G) or a subformula of RightArg(G).

(39) If F is a proper subformula of ¬H, then F is a subformula of H.
(40) If F is a proper subformula of X H, then F is a subformula of H.
(41) If F is a proper subformula of G ∧H, then F is a subformula of G or a
subformula of H.

(42) If F is a proper subformula of G ∨H, then F is a subformula of G or a
subformula of H.

(43) If F is a proper subformula of G U H, then F is a subformula of G or a
subformula of H.

(44) If F is a proper subformula of GRH, then F is a subformula of G or a
subformula of H.

Let us consider H. The functor SubformulaeH yields a set and is defined
by:

(Def. 24) a ∈ SubformulaeH iff there exists F such that F = a and F is a subfor-
mula of H.

One can prove the following proposition

(45) G ∈ SubformulaeH iff G is a subformula of H.
Let us consider H. Observe that SubformulaeH is non empty.
Next we state two propositions:

(46) If F is a subformula of H, then SubformulaeF ⊆ SubformulaeH.
(47) If a is a subset of SubformulaeH, then a is a subset of WFFLTL.

In this article we present several logical schemes. The scheme LTLInd con-
cerns a unary predicate P, and states that:

For every H holds P[H]
provided the following conditions are satisfied:
• For every H such that H is atomic holds P[H],
• For every H such that H is either negative or has next operator
and P[Arg(H)] holds P[H], and

• Let given H. Suppose H is either conjunctive or disjunctive or
has until operator or release operator and P[LeftArg(H)] and
P[RightArg(H)]. Then P[H].

The scheme LTLCompInd concerns a unary predicate P, and states that:
For every H holds P[H]

provided the following condition is met:
• For every H such that for every F such that F is a proper sub-
formula of H holds P[F] holds P[H].

Let x be a set. The functor CastLTL x yielding an LTL-formula is defined by:

(Def. 25) CastLTL x =

{
x, if x ∈WFFLTL,
atom. 0, otherwise.

model checking. Part II 237

We introduce LTL-model structures which are systems
〈 assignations, basic assignations, a conjunction, a disjunction, a negation,

a next-operation, an until-operation, a release-operation 〉,
where the assignations constitute a non empty set, the basic assignations con-
stitute a non empty subset of the assignations, the conjunction is a binary ope-
ration on the assignations, the disjunction is a binary operation on the assigna-
tions, the negation is a unary operation on the assignations, the next-operation
is a unary operation on the assignations, the until-operation is a binary opera-
tion on the assignations, and the release-operation is a binary operation on the
assignations.
Let V be an LTL-model structure. An assignation of V is an element of the

assignations of V .
The subset atomicLTL of WFFLTL is defined by:

(Def. 26) atomicLTL = {x;x ranges over LTL-formulae: x is atomic}.
Let V be an LTL-model structure, let K1 be a function from atomicLTL

into the basic assignations of V , and let f be a function from WFFLTL into
the assignations of V . We say that f is an evaluation for K1 if and only if the
condition (Def. 27) is satisfied.

(Def. 27) Let H be an LTL-formula. Then
(i) if H is atomic, then f(H) = K1(H),
(ii) if H is negative, then f(H) = (the negation of V)(f(Arg(H))),
(iii) ifH is conjunctive, then f(H) = (the conjunction of V)(f(LeftArg(H)),
f(RightArg(H))),

(iv) if H is disjunctive, then f(H) = (the disjunction of V)(f(LeftArg(H)),
f(RightArg(H))),

(v) if H has next operator, then f(H) = (the next-operation of
V)(f(Arg(H))),

(vi) if H has until operator, then f(H) = (the until-operation of
V)(f(LeftArg(H)), f(RightArg(H))), and

(vii) if H has release operator, then f(H) = (the release-operation of
V)(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , let f be a function from WFFLTL into the
assignations of V , and let n be a natural number. We say that f is a n-pre-
evaluation for K1 if and only if the condition (Def. 28) is satisfied.

(Def. 28) Let H be an LTL-formula such that lenH ≤ n. Then
(i) if H is atomic, then f(H) = K1(H),
(ii) if H is negative, then f(H) = (the negation of V)(f(Arg(H))),
(iii) ifH is conjunctive, then f(H) = (the conjunction of V)(f(LeftArg(H)),
f(RightArg(H))),

238 kazuhisa ishida

(iv) if H is disjunctive, then f(H) = (the disjunction of V)(f(LeftArg(H)),
f(RightArg(H))),

(v) if H has next operator, then f(H) = (the next-operation of
V)(f(Arg(H))),

(vi) if H has until operator, then f(H) = (the until-operation of
V)(f(LeftArg(H)), f(RightArg(H))), and

(vii) if H has release operator, then f(H) = (the release-operation of
V)(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , let f , h be functions from WFFLTL into the
assignations of V , let n be a natural number, and let H be an LTL-formula.
The functor GraftEval(V,K1, f, h, n,H) yields a set and is defined by:

(Def. 29) GraftEval(V,K1, f, h, n,H)

=



f(H), if lenH > n+ 1,
K1(H), if lenH = n+ 1 and H is atomic,
(the negation of V)(h(Arg(H))), if lenH = n+ 1 and H is negative,
(the conjunction of V)(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H is conjunctive,

(the disjunction of V)(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H is disjunctive,

(the next-operation of V)(h(Arg(H))),
if lenH = n+ 1 and H has next operator,

(the until-operation of V)(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H has until operator,

(the release-operation of V)(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H has release operator,

h(H), if lenH < n+ 1,
∅, otherwise.

We adopt the following convention: V denotes an LTL-model structure, K1
denotes a function from atomicLTL into the basic assignations of V , and f , f1,
f2 denote functions from WFFLTL into the assignations of V .
Let V be an LTL-model structure, let K1 be a function from atomicLTL

into the basic assignations of V , and let n be a natural number. The functor
EvalSet(V,K1, n) yields a non empty set and is defined by:

(Def. 30) EvalSet(V,K1, n) = {h;h ranges over functions from WFFLTL into the
assignations of V : h is a n-pre-evaluation for K1}.
Let V be an LTL-model structure, let v0 be an element of the assignations

of V , and let x be a set. The functor CastEval(V, x, v0) yielding a function from
WFFLTL into the assignations of V is defined by:

(Def. 31) CastEval(V, x, v0) =

{
x, if x ∈ (the assignations of V)WFFLTL ,
WFFLTL 7−→ v0, otherwise.

model checking. Part II 239

Let V be an LTL-model structure and let K1 be a function from atomicLTL
into the basic assignations of V . The functor EvalFamily(V,K1) yielding a non
empty set is defined by the condition (Def. 32).

(Def. 32) Let p be a set. Then p ∈ EvalFamily(V,K1) if and only if the following
conditions are satisfied:
(i) p ∈ 2(the assignations of V)WFFLTL , and
(ii) there exists a natural number n such that p = EvalSet(V,K1, n).

We now state two propositions:

(48) There exists f which is an evaluation for K1.

(49) If f1 is an evaluation for K1 and f2 is an evaluation for K1, then f1 = f2.

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , and let H be an LTL-formula. The functor
Evaluate(H,K1) yields an assignation of V and is defined by:

(Def. 33) There exists a function f from WFFLTL into the assignations of V such
that f is an evaluation for K1 and Evaluate(H,K1) = f(H).

Let V be an LTL-model structure and let f be an assignation of V . The
functor ¬f yielding an assignation of V is defined by:

(Def. 34) ¬f = (the negation of V)(f).
Let V be an LTL-model structure and let f , g be assignations of V . The

functor f ∧ g yields an assignation of V and is defined by:
(Def. 35) f ∧ g = (the conjunction of V)(f, g).
The functor f ∨ g yields an assignation of V and is defined as follows:

(Def. 36) f ∨ g = (the disjunction of V)(f, g).
Let V be an LTL-model structure and let f be an assignation of V . The

functor X f yielding an assignation of V is defined by:
(Def. 37) X f = (the next-operation of V)(f).

Let V be an LTL-model structure and let f , g be assignations of V . The
functor f U g yielding an assignation of V is defined by:

(Def. 38) f U g = (the until-operation of V)(f, g).
The functor f R g yields an assignation of V and is defined as follows:

(Def. 39) f R g = (the release-operation of V)(f, g).
One can prove the following propositions:

(50) Evaluate(¬H,K1) = ¬Evaluate(H,K1).
(51) Evaluate(H1 ∧H2,K1) = Evaluate(H1,K1) ∧ Evaluate(H2,K1).
(52) Evaluate(H1 ∨H2,K1) = Evaluate(H1,K1) ∨ Evaluate(H2,K1).
(53) Evaluate(X H,K1) = X Evaluate(H,K1).
(54) Evaluate(H1 U H2,K1) = Evaluate(H1,K1) U Evaluate(H2,K1).
(55) Evaluate(H1 RH2,K1) = Evaluate(H1,K1)R Evaluate(H2,K1).

240 kazuhisa ishida

Let S be a non empty set. The infinite sequences of S yielding a non empty
set is defined by:

(Def. 40) The infinite sequences of S = SN.

Let S be a non empty set and let t be a sequence of S. The functor CastSeq t
yields an element of the infinite sequences of S and is defined by:

(Def. 41) CastSeq t = t.

Let S be a non empty set and let t be a set. Let us assume that t is an element
of the infinite sequences of S. The functor CastSeq(t, S) yielding a sequence of
S is defined by:

(Def. 42) CastSeq(t, S) = t.

Let S be a non empty set, let t be a sequence of S, and let k be a natural
number. The functor Shift(t, k) yielding a sequence of S is defined as follows:

(Def. 43) For every natural number n holds (Shift(t, k))(n) = t(n+ k).

Let S be a non empty set, let t be a set, and let k be a natural number. The
functor Shift(t, k, S) yielding an element of the infinite sequences of S is defined
as follows:

(Def. 44) Shift(t, k, S) = CastSeq Shift(CastSeq(t, S), k).

Let S be a non empty set, let t be an element of the infinite sequences of
S, and let k be a natural number. The functor Shift(t, k) yielding an element of
the infinite sequences of S is defined as follows:

(Def. 45) Shift(t, k) = Shift(t, k, S).

Let S be a non empty set and let f be a set. The functor Not0(f, S) yields an
element of ModelSP (the infinite sequences of S) and is defined by the condition
(Def. 46).

(Def. 46) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
¬Castboolean(Fid(f, the infinite sequences of S))(t) = true if and only
if (Fid(Not0(f, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor NotS yielding a unary operation on
ModelSP (the infinite sequences of S) is defined by:

(Def. 47) For every set f such that f ∈ ModelSP (the infinite sequences of S) holds
(NotS)(f) = Not0(f, S).

Let S be a non empty set, let f be a function from the infinite sequences of
S into Boolean, and let t be a set. The functor Next-univ(t, f) yields an element
of Boolean and is defined as follows:

(Def. 48) Next-univ(t, f) =


true, if t is an element of the infinite sequences
of S and f(Shift(t, 1, S)) = true,

false, otherwise.
Let S be a non empty set and let f be a set. The functor Next0(f, S) yielding

an element of ModelSP (the infinite sequences of S) is defined by the condition

model checking. Part II 241

(Def. 49).

(Def. 49) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Next-univ(t,Fid(f, the infinite sequences of S)) = true if and only if
(Fid(Next0(f, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor NextS yields a unary operation on
ModelSP (the infinite sequences of S) and is defined as follows:

(Def. 50) For every set f such that f ∈ ModelSP (the infinite sequences of S) holds
(NextS)(f) = Next0(f, S).

Let S be a non empty set and let f , g be sets. The functor And0(f, g, S)
yields an element of ModelSP (the infinite sequences of S) and is defined by the
condition (Def. 51).

(Def. 51) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Castboolean(Fid(f, the infinite sequences of S))(t)∧Castboolean(Fid(g, the
infinite sequences of S))(t) = true if and only if (Fid(And0(f, g, S), the in-
finite sequences of S))(t) = true.

Let S be a non empty set. The functor AndS yielding a binary operation
on ModelSP (the infinite sequences of S) is defined by the condition (Def. 52).

(Def. 52) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (AndS)(f, g) =
And0(f, g, S).

Let S be a non empty set, let f , g be functions from the infinite sequences
of S into Boolean, and let t be a set. The functor Until-univ(t, f, g, S) yields an
element of Boolean and is defined as follows:

(Def. 53) Until-univ(t, f, g, S) =



true, if t is an element of the infinite sequences
of S and there exists a natural number m
such that for every natural number j
such that j < m holds f(Shift(t, j, S)) =
true and g(Shift(t,m, S)) = true,
false, otherwise.

Let S be a non empty set and let f , g be sets. The functor Until0(f, g, S)
yields an element of ModelSP (the infinite sequences of S) and is defined by the
condition (Def. 54).

(Def. 54) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Until-univ(t,Fid(f, the infinite sequences of S),Fid(g, the infinite sequen-
ces of S), S) = true if and only if (Fid(Until0(f, g, S), the infinite sequences
of S))(t) = true.

Let S be a non empty set. The functor UntilS yielding a binary operation
on ModelSP (the infinite sequences of S) is defined by the condition (Def. 55).

(Def. 55) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (UntilS)(f, g) =

242 kazuhisa ishida

Until0(f, g, S).

Let S be a non empty set. The functor ∨S yields a binary operation on
ModelSP (the infinite sequences of S) and is defined by the condition (Def. 56).

(Def. 56) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of
S) and g ∈ ModelSP (the infinite sequences of S). Then ∨S(f, g) =
(NotS)((AndS)((NotS)(f), (NotS)(g))).

The functor ReleaseS yields a binary operation on ModelSP (the infinite sequ-
ences of S) and is defined by the condition (Def. 57).

(Def. 57) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (ReleaseS)(f, g) =
(NotS)((UntilS)((NotS)(f), (NotS)(g))).

Let S be a non empty set and let B1 be a non empty subset of ModelSP (the
infinite sequences of S). The functor ModelLTL(S,B1) yields an LTL-model
structure and is defined as follows:

(Def. 58) ModelLTL(S,B1) = 〈ModelSP (the infinite sequences of S), B1,AndS,
∨S ,NotS,NextS,UntilS,ReleaseS〉.
In the sequel B1 denotes a non empty subset of ModelSP (the infinite sequ-

ences of S), t denotes an element of the infinite sequences of S, and f , g denote
assignations of ModelLTL(S,B1).
Let S be a non empty set, let B1 be a non empty subset of ModelSP (the

infinite sequences of S), let t be an element of the infinite sequences of S, and
let f be an assignation of ModelLTL(S,B1). The predicate t |= f is defined by:

(Def. 59) (Fid(f, the infinite sequences of S))(t) = true.

Let S be a non empty set, let B1 be a non empty subset of ModelSP (the
infinite sequences of S), let t be an element of the infinite sequences of S, and
let f be an assignation of ModelLTL(S,B1). We introduce t 6|= f as an antonym
of t |= f.
The following propositions are true:

(56) f ∨ g = ¬(¬f ∧ ¬g) and f R g = ¬(¬f U ¬g).
(57) t |= ¬f iff t 6|= f.
(58) t |= f ∧ g iff t |= f and t |= g.
(59) t |= X f iff Shift(t, 1) |= f.
(60) t |= f U g if and only if there exists a natural number m such that
for every natural number j such that j < m holds Shift(t, j) |= f and
Shift(t,m) |= g.

(61) t |= f ∨ g iff t |= f or t |= g.
(62) t |= f R g if and only if for every natural number m such that for
every natural number j such that j < m holds Shift(t, j) |= ¬f holds
Shift(t,m) |= g.

model checking. Part II 243

The non empty set AtomicFamily is defined as follows:

(Def. 60) AtomicFamily = 2atomicLTL .

Let a, t be sets. The functor AtomicFunc(a, t) yielding an element of Boolean
is defined as follows:

(Def. 61) AtomicFunc(a, t) =


true, if t ∈ the infinite sequences of AtomicFamily
and a ∈ (CastSeq(t,AtomicFamily))(0),

false, otherwise.
Let a be a set. The functor AtomicAsgn a yields an element of ModelSP (the

infinite sequences of AtomicFamily) and is defined by:

(Def. 62) For every set t such that t ∈ the infinite sequences of AtomicFamily
holds (Fid(AtomicAsgn a, the infinite sequences of AtomicFamily))(t) =
AtomicFunc(a, t).

The non empty subset AtomicBasicAsgn of ModelSP (the infinite sequences
of AtomicFamily) is defined by:

(Def. 63) AtomicBasicAsgn = {x ∈ ModelSP (the infinite sequences of
AtomicFamily):

∨
a : set x = AtomicAsgn a}.

The function AtomicKai from atomicLTL into the basic assignations
of ModelLTL(AtomicFamily,AtomicBasicAsgn) is defined as follows:

(Def. 64) For every set a such that a ∈ atomicLTL holds (AtomicKai)(a) =
AtomicAsgn a.

Let r be an element of the infinite sequences of AtomicFamily and let H be
an LTL-formula. The predicate r |= H is defined by:

(Def. 65) r |= Evaluate(H,AtomicKai).
Let r be an element of the infinite sequences of AtomicFamily and let H be

an LTL-formula. We introduce r 6|= H as an antonym of r |= H.
Let r be an element of the infinite sequences of AtomicFamily and let W be

a subset of WFFLTL. The predicate r |=W is defined by:
(Def. 66) For every LTL-formula H such that H ∈W holds r |= H.

Let r be an element of the infinite sequences of AtomicFamily and let W be
a subset of WFFLTL. We introduce r 6|=W as an antonym of r |=W.
Let W be a subset of WFFLTL. The functor X W yielding a subset of

WFFLTL is defined as follows:

(Def. 67) X W = {x;x ranges over LTL-formulae:
∨
u : LTL-formula (u ∈ W ∧ x =

X u)}.
In the sequel r denotes an element of the infinite sequences of AtomicFamily.
We now state a number of propositions:

(63) If H is atomic, then r |= H iff H ∈ (CastSeq(r,AtomicFamily))(0).
(64) r |= ¬H iff r 6|= H.
(65) r |= H1 ∧H2 iff r |= H1 and r |= H2.

244 kazuhisa ishida

(66) r |= H1 ∨H2 iff r |= H1 or r |= H2.
(67) r |= X H iff Shift(r, 1) |= H.
(68) r |= H1 U H2 if and only if there exists a natural number m such that
for every natural number j such that j < m holds Shift(r, j) |= H1 and
Shift(r,m) |= H2.

(69) r |= H1 R H2 if and only if for every natural number m such that for
every natural number j such that j < m holds Shift(r, j) |= ¬H1 holds
Shift(r,m) |= H2.

(70) r |= ¬(H1 ∨H2) iff r |= ¬H1 ∧ ¬H2.
(71) r |= ¬(H1 ∧H2) iff r |= ¬H1 ∨ ¬H2.
(72) r |= H1 RH2 iff r |= ¬(¬H1 U ¬H2).
(73) r 6|= ¬H iff r |= H.
(74) r |= X ¬H iff r |= ¬X H.
(75) r |= H1 U H2 iff r |= H2 ∨H1 ∧ X (H1 U H2).
(76) r |= H1 RH2 iff r |= H1 ∧H2 ∨H2 ∧ X (H1 RH2).
In the sequel W is a subset of WFFLTL.
One can prove the following propositions:

(77) r |= X W iff Shift(r, 1) |=W.
(78)(i) If H is atomic, then H is not negative and H is not conjunctive and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(ii) if H is negative, then H is not atomic and H is not conjunctive and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(iii) if H is conjunctive, then H is not atomic and H is not negative and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(iv) if H is disjunctive, then H is not atomic and H is not negative and
H is not conjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(v) if H has next operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
until operator and H does not have release operator,

(vi) if H has until operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
next operator and H does not have release operator, and

(vii) if H has release operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
next operator and H does not have until operator.

(79) For every element t of the infinite sequences of S holds Shift(t, 0) = t.

model checking. Part II 245

(80) For every element s1 of the infinite sequences of S holds
Shift(Shift(s1, k), n) = Shift(s1, n+ k).

(81) For every sequence s1 of S holds CastSeq(CastSeq s1, S) = s1.

(82) For every element s1 of the infinite sequences of S holds
CastSeqCastSeq(s1, S) = s1.

(83) If H, ¬H ∈W, then r 6|=W.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics,
1(1):131–145, 1990.

[3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191–199,
1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[10] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171–186, 2006.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[12] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,
1990.

Received April 21, 2008

