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Summary. In this article we formalize one of the most important the-
orems of linear operator theory the Open Mapping Theorem commonly used in a
standard book such as [8] in chapter 2.4.2. It states that a surjective continuous
linear operator between Banach spaces is an open map.
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The notation and terminology used here are introduced in the following papers:
[13], [14], [3], [9], [2], [7], [1], [4], [5], [10], [6], [12], [11], and [15].
The following proposition is true

(1) For all real numbers x, y such that 0 ≤ x < y there exists a real number
s0 such that 0 < s0 and x <

y
1+s0
< y.

The scheme RecExD3 deals with a non empty set A, an element B of A, an
element C of A, and a 4-ary predicate P, and states that:

There exists a function f from N into A such that f(0) = B and
f(1) = C and for every element n of N holds P[n, f(n), f(n +
1), f(n+ 2)]

provided the parameters meet the following requirement:
• For every element n of N and for all elements x, y of A there
exists an element z of A such that P[n, x, y, z].

In the sequel X, Y denote real normed spaces.
The following propositions are true:

(2) For every point y1 of X and for every real number r holds Ball(y1, r) =
y1 +Ball(0X , r).

(3) For every real number r and for every real number a such that 0 < a
holds Ball(0X , a · r) = a · Ball(0X , r).
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(4) For every linear operator T from X into Y and for all subsets B0, B1 of
X holds T ◦(B0 +B1) = T ◦B0 + T ◦B1.

(5) Let T be a linear operator from X into Y , B0 be a subset of X, and a
be a real number. Then T ◦(a ·B0) = a · T ◦B0.

(6) Let T be a linear operator from X into Y , B0 be a subset of X, and x1
be a point of X. Then T ◦(x1 +B0) = T (x1) + T ◦B0.

(7) For all subsets V , W of X and for all subsets V1, W1 of
LinearTopSpaceNormX such that V = V1 and W = W1 holds V +W =
V1 +W1.

(8) Let V be a subset of X, x be a point of X, V1 be a subset of
LinearTopSpaceNormX, and x1 be a point of LinearTopSpaceNormX.
If V = V1 and x = x1, then x+ V = x1 + V1.

(9) For every subset V of X and for every real number a and for every subset
V1 of LinearTopSpaceNormX such that V = V1 holds a · V = a · V1.

(10) For every subset V of TopSpaceNormX and for every subset V1 of
LinearTopSpaceNormX such that V = V1 holds V = V1.

(11) For every point x of X and for every real number r holds Ball(0X , r) =
(−1) · Ball(0X , r).

(12) For every point x of X and for every real number r and for every subset
V of LinearTopSpaceNormX such that V = Ball(x, r) holds V is convex.

(13) Let x be a point of X, r be a real number, T be a linear operator from X
into Y , and V be a subset of LinearTopSpaceNormY. If V = T ◦ Ball(x, r),
then V is convex.

(14) For every point x of X and for all real numbers r, s such that r ≤ s
holds Ball(x, r) ⊆ Ball(x, s).

(15) Let X be a real Banach space, Y be a real normed space, T be a boun-
ded linear operator from X into Y , r be a real number, B2 be a subset of
LinearTopSpaceNormX, and T1, B3 be subsets of LinearTopSpaceNormY.
If r > 0 and B2 = Ball(0X , 1) and B3 = Ball(0Y , r) and T1 =
T ◦ Ball(0X , 1) and B3 ⊆ T1, then B3 ⊆ T1.

(16) Let X, Y be real Banach spaces, T be a bounded linear operator
from X into Y , and T2 be a function from LinearTopSpaceNormX in-
to LinearTopSpaceNormY. If T2 = T and T2 is onto, then T2 is open.
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