
FORMALIZED MATHEMATICS

Vol. 16, No. 4, Pages 339–353, 2008

Model Checking. Part III

Kazuhisa Ishida
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. This text includes verification of the basic algorithm in Simple
On-the-fly Automatic Verification of Linear Temporal Logic (LTL). LTL formula
can be transformed to Buchi automaton, and this transforming algorithm is ma-
inly used at Simple On-the-fly Automatic Verification. In this article, we verified
the transforming algorithm itself. At first, we prepared some definitions and ope-
rations for transforming. And then, we defined the Buchi automaton and verified
the transforming algorithm.

MML identifier: MODELC 3, version: 7.9.03 4.108.1028

The notation and terminology used in this paper are introduced in the following
articles: [5], [14], [6], [7], [1], [15], [3], [16], [2], [13], [4], [12], [10], [11], [8], and
[9].

1. Definition of Basic Operations to Build an Automaton for LTL
and Properties

For simplicity, we adopt the following rules: k, n, m, i, j are elements of N,
x, y, X are sets, L, L1, L2 are finite sequences, F , H are LTL-formulae, W , W1,
W2 are subsets of SubformulaeH, and v is an LTL-formula.
Let us consider F . Then SubformulaeF is a subset of WFFLTL.
Let us considerH. The functor LTLNew1H yields a subset of SubformulaeH

and is defined as follows:

(Def. 1) LTLNew1H =



{LeftArg(H),RightArg(H)}, if H is conjunctive,
{LeftArg(H)}, if H is disjunctive,
∅, if H has next operator,
{LeftArg(H)}, if H has until operator,
{RightArg(H)}, if H has release operator,
∅, otherwise.

339
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://ftp.mizar.org/
http://fm.mizar.org/miz/modelc_3.miz

340 kazuhisa ishida and yasunari shidama

The functor LTLNew2H yields a subset of SubformulaeH and is defined as
follows:

(Def. 2) LTLNew2H =



∅, if H is conjunctive,
{RightArg(H)}, if H is disjunctive,
∅, if H has next operator,
{RightArg(H)}, if H has until operator,
{LeftArg(H),RightArg(H)}, if H has release operator,
∅, otherwise.

The functor LTLNextH yielding a subset of SubformulaeH is defined as follows:

(Def. 3) LTLNextH =



∅, if H is conjunctive,
∅, if H is disjunctive,
{Arg(H)}, if H has next operator,
{H}, if H has until operator,
{H}, if H has release operator,
∅, otherwise.

Let us consider v. We consider LTL-nodes over v as systems
〈 an old-component, a new-component, a next-component 〉,

where the old-component, the new-component, and the next-component are
subsets of Subformulae v.
Let us consider v, let N be an LTL-node over v, and let us consider H. Let

us assume that H ∈ the new-component of N . The functor SuccNode1(H,N)
yielding a strict LTL-node over v is defined by the conditions (Def. 4).

(Def. 4)(i) The old-component of SuccNode1(H,N) = (the old-component of
N) ∪ {H},

(ii) the new-component of SuccNode1(H,N) = ((the new-component of
N) \ {H}) ∪ (LTLNew1H \ the old-component of N), and

(iii) the next-component of SuccNode1(H,N) = (the next-component of
N) ∪ LTLNextH.
Let us consider v, let N be an LTL-node over v, and let us consider H. Let

us assume that H ∈ the new-component of N and H is either disjunctive or has
until operator or release operator. The functor SuccNode2(H,N) yields a strict
LTL-node over v and is defined by the conditions (Def. 5).

(Def. 5)(i) The old-component of SuccNode2(H,N) = (the old-component of
N) ∪ {H},

(ii) the new-component of SuccNode2(H,N) = ((the new-component of
N) \ {H}) ∪ (LTLNew2H \ the old-component of N), and

(iii) the next-component of SuccNode2(H,N) = the next-component of N .

Let us consider v, let N1, N2 be LTL-nodes over v, and let us consider H.
We say that N2 is a successor of N1 and H if and only if the conditions (Def. 6)
are satisfied.

(Def. 6)(i) H ∈ the new-component of N1, and

model checking. Part III 341

(ii) N2 = SuccNode1(H,N1) or H is either disjunctive or has until operator
or release operator and N2 = SuccNode2(H,N1).

Let us consider v and let N1, N2 be LTL-nodes over v. We say that N2 is a
1st successor of N1 if and only if:

(Def. 7) There exists H such that H ∈ the new-component of N1 and N2 =
SuccNode1(H,N1).

We say that N2 is a 2nd successor of N1 if and only if the condition (Def. 8) is
satisfied.

(Def. 8) There exists H such that
(i) H ∈ the new-component of N1,
(ii) H is either disjunctive or has until operator or release operator, and
(iii) N2 = SuccNode2(H,N1).

Let us consider v and let N1, N2 be LTL-nodes over v. We say that N2 is a
successor of N1 if and only if:

(Def. 9) N2 is a 1st successor of N1 or a 2nd successor of N1.

Let us consider v and let N be an LTL-node over v. We say that N is failure
if and only if:

(Def. 10) There exist H, F such that H is atomic and F = ¬H and H ∈ the
old-component of N and F ∈ the old-component of N .
Let us consider v and let N be an LTL-node over v. We say that N is

elementary if and only if:

(Def. 11) The new-component of N = ∅.
Let us consider v and let N be an LTL-node over v. We say that N is final

if and only if:

(Def. 12) N is elementary and the next-component of N = ∅.
Let us consider v. The functor ∅v yielding a subset of Subformulae v is defined

as follows:

(Def. 13) ∅v = ∅.
Let us consider v. The functor Seed v yielding a subset of Subformulae v is

defined by:

(Def. 14) Seed v = {v}.
Let us consider v. Note that there exists an LTL-node over v which is ele-

mentary and strict.
Let us consider v. The functor FinalNode v yields an elementary strict LTL-

node over v and is defined by:

(Def. 15) FinalNode v = 〈∅v, ∅v, ∅v〉.
Let us consider x, v. The functor CastNode(x, v) yields a strict LTL-node

over v and is defined by:

342 kazuhisa ishida and yasunari shidama

(Def. 16) CastNode(x, v) =

{
x, if x is a strict LTL-node over v,
〈∅v, ∅v, ∅v〉, otherwise.

Let us consider v. The functor init v yields an elementary strict LTL-node
over v and is defined by:

(Def. 17) init v = 〈∅v, ∅v,Seed v〉.
Let us consider v and let N be an LTL-node over v. The functor X N yields

a strict LTL-node over v and is defined as follows:

(Def. 18) X N = 〈∅v, the next-component of N , ∅v〉.
We follow the rules: N , N1, N2, M are strict LTL-nodes over v and w is an

element of the infinite sequences of AtomicFamily.
Let us consider v, L. We say that L is a successor sequence for v if and only

if:

(Def. 19) For every k such that 1 ≤ k < lenL there existN ,M such thatN = L(k)
and M = L(k + 1) and M is a successor of N .

Let us consider v, N1, N2. We say that N2 is next to N1 if and only if the
conditions (Def. 20) are satisfied.

(Def. 20)(i) N1 is elementary,
(ii) N2 is elementary, and
(iii) there exists L such that 1 ≤ lenL and L is a successor sequence for v
and L(1) = X N1 and L(lenL) = N2.
Let us consider v and let W be a subset of Subformulae v. The functor

CastLTLW yielding a subset of WFFLTL is defined by:

(Def. 21) CastLTLW =W.

Let us consider v, N . The functor ·N yields a subset of WFFLTL and is
defined by:

(Def. 22) ·N = (the old-component of N) ∪ (the new-component of N) ∪
X CastLTL (the next-component of N).
We now state three propositions:

(1) Suppose H ∈ the new-component of N and H is either atomic, or ne-
gative, or conjunctive, or has next operator. Then w |= ·N if and only if
w |= ·SuccNode1(H,N).

(2) Suppose H ∈ the new-component of N and H is either disjunctive or
has until operator or release operator. Then w |= ·N if and only if one of
the following conditions is satisfied:
(i) w |= ·SuccNode1(H,N), or
(ii) w |= ·SuccNode2(H,N).
(3) There exists L such that SubformulaeH = rngL.

Let us consider H. Observe that SubformulaeH is finite.

model checking. Part III 343

Let us consider H, W , L, x. The length of L wrt W and x yields a natural
number and is defined as follows:

(Def. 23) The length of L wrt W and x =

{
lenCastLTL L(x), if L(x) ∈W,
0, otherwise.

Let us consider H,W , L. The partial sequence of L wrtW yields a sequence
of real numbers and is defined by the condition (Def. 24).

(Def. 24) Let given k. Then
(i) if L(k) ∈ W, then (the partial sequence of L wrt W)(k) =
lenCastLTL L(k), and

(ii) if L(k) /∈W, then (the partial sequence of L wrt W)(k) = 0.
Let us consider H, W , L. The functor len(L,W) yields a real number and

is defined as follows:

(Def. 25) len(L,W) =
∑lenL
κ=0 (the partial sequence of L wrt W)(κ).

We now state several propositions:

(4) len(L, ∅H) = 0.
(5) If F /∈W, then len(L,W \ {F}) = len(L,W).
(6) If rngL = SubformulaeH and L is one-to-one and F ∈ W, then
len(L,W \ {F}) = len(L,W)− lenF.

(7) If rngL = SubformulaeH and L is one-to-one and F /∈ W and W1 =
W ∪ {F}, then len(L,W1) = len(L,W) + lenF.

(8) If rngL1 = SubformulaeH and L1 is one-to-one and rngL2 =
SubformulaeH and L2 is one-to-one, then len(L1,W) = len(L2,W).

Let us consider H,W . The functor lenW yields a real number and is defined
by:

(Def. 26) There exists L such that rngL = SubformulaeH and L is one-to-one
and lenW = len(L,W).

The following propositions are true:

(9) If F /∈W, then len(W \ {F}) = lenW.
(10) If F ∈W, then len(W \ {F}) = lenW − lenF.
(11) If F /∈W and W1 =W ∪ {F}, then lenW1 = lenW + lenF.
(12) len(W ∪ {F}) ≤ lenW + lenF.
(13) len(∅H) = 0.
(14) len({F}) = lenF.
(15) If W ⊆W1, then lenW ≤ lenW1.
(16) If lenW < 1, then W = ∅H .
(17) lenW ≥ 0.
(18) len(W1 ∪W2) ≤ lenW1 + lenW2.

344 kazuhisa ishida and yasunari shidama

Let us consider v, H. Let us assume that H ∈ Subformulae v. The functor
LTLNew1(H, v) yielding a subset of Subformulae v is defined by:

(Def. 27) LTLNew1(H, v) = LTLNew1H.

The functor LTLNew2(H, v) yields a subset of Subformulae v and is defined by:

(Def. 28) LTLNew2(H, v) = LTLNew2H.

The following propositions are true:

(19) If N2 is a 1st successor of N1, then len (the new-component of N2) ≤
len (the new-component of N1)− 1.

(20) If N2 is a 2nd successor of N1, then len (the new-component of N2) ≤
len (the new-component of N1)− 1.
Let us consider v, N . The functor lenN yields a natural number and is

defined by:

(Def. 29) lenN = blen (the new-component of N)c.
The following propositions are true:

(21) If N2 is a successor of N1, then lenN2 ≤ lenN1 − 1.
(22) If lenN ≤ 0, then the new-component of N = ∅v.
(23) If lenN > 0, then the new-component of N 6= ∅v.
(24) There exist n, L, M such that 1 ≤ n and lenL = n and L(1) = N
and L(n) = M and the new-component of M = ∅v and L is a successor
sequence for v.

(25) Suppose N2 is a successor of N1. Then
(i) the old-component of N1 ⊆ the old-component of N2, and
(ii) the next-component of N1 ⊆ the next-component of N2.
(26) If L is a successor sequence for v and m ≤ lenL and L1 = L�Segm,
then L1 is a successor sequence for v.

(27) Suppose that
(i) L is a successor sequence for v,
(ii) F /∈ the old-component of CastNode(L(1), v),
(iii) 1 < n,
(iv) n ≤ lenL, and
(v) F ∈ the old-component of CastNode(L(n), v).
Then there exists m such that 1 ≤ m < n and F /∈ the old-component of
CastNode(L(m), v) and F ∈ the old-component of CastNode(L(m+1), v).

(28) Suppose N2 is a successor of N1 and F /∈ the old-component of N1 and
F ∈ the old-component of N2. Then N2 is a successor of N1 and F .

(29) Suppose that
(i) L is a successor sequence for v,
(ii) F ∈ the new-component of CastNode(L(1), v),
(iii) 1 < n,

model checking. Part III 345

(iv) n ≤ lenL, and
(v) F /∈ the new-component of CastNode(L(n), v).
Then there exists m such that 1 ≤ m < n and F ∈ the new-component
of CastNode(L(m), v) and F /∈ the new-component of CastNode(L(m +
1), v).

(30) Suppose N2 is a successor of N1 and F ∈ the new-component of N1 and
F /∈ the new-component of N2. Then N2 is a successor of N1 and F .

(31) Suppose L is a successor sequence for v and 1 ≤ m ≤ n ≤ lenL. Then
(i) the old-component of CastNode(L(m), v) ⊆ the old-component of
CastNode(L(n), v), and

(ii) the next-component of CastNode(L(m), v) ⊆ the next-component of
CastNode(L(n), v).

(32) If N2 is a successor of N1 and F , then F ∈ the old-component of N2.
(33) Suppose L is a successor sequence for v and 1 ≤ lenL and the new-
component of CastNode(L(lenL), v) = ∅v. Then the new-component of
CastNode(L(1), v) ⊆ the old-component of CastNode(L(lenL), v).

(34) Suppose L is a successor sequence for v and 1 ≤ m ≤ lenL and the
new-component of CastNode(L(lenL), v) = ∅v. Then the new-component
of CastNode(L(m), v) ⊆ the old-component of CastNode(L(lenL), v).

(35) If L is a successor sequence for v and 1 ≤ k < lenL, then CastNode(L(k+
1), v) is a successor of CastNode(L(k), v).

(36) If L is a successor sequence for v and 1 ≤ k ≤ lenL, then
lenCastNode(L(k), v) ≤ (lenCastNode(L(1), v)− k) + 1.
In the sequel s, s0, s1, s2 denote elementary strict LTL-nodes over v.
The following propositions are true:

(37) If s2 is next to s1, then the next-component of s1 ⊆ the old-component
of s2.

(38) Suppose s2 is next to s1 and F ∈ the old-component of s2. Then there
exist L, m such that
1 ≤ lenL and L is a successor sequence for v and L(1) = X s1 and
L(lenL) = s2 and 1 ≤ m < lenL and CastNode(L(m+1), v) is a successor
of CastNode(L(m), v) and F .

(39) Suppose s2 is next to s1 and H has release operator and H ∈ the
old-component of s2 and LeftArg(H) /∈ the old-component of s2. Then
RightArg(H) ∈ the old-component of s2 and H ∈ the next-component of
s2.

(40) Suppose s2 is next to s1 and H has release operator and H ∈ the next-
component of s1. Then RightArg(H) ∈ the old-component of s2 and H ∈
the old-component of s2.

(41) Suppose s1 is next to s0 and H ∈ the old-component of s1. Then

346 kazuhisa ishida and yasunari shidama

(i) if H is conjunctive, then LeftArg(H) ∈ the old-component of s1 and
RightArg(H) ∈ the old-component of s1,

(ii) if H is either disjunctive or has until operator, then LeftArg(H) ∈ the
old-component of s1 or RightArg(H) ∈ the old-component of s1,

(iii) if H has next operator, then Arg(H) ∈ the next-component of s1, and
(iv) if H has release operator, then RightArg(H) ∈ the old-component of
s1.

(42) Suppose s1 is next to s0 and s2 is next to s1 and H ∈ the old-component
of s1 andH has until operator. Then RightArg(H) ∈ the old-component of
s1 or LeftArg(H) ∈ the old-component of s1 and H ∈ the old-component
of s2.

Let us consider v. The functor NodesLTL v yields a non empty set and is
defined as follows:

(Def. 30) x ∈ NodesLTL v iff there exists a strict LTL-node N over v such that
x = N.

Let us consider v. Note that NodesLTL v is finite.
Let us consider v. The functor StatesLTL v yields a non empty set and is

defined by:

(Def. 31) StatesLTL v = {x ∈ NodesLTL v : x is an elementary strict LTL-node
over v}.
Let us consider v. Observe that StatesLTL v is finite.
The following propositions are true:

(43) init v is an element of StatesLTL v.

(44) s is an element of StatesLTL v.

(45) x is an element of StatesLTL v iff there exists s such that s = x.

Let us consider v, let us consider w, and let f be a function. We say that f
is a successor homomorphism from v to w if and only if:

(Def. 32) For every x such that x ∈ NodesLTL v and CastNode(x, v) is non ele-
mentary and w |= ·CastNode(x, v) holds CastNode(f(x), v) is a successor
of CastNode(x, v) and w |= ·CastNode(f(x), v).

We say that f is a homomorphism of v into w if and only if:

(Def. 33) For every x such that x ∈ NodesLTL v and CastNode(x, v) is non ele-
mentary and w |= ·CastNode(x, v) holds w |= ·CastNode(f(x), v).
The following propositions are true:

(46) Let f be a function from NodesLTL v into NodesLTL v. Suppose f is a
successor homomorphism from v to w. Then f is a homomorphism of v
into w.

(47) Let f be a function from NodesLTL v into NodesLTL v. Suppose f is a
homomorphism of v into w. Let given x. Suppose x ∈ NodesLTL v and

model checking. Part III 347

CastNode(x, v) is non elementary and w |= ·CastNode(x, v). Let given k.
If for every i such that i ≤ k holds CastNode(f i(x), v) is non elementary,
then w |= ·CastNode(fk(x), v).

(48) Let f be a function from NodesLTL v into NodesLTL v. Suppose f
is a successor homomorphism from v to w. Let given x. Suppose
x ∈ NodesLTL v and CastNode(x, v) is non elementary and w |=
·CastNode(x, v). Let given k. Suppose that for every i such that i ≤ k
holds CastNode(f i(x), v) is non elementary. Then CastNode(fk+1(x), v)
is a successor of CastNode(fk(x), v) and w |= ·CastNode(fk(x), v).

(49) Let f be a function from NodesLTL v into NodesLTL v. Suppose f is a suc-
cessor homomorphism from v to w. Let given x. Suppose x ∈ NodesLTL v
and CastNode(x, v) is non elementary and w |= ·CastNode(x, v).
Then there exists n such that for every i such that i < n holds
CastNode(f i(x), v) is non elementary and CastNode(fn(x), v) is elemen-
tary.

(50) Let f be a function from NodesLTL v into NodesLTL v. Suppose
f is a homomorphism of v into w. Let given x. Suppose x ∈
NodesLTL v and CastNode(x, v) is non elementary. Let given k. If
CastNode(fk(x), v) is non elementary and w |= ·CastNode(fk(x), v), then
w |= ·CastNode(fk+1(x), v).

(51) Let f be a function from NodesLTL v into NodesLTL v. Suppose f is a suc-
cessor homomorphism from v to w. Let given x. Suppose x ∈ NodesLTL v
and CastNode(x, v) is non elementary and w |= ·CastNode(x, v). Then
there exists n such that
(i) for every i such that i < n holds CastNode(f i(x), v) is non elementary
and CastNode(f i+1(x), v) is a successor of CastNode(f i(x), v),

(ii) CastNode(fn(x), v) is elementary, and
(iii) for every i such that i ≤ n holds w |= ·CastNode(f i(x), v).
In the sequel q denotes a sequence of StatesLTL v.
One can prove the following propositions:

(52) There exists s such that s = CastNode(q(n), v).

(53) Suppose H has until operator and H ∈ the old-component of
CastNode(q(1), v) and for every i holds CastNode(q(i + 1), v) is next
to CastNode(q(i), v). Suppose that for every i such that 1 ≤ i < n
holds RightArg(H) /∈ the old-component of CastNode(q(i), v). Let gi-
ven i. Suppose 1 ≤ i < n. Then LeftArg(H) ∈ the old-component of
CastNode(q(i), v) and H ∈ the old-component of CastNode(q(i), v).

(54) Suppose H has until operator and H ∈ the old-component of
CastNode(q(1), v) and for every i holds CastNode(q(i + 1), v) is next to
CastNode(q(i), v). Then

348 kazuhisa ishida and yasunari shidama

(i) for every i such that i ≥ 1 holds H ∈ the old-
component of CastNode(q(i), v) and LeftArg(H) ∈ the old-component
of CastNode(q(i), v) and RightArg(H) /∈ the old-component of
CastNode(q(i), v), or

(ii) there exists j such that j ≥ 1 and RightArg(H) ∈ the old-component
of CastNode(q(j), v) and for every i such that 1 ≤ i < j holds H ∈ the
old-component of CastNode(q(i), v) and LeftArg(H) ∈ the old-component
of CastNode(q(i), v).

(55)
⋃
(2X+) = X.

(56) If N is non elementary, then the new-component of N 6= ∅ and the
new-component of N ∈ 2Subformulae v+ .

Let us consider v. One can verify that
⋃
(2Subformulae v+) is non empty and

2Subformulae v+ is non empty.
We now state the proposition

(57) There exists a choice function of 2Subformulae v+ which is a function from
2Subformulae v+ into Subformulae v.

In the sequel U denotes a choice function of 2Subformulae v+ .
Let us consider v, let us consider U , and let us consider N . Let us assume

that N is non elementary. The U -chosen formula of N yielding an LTL-formula
is defined as follows:

(Def. 34) The U -chosen formula of N = U(the new-component of N).

The following proposition is true

(58) If N is non elementary, then the U -chosen formula of N ∈ the new-
component of N .

Let us consider w, let us consider v, let us consider U , and let us consider
N . The U -chosen successor of N w.r.t. w, v yields a strict LTL-node over v and
is defined by:

(Def. 35) The U -chosen successor of N w.r.t. w, v

=



SuccNode1(the U -chosen formula of N,N),
if the U -chosen formula of Ndoes not have until operator and
w |= ·SuccNode1(the U -chosen formula of N,N) or
the U -chosen formula of N has until operator and
w 6|= RightArg(the U -chosen formula of N),

SuccNode2(the U -chosen formula of N , N), otherwise.
One can prove the following propositions:

(59) Suppose w |= ·N and N is non elementary. Then
(i) w |= ·(the U -chosen successor of N w.r.t. w, v), and
(ii) the U -chosen successor of N w.r.t. w, v is a successor of N .

(60) Suppose w |= ·N andN is non elementary. Suppose the U -chosen formula
of N has until operator and w |= RightArg(the U -chosen formula of N).

model checking. Part III 349

Then
(i) RightArg(the U -chosen formula of N) ∈ the new-component of the
U -chosen successor of N w.r.t. w, v or RightArg(the U -chosen formula of
N) ∈ the old-component of N , and

(ii) the U -chosen formula of N ∈ the old-component of the U -chosen suc-
cessor of N w.r.t. w, v.

(61) Suppose w |= ·N and N is non elementary. Then
(i) the old-component ofN ⊆ the old-component of the U -chosen successor
of N w.r.t. w, v, and

(ii) the next-component of N ⊆ the next-component of the U -chosen suc-
cessor of N w.r.t. w, v.

Let us consider w, let us consider v, and let us consider U . The U -choice suc-
cessor function w.r.t. w, v yielding a function from NodesLTL v into NodesLTL v
is defined by the condition (Def. 36).

(Def. 36) Let given x. Suppose x ∈ NodesLTL v. Then (the U -choice successor
function w.r.t. w, v)(x) = the U -chosen successor of CastNode(x, v) w.r.t.
w, v.

We now state the proposition

(62) The U -choice successor function w.r.t. w, v is a successor homomorphism
from v to w.

2. Negation Inner most LTL

Let us consider H. We say that H is negation-inner-most if and only if:

(Def. 37) For every LTL-formula G such that G is a subformula of H holds if G
is negative, then Arg(G) is atomic.

Let us observe that there exists an LTL-formula which is negation-inner-
most.
Let us consider H. We say that H is sub-atomic if and only if:

(Def. 38) H is atomic or there exists an LTL-formula G such that G is atomic and
H = ¬G.
Next we state several propositions:

(63) If H is negation-inner-most and F is a subformula of H, then F is
negation-inner-most.

(64) H is sub-atomic iff H is atomic or H is negative and Arg(H) is atomic.

(65) Suppose H is negation-inner-most. Then H is either sub-atomic, or con-
junctive, or disjunctive, or has next operator, or until operator, or release
operator.

(66) If H is negation-inner-most and has next operator, then Arg(H) is
negation-inner-most.

350 kazuhisa ishida and yasunari shidama

(67) Suppose that
(i) H is conjunctive, or
(ii) H is disjunctive, or
(iii) H is negation-inner-most.
Then LeftArg(H) is negation-inner-most and RightArg(H) is negation-
inner-most.

3. Definition of Buchi Automaton and Verification of the Main
Theorem

LetW be a non empty set. We consider Buchi automatons overW as systems
〈 a carrier, a transition, an initial state, final states 〉,

where the carrier is a set, the transition is a relation between the carrier×W
and the carrier, the initial state is an element of 2the carrier, and the final states
constitute a subset of 2the carrier.
Let W be a non empty set, let B be a Buchi automaton over W , and let w

be an element of the infinite sequences of W . We say that w is accepted by B
if and only if the condition (Def. 39) is satisfied.

(Def. 39) There exists a sequence r1 of the carrier of B such that
(i) r1(0) ∈ the initial state of B, and
(ii) for every natural number i holds 〈〈〈〈r1(i), (CastSeq(w,W))(i)〉〉, r1(i +
1)〉〉 ∈ the transition of B and for every set F1 such that F1 ∈ the final
states of B holds {k ∈ N: r1(k) ∈ F1} is an infinite set.
For simplicity, we use the following convention: v denotes a negation-inner-

most LTL-formula, U denotes a choice function of 2Subformulae v+ , N denotes a
strict LTL-node over v, and s, s1 denote elementary strict LTL-nodes over v.
Let us consider v and let us consider N . The functor atomicLTLN yields a

subset of WFFLTL and is defined by:

(Def. 40) atomicLTLN = {x;x ranges over LTL-formulae: x is atomic ∧ x ∈ the
old-component of N}.

The functor NegAtomicLTLN yields a subset of WFFLTL and is defined as fol-
lows:

(Def. 41) NegAtomicLTLN = {x;x ranges over LTL-formulae: x is atomic ∧ ¬x ∈
the old-component of N}.
Let us consider v and let us consider N . The functor LabelN yielding a set

is defined by:

(Def. 42) LabelN = {x ⊆ atomicLTL: atomicLTLN ⊆ x ∧ NegAtomicLTLN
misses x}.
Let us consider v. The functor TranLTL v yields a relation between

StatesLTL v ×AtomicFamily and StatesLTL v and is defined as follows:

model checking. Part III 351

(Def. 43) TranLTL v = {y ∈ StatesLTL v × AtomicFamily× StatesLTL v :∨
s,s1,x (y = 〈〈〈〈s, x〉〉, s1〉〉 ∧ s1 is next to s ∧ x ∈ Label s1)}.

The functor InitSLTL v yielding an element of 2StatesLTL v is defined as follows:

(Def. 44) InitSLTL v = {init v}.
Let us consider v and let us consider F . The functor FinalSLTL(F, v) yields

an element of 2StatesLTL v and is defined as follows:

(Def. 45) FinalSLTL(F, v) = {x ∈ StatesLTL v : F /∈ the old-component of
CastNode(x, v) ∨ RightArg(F) ∈ the old-component of CastNode(x, v)}.
Let us consider v. The functor FinalSLTL v yields a subset of 2StatesLTL v and

is defined by:

(Def. 46) FinalSLTL v = {x ∈ 2StatesLTL v:
∨
F (F is a subformula of v ∧ F has

until operator ∧ x = FinalSLTL(F, v))}.
Let us consider v. The functor BAutomaton v yields a Buchi automaton over

AtomicFamily and is defined as follows:

(Def. 47) BAutomaton v = 〈StatesLTL v,TranLTL v, InitSLTL v,FinalSLTL v〉.
The following proposition is true

(68) If w is accepted by BAutomaton v, then w |= v.
Let us consider w, let us consider v, let us consider U , and let us consider N .

Let us assume that N is non elementary and w |= ·N. The U -chosen successor
end number of N w.r.t. w, v yields an element of N and is defined by the
conditions (Def. 48).

(Def. 48)(i) For every i such that i < the U -chosen successor end number of
N w.r.t. w, v holds CastNode((the U -choice successor function w.r.t. w,
v)i(N), v) is non elementary and CastNode((the U -choice successor func-
tion w.r.t. w, v)i+1(N), v) is a successor of CastNode((the U -choice suc-
cessor function w.r.t. w, v)i(N), v),

(ii) CastNode((the U -choice successor function w.r.t.
w, v)the U -chosen successor end number of N w.r.t. w, v(N), v) is elementary, and

(iii) for every i such that i ≤ the U -chosen successor end number of N
w.r.t. w, v holds w |= ·CastNode((the U -choice successor function w.r.t.
w, v)i(N), v).

Let us consider w, let us consider v, let us consider U , and let us consider
N . Let us assume that w |= · X N. The U -chosen next node to N w.r.t. w, v
yielding an elementary strict LTL-node over v is defined by:

(Def. 49) The U -chosen next node to N w.r.t. w, v

=


CastNode((the U -choice successor function w.r.t. w,
v)the U -chosen successor end number of X N w.r.t. w, v(X N), v),
if X N is non elementary,

FinalNode v, otherwise.
One can prove the following proposition

352 kazuhisa ishida and yasunari shidama

(69) Suppose w |= · X s. Then the U -chosen next node to s w.r.t. w, v is next
to s and w |= ·(the U -chosen next node to s w.r.t. w, v).
Let us consider w, let us consider v, and let us consider U . The U -chosen

run w.r.t. w, v yields a sequence of StatesLTL v and is defined by the conditions
(Def. 50).

(Def. 50)(i) (The U -chosen run w.r.t. w, v)(0) = init v, and
(ii) for every n holds (the U -chosen run w.r.t. w, v)(n + 1) = the U -
chosen next node to CastNode((the U -chosen run w.r.t. w, v)(n), v) w.r.t.
Shift(w, n), v.

The following propositions are true:

(70) If w |= ·N, then Shift(w, 1) |= · X N.
(71) If w |= X v, then w |= · init v.
(72) w |= v iff w |= · X init v.
(73) Suppose w |= v. Let given n. Then
(i) CastNode((the U -chosen run w.r.t. w, v)(n + 1), v) is next to
CastNode((the U -chosen run w.r.t. w, v)(n), v), and

(ii) Shift(w, n) |= · X CastNode((the U -chosen run w.r.t. w, v)(n), v).
(74) Suppose w |= v. Let given i. Suppose H ∈ the old-component of
CastNode((the U -chosen run w.r.t. w, v)(i+1), v) andH has until operator
and Shift(w, i) |= RightArg(H). Then RightArg(H) ∈ the old-component
of CastNode((the U -chosen run w.r.t. w, v)(i+ 1), v).

(75) w is accepted by BAutomaton v iff w |= v.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[8] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171–186, 2006.
[9] Kazuhisa Ishida. Model checking. Part II. Formalized Mathematics, 16(3):231–245, 2008.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269–272, 1990.

[11] Konrad Raczkowski and Andrzej Nȩdzusiak. Series. Formalized Mathematics, 2(4):449–
452, 1991.

[12] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[13] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

model checking. Part III 353

[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received August 19, 2008

