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Summary. In this article, we define the Riemann Integral of functions
from R into Rn, and prove the linearity of this operator. The presented method
is based on [21].
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The articles [22], [1], [23], [5], [6], [15], [20], [24], [7], [17], [16], [2], [4], [3], [8],
[18], [9], [12], [10], [14], [13], [19], and [11] provide the notation and terminology
for this paper.

1. Preliminaries

Let A be a closed-interval subset of R, let f be a function from A into R,
let S be a non empty Division of A, and let D be an element of S. A finite
sequence of elements of R is said to be a middle volume of f and D if it satisfies
the conditions (Def. 1).

(Def. 1)(i) len it = lenD, and
(ii) for every natural number i such that i ∈ domD there exists an element
r of R such that r ∈ rng(f�divset(D, i)) and it(i) = r · vol(divset(D, i)).
Let A be a closed-interval subset of R, let f be a function from A into R,

let S be a non empty Division of A, let D be an element of S, and let F be a
middle volume of f andD. The functor middle sum(f, F ) yielding a real number
is defined as follows:

(Def. 2) middle sum(f, F ) =
∑
F.

We now state four propositions:
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(1) Let A be a closed-interval subset of R, f be a function from A into R, S
be a non empty Division of A, D be an element of S, and F be a middle
volume of f and D. If f�A is lower bounded, then lower sum(f,D) ≤
middle sum(f, F ).

(2) Let A be a closed-interval subset of R, f be a function from A into R, S
be a non empty Division of A, D be an element of S, and F be a middle
volume of f and D. If f�A is upper bounded, then middle sum(f, F ) ≤
upper sum(f,D).

(3) Let A be a closed-interval subset of R, f be a function from A into R, S be
a non empty Division of A, D be an element of S, and e be a real number.
Suppose f�A is lower bounded and 0 < e. Then there exists a middle
volume F of f and D such that middle sum(f, F ) ≤ lower sum(f,D) + e.

(4) Let A be a closed-interval subset of R, f be a function from A into R, S be
a non empty Division of A, D be an element of S, and e be a real number.
Suppose f�A is upper bounded and 0 < e. Then there exists a middle
volume F of f and D such that upper sum(f,D)− e ≤ middle sum(f, F ).
Let A be a closed-interval subset of R, let f be a function from A into R,

and let T be a DivSequence of A. A function from N into R∗ is said to be a
middle volume sequence of f and T if:

(Def. 3) For every element k of N holds it(k) is a middle volume of f and T (k).
Let A be a closed-interval subset of R, let f be a function from A into R, let

T be a DivSequence of A, let S be a middle volume sequence of f and T , and
let k be an element of N. Then S(k) is a middle volume of f and T (k).
Let A be a closed-interval subset of R, let f be a function from A into R, let

T be a DivSequence of A, and let S be a middle volume sequence of f and T .
The functor middle sum(f, S) yields a sequence of real numbers and is defined
by:

(Def. 4) For every element i of N holds (middle sum(f, S))(i) = middle sum(f, S(i)).
We now state several propositions:

(5) Let A be a closed-interval subset of R, f be a function from A into R, T
be a DivSequence of A, S be a middle volume sequence of f and T , and i
be an element of N. If f�A is lower bounded, then (lower sum(f, T ))(i) ≤
(middle sum(f, S))(i).

(6) Let A be a closed-interval subset of R, f be a function from A into R, T
be a DivSequence of A, S be a middle volume sequence of f and T , and i
be an element of N. If f�A is upper bounded, then (middle sum(f, S))(i) ≤
(upper sum(f, T ))(i).

(7) Let A be a closed-interval subset of R, f be a function from A into R,
T be a DivSequence of A, and e be an element of R. Suppose 0 < e and
f�A is lower bounded. Then there exists a middle volume sequence S of
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f and T such that for every element i of N holds (middle sum(f, S))(i) ≤
(lower sum(f, T ))(i) + e.

(8) Let A be a closed-interval subset of R, f be a function from A into R,
T be a DivSequence of A, and e be an element of R. Suppose 0 < e and
f�A is upper bounded. Then there exists a middle volume sequence S of f
and T such that for every element i of N holds (upper sum(f, T ))(i)− e ≤
(middle sum(f, S))(i).

(9) Let A be a closed-interval subset of R, f be a function from A in-
to R, T be a DivSequence of A, and S be a middle volume sequence
of f and T . Suppose f is bounded and f is integrable on A and δT is
convergent and lim(δT ) = 0. Then middle sum(f, S) is convergent and
limmiddle sum(f, S) = integral f.

(10) Let A be a closed-interval subset of R and f be a function from A into R.
Suppose f is bounded. Then f is integrable on A if and only if there exists a
real number I such that for every DivSequence T of A and for every middle
volume sequence S of f and T such that δT is convergent and lim(δT ) = 0
holds middle sum(f, S) is convergent and limmiddle sum(f, S) = I.

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into Rn, let S be a non empty Division of A, and let D be an
element of S. A finite sequence of elements of Rn is said to be a middle volume
of f and D if it satisfies the conditions (Def. 5).

(Def. 5)(i) len it = lenD, and
(ii) for every natural number i such that i ∈ domD there exists an element
r of Rn such that r ∈ rng(f�divset(D, i)) and it(i) = vol(divset(D, i)) · r.
Let n be an element of N, let A be a closed-interval subset of R, let f be a

function from A intoRn, let S be a non empty Division of A, letD be an element
of S, and let F be a middle volume of f and D. The functor middle sum(f, F )
yielding an element of Rn is defined by the condition (Def. 6).
(Def. 6) Let i be an element of N. Suppose i ∈ Seg n. Then there exists a fi-

nite sequence F1 of elements of R such that F1 = proj(i, n) · F and
(middle sum(f, F ))(i) =

∑
F1.

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into Rn, and let T be a DivSequence of A. A function from N
into (Rn)∗ is said to be a middle volume sequence of f and T if:
(Def. 7) For every element k of N holds it(k) is a middle volume of f and T (k).

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into Rn, let T be a DivSequence of A, let S be a middle volume
sequence of f and T , and let k be an element of N. Then S(k) is a middle volume
of f and T (k).
Let n be an element of N, let A be a closed-interval subset of R, let f be a
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function from A into Rn, let T be a DivSequence of A, and let S be a middle
volume sequence of f and T . The functor middle sum(f, S) yields a sequence of
〈En, ‖ · ‖〉 and is defined as follows:
(Def. 8) For every element i of N holds (middle sum(f, S))(i) = middle sum(f, S(i)).

Let n be an element of N, let Z be a non empty set, and let f , g be partial
functions from Z to Rn. The functor f + g yielding a partial function from Z
to Rn is defined by:
(Def. 9) dom(f + g) = dom f ∩ dom g and for every element c of Z such that

c ∈ dom(f + g) holds (f + g)c = fc + gc.
The functor f − g yielding a partial function from Z to Rn is defined as follows:

(Def. 10) dom(f − g) = dom f ∩ dom g and for every element c of Z such that
c ∈ dom(f − g) holds (f − g)c = fc − gc.
Let n be an element of N, let r be a real number, let Z be a non empty set,

and let f be a partial function from Z to Rn. The functor r f yielding a partial
function from Z to Rn is defined as follows:

(Def. 11) dom(r f) = dom f and for every element c of Z such that c ∈ dom(r f)
holds (r f)c = r · fc.

2. Definition of Riemann Integral of Functions from R into Rn

Let n be an element of N, let A be a closed-interval subset of R, and let f
be a function from A into Rn. We say that f is bounded if and only if:

(Def. 12) For every element i of N such that i ∈ Seg n holds proj(i, n)·f is bounded.
Let n be an element of N, let A be a closed-interval subset of R, and let f

be a function from A into Rn. We say that f is integrable if and only if:
(Def. 13) For every element i of N such that i ∈ Seg n holds proj(i, n) · f is inte-

grable on A.

Let n be an element of N, let A be a closed-interval subset of R, and let f
be a function from A into Rn. The functor integral f yielding an element of Rn
is defined by:

(Def. 14) dom integral f = Seg n and for every element i of N such that i ∈ Seg n
holds (integral f)(i) = integral proj(i, n) · f.
One can prove the following two propositions:

(11) Let n be an element of N, A be a closed-interval subset of R, f be a
function from A into Rn, T be a DivSequence of A, and S be a middle
volume sequence of f and T . Suppose f is bounded and integrable and δT
is convergent and lim(δT ) = 0. Then middle sum(f, S) is convergent and
limmiddle sum(f, S) = integral f.
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(12) Let n be an element of N, A be a closed-interval subset of R, and f be
a function from A into Rn. Suppose f is bounded. Then f is integrable if
and only if there exists an element I ofRn such that for every DivSequence
T of A and for every middle volume sequence S of f and T such that δT
is convergent and lim(δT ) = 0 holds middle sum(f, S) is convergent and
limmiddle sum(f, S) = I.

Let n be an element of N and let f be a partial function from R to Rn. We
say that f is bounded if and only if:

(Def. 15) For every element i of N such that i ∈ Seg n holds proj(i, n)·f is bounded.
Let n be an element of N, let A be a closed-interval subset of R, and let f be

a partial function from R to Rn. We say that f is integrable on A if and only if:
(Def. 16) For every element i of N such that i ∈ Seg n holds proj(i, n) · f is inte-

grable on A.

Let n be an element of N, let A be a closed-interval subset of R, and let f
be a partial function from R to Rn. The functor

∫
A

f(x)dx yields an element of

Rn and is defined by:

(Def. 17) dom
∫
A

f(x)dx = Seg n and for every element i of N such that i ∈ Seg n

holds (
∫
A

f(x)dx)(i) =
∫
A

(proj(i, n) · f)(x)dx.

The following two propositions are true:

(13) Let n be an element of N, A be a closed-interval subset of R, f be
a partial function from R to Rn, and g be a function from A into Rn.
Suppose f�A = g. Then f is integrable on A if and only if g is integrable.

(14) Let n be an element of N, A be a closed-interval subset of R, f be a
partial function from R to Rn, and g be a function from A into Rn. If
f�A = g, then

∫
A

f(x)dx = integral g.

Let a, b be real numbers, let n be an element of N, and let f be a partial

function from R to Rn. The functor
b∫
a

f(x)dx yielding an element of Rn is

defined as follows:

(Def. 18) dom
b∫
a

f(x)dx = Seg n and for every element i of N such that i ∈ Seg n

holds (
b∫
a

f(x)dx)(i) =
b∫
a

(proj(i, n) · f)(x)dx.
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3. Linearity of Integration Operator

We now state several propositions:

(15) Let n be an element of N, f1, f2 be partial functions from R to Rn, and
i be an element of N. If i ∈ Seg n, then proj(i, n) · (f1 + f2) = proj(i, n) ·
f1+proj(i, n) · f2 and proj(i, n) · (f1− f2) = proj(i, n) · f1− proj(i, n) · f2.

(16) Let n be an element of N, r be a real number, f be a partial function from
R to Rn, and i be an element of N. If i ∈ Seg n, then proj(i, n) · (r f) =
r (proj(i, n) · f).

(17) Let n be an element of N, A be a closed-interval subset of R, and f1,
f2 be partial functions from R to Rn. Suppose f1 is integrable on A and
f2 is integrable on A and A ⊆ dom f1 and A ⊆ dom f2 and f1�A is
bounded and f2�A is bounded. Then f1+f2 is integrable on A and f1−f2
is integrable on A and

∫
A

(f1 + f2)(x)dx =
∫
A

f1(x)dx +
∫
A

f2(x)dx and∫
A

(f1 − f2)(x)dx =
∫
A

f1(x)dx−
∫
A

f2(x)dx.

(18) Let n be an element of N, r be a real number, A be a closed-interval
subset of R, and f be a partial function from R to Rn. Suppose A ⊆ dom f
and f is integrable on A and f�A is bounded. Then r f is integrable on A

and
∫
A

(r f)(x)dx = r ·
∫
A

f(x)dx.

(19) Let n be an element of N, f be a partial function from R to Rn, A be
a closed-interval subset of R, and a, b be real numbers. If A = [a, b], then∫
A

f(x)dx =
b∫
a

f(x)dx.

(20) Let n be an element of N, f be a partial function from R to Rn, A be
a closed-interval subset of R, and a, b be real numbers. If A = [b, a], then

−
∫
A

f(x)dx =
b∫
a

f(x)dx.
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