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Riemann Integral of Functions
from R into R"

Keiichi Miyajima Yasunari Shidama
Ibaraki University Shinshu University
Hitachi, Japan Nagano, Japan

Summary. In this article, we define the Riemann Integral of functions
from R into R", and prove the linearity of this operator. The presented method
is based on [21].
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The articles [22], [1], [23], [5], [6], [15], [20], [24], [7], [17], [16], [2], [4], [3], [8]
[18], [9], [12], [10], [14], [13], [19], and [11] provide the notation and terminology
for this paper.

1. PRELIMINARIES

Let A be a closed-interval subset of R, let f be a function from A into R,
let S be a non empty Division of A, and let D be an element of S. A finite
sequence of elements of R is said to be a middle volume of f and D if it satisfies
the conditions (Def. 1).

(Def. 1)(i) lenit =len D, and
(ii)  for every natural number 7 such that i € dom D there exists an element
r of R such that r € rng(f[divset(D, 1)) and it(:) = r - vol(divset(D,1)).

Let A be a closed-interval subset of R, let f be a function from A into R,
let S be a non empty Division of A, let D be an element of S, and let F' be a
middle volume of f and D. The functor middle_sum(f, F') yielding a real number
is defined as follows:

(Def. 2) middle_sum(f, F) =3 F.

We now state four propositions:
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(1) Let A be a closed-interval subset of R, f be a function from A into R, S
be a non empty Division of A, D be an element of .S, and F' be a middle
volume of f and D. If f[A is lower bounded, then lower_sum(f, D) <
middle_sum(f, F).

(2) Let A be a closed-interval subset of R, f be a function from A into R, S
be a non empty Division of A, D be an element of S, and F' be a middle
volume of f and D. If f[A is upper bounded, then middle_sum(f, F') <
upper_sum(f, D).

(3) Let A be a closed-interval subset of R, f be a function from A into R, S be
a non empty Division of A, D be an element of S, and e be a real number.
Suppose f[A is lower bounded and 0 < e. Then there exists a middle
volume F' of f and D such that middle_sum(f, F') < lower_sum(f, D) + e.

(4) Let Abe a closed-interval subset of R, f be a function from A into R, S be
a non empty Division of A, D be an element of S, and e be a real number.
Suppose f[A is upper bounded and 0 < e. Then there exists a middle
volume F of f and D such that upper_sum(f, D) — e < middle_sum(f, F').

Let A be a closed-interval subset of R, let f be a function from A into R,

and let T be a DivSequence of A. A function from N into R* is said to be a
middle volume sequence of f and T if:

(Def. 3) For every element k of N holds it(k) is a middle volume of f and T'(k).

Let A be a closed-interval subset of R, let f be a function from A into R, let
T be a DivSequence of A, let S be a middle volume sequence of f and T, and
let k be an element of N. Then S(k) is a middle volume of f and T'(k).
Let A be a closed-interval subset of R, let f be a function from A into R, let
T be a DivSequence of A, and let S be a middle volume sequence of f and T
The functor middle_sum(f, .S) yields a sequence of real numbers and is defined
by:
(Def. 4) For every element ¢ of N holds (middle_sum(f, S))(7) = middle_sum(f, S(7)).
We now state several propositions:

(5) Let A be a closed-interval subset of R, f be a function from A into R, T’
be a DivSequence of A, S be a middle volume sequence of f and T, and ¢
be an element of N. If f[A is lower bounded, then (lower_sum(f,7"))(i) <
(middle_sum(f, S))(3).

(6) Let A be a closed-interval subset of R, f be a function from A into R, T

be a DivSequence of A, S be a middle volume sequence of f and T, and ¢
be an element of N. If f]A is upper bounded, then (middle_sum(f, S))(i) <
(upper_sum(f,T'))(i).

(7) Let A be a closed-interval subset of R, f be a function from A into R,
T be a DivSequence of A, and e be an element of R. Suppose 0 < e and
fTA is lower bounded. Then there exists a middle volume sequence S of
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f and T such that for every element i of N holds (middle_sum(f, S))(i) <
(lower_sum(f,T))(i) + e.

(8) Let A be a closed-interval subset of R, f be a function from A into R,
T be a DivSequence of A, and e be an element of R. Suppose 0 < e and
fTA is upper bounded. Then there exists a middle volume sequence S of f
and T such that for every element i of N holds (upper_sum(f,7))(i) —e <
(middle_sum(f, S))(4).

(9) Let A be a closed-interval subset of R, f be a function from A in-
to R, T be a DivSequence of A, and S be a middle volume sequence
of f and T. Suppose f is bounded and f is integrable on A and Jr is
convergent and lim(d7) = 0. Then middle_sum(f,S) is convergent and
lim middle_sum( f, S) = integral f.

(10) Let A be a closed-interval subset of R and f be a function from A into R.
Suppose f is bounded. Then f is integrable on A if and only if there exists a
real number [ such that for every DivSequence T of A and for every middle
volume sequence S of f and T such that d7 is convergent and lim(d7) = 0
holds middle_sum(f, S) is convergent and lim middle_sum(f, S) = I.

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into R™, let S be a non empty Division of A, and let D be an
element of S. A finite sequence of elements of R" is said to be a middle volume
of f and D if it satisfies the conditions (Def. 5).

(Def. 5)(i) lenit =len D, and
(ii) for every natural number ¢ such that ¢ € dom D there exists an element
r of R™ such that r € rng(f[divset(D,1)) and it(:) = vol(divset(D, 1)) - r.
Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into R", let S be a non empty Division of A, let D be an element
of S, and let F' be a middle volume of f and D. The functor middle_sum(f, F')
yielding an element of R"™ is defined by the condition (Def. 6).

(Def. 6) Let i be an element of N. Suppose ¢ € Segn. Then there exists a fi-
nite sequence Fj of elements of R such that F; = proj(i,n) - F' and
(middle_sum(f, F))(i) = > F}.

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into R"™, and let T" be a DivSequence of A. A function from N
into (R™)" is said to be a middle volume sequence of f and T if:

(Def. 7) For every element k of N holds it(k) is a middle volume of f and T'(k).

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into R", let T' be a DivSequence of A, let S be a middle volume
sequence of f and T, and let k be an element of N. Then S(k) is a middle volume
of f and T'(k).

Let n be an element of N, let A be a closed-interval subset of R, let f be a
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function from A into R", let T' be a DivSequence of A, and let S be a middle
volume sequence of f and 7. The functor middle_sum(f, S) yields a sequence of
(E™, |l - |I) and is defined as follows:

(Def. 8) For every element ¢ of N holds (middle_sum(f, S))(7) = middle_sum(f, S(7)).

Let n be an element of N, let Z be a non empty set, and let f, g be partial
functions from Z to R". The functor f + ¢ yielding a partial function from Z
to R™ is defined by:

(Def. 9) dom(f + g) = dom f Ndomg and for every element ¢ of Z such that
¢ € dom(f +g) holds (f + g)c = fe + ge-

The functor f — g yielding a partial function from Z to R" is defined as follows:

(Def. 10) dom(f — g) = dom f Ndomg and for every element ¢ of Z such that
¢ € dom(f — g) holds (f —g)c = fe — ge-

Let n be an element of N, let r be a real number, let Z be a non empty set,

and let f be a partial function from Z to R". The functor r f yielding a partial
function from Z to R"™ is defined as follows:
(Def. 11) dom(r f) = dom f and for every element ¢ of Z such that ¢ € dom(r f)
holds (r f)e =1 fe.

2. DEFINITION OF RIEMANN INTEGRAL OF FUNCTIONS FROM R INTO R"

Let n be an element of N, let A be a closed-interval subset of R, and let f
be a function from A into R"™. We say that f is bounded if and only if:
(Def. 12) For every element ¢ of N such that i € Segn holds proj(i, n)- f is bounded.
Let n be an element of N, let A be a closed-interval subset of R, and let f
be a function from A into R™. We say that f is integrable if and only if:
(Def. 13) For every element ¢ of N such that i € Segn holds proj(i,n) - f is inte-
grable on A.
Let n be an element of N, let A be a closed-interval subset of R, and let f
be a function from A into R™. The functor integral f yielding an element of R"
is defined by:
(Def. 14) dom integral f = Segn and for every element i of N such that ¢ € Segn
holds (integral f)(i) = integral proj(i,n) - f.
One can prove the following two propositions:
(11) Let n be an element of N, A be a closed-interval subset of R, f be a
function from A into R™, T be a DivSequence of A, and S be a middle
volume sequence of f and T'. Suppose f is bounded and integrable and 7

is convergent and lim(d7) = 0. Then middle_sum(f, S) is convergent and
lim middle_sum( f, S) = integral f.
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(12) Let n be an element of N, A be a closed-interval subset of R, and f be
a function from A into R". Suppose f is bounded. Then f is integrable if
and only if there exists an element I of R™ such that for every DivSequence
T of A and for every middle volume sequence S of f and T such that dr
is convergent and lim(d7) = 0 holds middle_sum(f, S) is convergent and
lim middle_sum(f, S) = I.

Let n be an element of N and let f be a partial function from R to R"™. We
say that f is bounded if and only if:

(Def. 15) For every element i of N such that i € Segn holds proj(i,n)- f is bounded.

Let n be an element of N, let A be a closed-interval subset of R, and let f be
a partial function from R to R™. We say that f is integrable on A if and only if:

(Def. 16) For every element i of N such that i € Segn holds proj(i,n) - f is inte-
grable on A.

Let n be an element of N, let A be a closed-interval subset of R, and let f
be a partial function from R to R". The functor / f(z)dz yields an element of
A

R™ and is defined by:
(Def. 17) dom/ f(z)dz = Segn and for every element i of N such that i € Segn
A

holds ( [ f(w)dz)(i) = [ (proj(i.n) - f)(w)da.
A A
The following two propositions are true:

(13) Let n be an element of N, A be a closed-interval subset of R, f be
a partial function from R to R™, and g be a function from A into R".
Suppose f[A = g. Then f is integrable on A if and only if g is integrable.

(14) Let n be an element of N, A be a closed-interval subset of R, f be a
partial function from R to R", and ¢ be a function from A into R™. If

fTA =g, then /f(x)dx = integral g.
A
Let a, b be real numbers, let n be an element of N, and let f be a partial

b
function from R to R™. The functor / f(x)dx yielding an element of R™ is
a

defined as follows:
b

(Def. 18) dom/ f(z)dr = Segn and for every element ¢ of N such that i € Segn

b b
holds (/ f(z)dz)(i) = /(proj(z',n) - f)(x)dx.
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3. LINEARITY OF INTEGRATION OPERATOR

We now state several propositions:

(15) Let n be an element of N, fi, fa be partial functions from R to R™, and
i be an element of N. If i € Segn, then proj(i,n) - (f1 + f2) = proj(i,n) -
f1+proj(i,n) - fo and proj(i,n) - (f1 — fo) = proj(i,n) - f1 — proj(i,n) - fa.

(16) Let n be an element of N,  be a real number, f be a partial function from
R to R"™, and i be an element of N. If i € Segn, then proj(i,n) - (r f) =
r (proj(i, n) ’ f)

(17) Let n be an element of N, A be a closed-interval subset of R, and fi,
f2 be partial functions from R to R™. Suppose fi is integrable on A and
fo is integrable on A and A C dom f; and A C dom fo and fi[A is
bounded and f>[A is bounded. Then fi + f5 is integrable on A and f; — fo

is integrable on A and /(fl + f2)(z)dx = /fl(a:)da: + /fg(a:)dx and
A A A
[t = t@)de = [ fiwde— [ pas.
A A A
(18) Let n be an element of N, r be a real number, A be a closed-interval
subset of R, and f be a partial function from R to R". Suppose A C dom f
and f is integrable on A and f[A is bounded. Then r f is integrable on A

and /(r Hx)de =r- /f(x)dx
A A
(19) Let n be an element of N, f be a partial function from R to R"™, A be
a closed-interval subset of R, and a, b be real numbers. If A = [a, b], then

/f(:n)dx:/bf(:n)dx.
A a

(20) Let n be an element of N, f be a partial function from R to R™, A be
a closed-interval subset of R, and a, b be real numbers. If A = [b, a], then

—/f(x)dx:/bf(x)d$.
A a
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