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Poland

Summary. In this paper we present basic properties of n-dimensional
topological spaces according to the book [10]. In the article the formalization of
Section 1.5 is completed.
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The papers [15], [1], [3], [9], [5], [8], [16], [2], [4], [6], [13], [12], [17], [14], [18], [7],
and [11] provide the terminology and notation for this paper.

1. Order of a Family of Subsets of a Set

In this paper n denotes a natural number, X denotes a set, and F1, G1
denote families of subsets of X.

Let us consider X, F1. We say that F1 is finite-order if and only if:

(Def. 1) There exists n such that for every G1 such that G1 ⊆ F1 and n ∈ CardG1
holds

⋂
G1 is empty.

Let us consider X. Observe that there exists a family of subsets of X which
is finite-order and every family of subsets of X which is finite is also finite-order.

Let us considerX, F1. The functor orderF1 yielding an extended real number
is defined as follows:

(Def. 2)(i) For everyG1 such that orderF1+1 ∈ CardG1 andG1 ⊆ F1 holds
⋂
G1

is empty and there exists G1 such that G1 ⊆ F1 but CardG1 = orderF1+1
but
⋂
G1 is non empty or G1 is empty if F1 is finite-order,

(ii) orderF1 = +∞, otherwise.
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Let us consider X and let F be a finite-order family of subsets of X. Observe
that orderF + 1 is natural and orderF is integer.

Next we state three propositions:

(1) If orderF1 ≤ n, then F1 is finite-order.

(2) If orderF1 ≤ n, then for every G1 such that G1 ⊆ F1 and n+1 ∈ CardG1
holds

⋂
G1 is empty.

(3) If for every finite family G of subsets of X such that G ⊆ F1 and n+1 <
G holds

⋂
G is empty, then orderF1 ≤ n.

2. Basic Properties of n-dimensional Topological Spaces

One can verify that there exists a topological space which is finite-ind,
second-countable, and metrizable.

For simplicity, we adopt the following convention: T1 is a metrizable topolo-
gical space, T2, T3 are finite-ind second-countable metrizable topological spaces,
A, B, L, H are subsets of T1, U , W are open subsets of T1, p is a point of T1,
F , G are finite families of subsets of T1, and I is an integer.

We now state several propositions:

(4) Let given T1. Suppose that
(i) T1 is second-countable, and

(ii) there exists F such that F is closed, a cover of T1, countable, and
finite-ind and indF ≤ n.
Then T1 is finite-ind and indT1 ≤ n.

(5) Let A, B be finite-ind subsets of T1. Suppose A is closed and T1�(A∪B)
is second-countable and indA ≤ I and indB ≤ I. Then ind(A ∪ B) ≤ I
and A ∪B is finite-ind.

(6) Let given T1. Suppose T1 is second-countable and finite-ind and indT1 ≤
n. Then there exist A, B such that Ω(T1) = A ∪ B and A misses B and
indA ≤ n− 1 and indB ≤ 0.

(7) Let given T1. Suppose T1 is second-countable and finite-ind and indT1 ≤
I. Then there exists F such that

(i) F is a cover of T1 and finite-ind,
(ii) indF ≤ 0,
(iii) F ≤ I + 1, and
(iv) for all A, B such that A, B ∈ F and A meets B holds A = B.

(8) Let given T1. Suppose T1 is second-countable and there exists F such
that F is a cover of T1 and finite-ind and indF ≤ 0 and F ≤ I + 1. Then
T1 is finite-ind and indT1 ≤ I.

Let T1 be a second-countable metrizable topological space and let A, B be
finite-ind subsets of T1. One can check that A ∪B is finite-ind.
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Next we state two propositions:

(9) If A is finite-ind and B is finite-ind and T1�(A∪B) is second-countable,
then A ∪B is finite-ind and ind(A ∪B) ≤ indA+ indB + 1.

(10) For all topological spaces T4, T5 and for every subset A1 of T4 and for
every subset A2 of T5 holds Fr(A1 ×A2) = FrA1 ×A2 ∪A1 × FrA2.

Let us consider T2, T3. Observe that T2 × T3 is finite-ind.
We now state several propositions:

(11) Let given A, B. Suppose A is closed and B is closed and A misses B. Let
given H. Suppose indH ≤ n and T1�H is second-countable and finite-ind.
Then there exists L such that L separates A, B and ind(L ∩H) ≤ n− 1.

(12) Let given T1. Suppose T1 is finite-ind and second-countable and indT1 ≤
n. Let given A, B. Suppose A is closed and B is closed and A misses B.
Then there exists L such that L separates A, B and indL ≤ n− 1.

(13) Let givenH. Suppose T1�H is second-countable. ThenH is finite-ind and
indH ≤ n if and only if for all p, U such that p ∈ U there exists W such
that p ∈W and W ⊆ U and H ∩ FrW is finite-ind and ind(H ∩ FrW ) ≤
n− 1.

(14) Let givenH. Suppose T1�H is second-countable. ThenH is finite-ind and
indH ≤ n if and only if there exists a basis B1 of T1 such that for every A
such that A ∈ B1 holds H ∩ FrA is finite-ind and ind(H ∩ FrA) ≤ n− 1.

(15) If T2 is non empty or T3 is non empty, then ind(T2×T3) ≤ indT2+indT3.

(16) If indT3 = 0, then ind(T2 × T3) = indT2.

3. Small Inductive Dimension of Euclidean Spaces

For simplicity, we follow the rules: u denotes a point of E1, U denotes a point
of E1T, r, u1 denote real numbers, and s denotes a real number.

Next we state three propositions:

(17) If 〈u1〉 = u and r > 0, then Ball(u, r) = {〈s〉 : u1− r ≤ s ∧ s ≤ u1+ r}.
(18) If 〈u1〉 = U and r > 0, then Fr Ball(U, r) = {〈u1 − r〉, 〈u1 + r〉}.
(19) Let T be a topological space and A be a countable subset of T . If T �A

is a T4 space, then A is finite-ind and indA ≤ 0.

Let T1 be a metrizable topological space. Observe that every subset of T1
which is countable is also finite-ind.

Let n be a natural number. Observe that EnT is finite-ind.
One can prove the following propositions:

(20) If n ≤ 1, then ind(EnT) = n.

(21) ind(EnT) ≤ n.
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(22) Let given A. Suppose T1�A is second-countable and finite-ind and
indA ≤ 0. Let given F . Suppose F is open and a cover of A. Then there
exists a function g from F into 2the carrier of T1 such that

(i) rng g is open,
(ii) rng g is a cover of A,
(iii) for every set a such that a ∈ F holds g(a) ⊆ a, and
(iv) for all sets a, b such that a, b ∈ F and a 6= b holds g(a) misses g(b).

(23) Let given T1. Suppose T1 is second-countable and finite-ind and indT1 ≤
n. Let given F . Suppose F is open and a cover of T1. Then there exists G
such that G is open, a cover of T1, and finer than F and G ≤ F · (n+ 1)
and orderG ≤ n.

(24) Let given T1. Suppose T1 is finite-ind. Let given A. Suppose ind(Ac) ≤ n
and T1�Ac is second-countable. Let A1, A2 be closed subsets of T1. Suppose
A = A1∪A2. Then there exist closed subsetsX1,X2 of T1 such that Ω(T1) =
X1 ∪X2 and A1 ⊆ X1 and A2 ⊆ X2 and A1 ∩X2 = A1 ∩ A2 = X1 ∩ A2
and ind(X1 ∩X2 \A1 ∩A2) ≤ n− 1.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–

485, 1991.
[7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.

[10] Ryszard Engelking. Teoria wymiaru. PWN, 1981.
[11] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285–294,

1998.
[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[14] Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics,

17(3):207–212, 2009, doi: 10.2478/v10037-009-0025-7.
[15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.
[16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

Received August 7, 2009


