Small Inductive Dimension of Topological Spaces. Part II

Karol Pąk Institute of Computer Science University of Białystok Poland

Summary. In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.

MML identifier: TOPDIM_2, version: 7.11.04 4.130.1076

The papers [15], [1], [3], [9], [5], [8], [16], [2], [4], [6], [13], [12], [17], [14], [18], [7], and [11] provide the terminology and notation for this paper.

1. Order of a Family of Subsets of a Set

In this paper n denotes a natural number, X denotes a set, and F_1 , G_1 denote families of subsets of X.

Let us consider X, F_1 . We say that F_1 is finite-order if and only if:

(Def. 1) There exists n such that for every G_1 such that $G_1 \subseteq F_1$ and $n \in \operatorname{Card} G_1$ holds $\bigcap G_1$ is empty.

Let us consider X. Observe that there exists a family of subsets of X which is finite-order and every family of subsets of X which is finite is also finite-order. Let us consider X, F_1 . The functor order F_1 yielding an extended real number

is defined as follows:

- (Def. 2)(i) For every G_1 such that order $F_1+1 \in \operatorname{Card} G_1$ and $G_1 \subseteq F_1$ holds $\bigcap G_1$ is empty and there exists G_1 such that $G_1 \subseteq F_1$ but $\operatorname{Card} G_1 = \operatorname{order} F_1+1$ but $\bigcap G_1$ is non empty or G_1 is empty if F_1 is finite-order,
 - (ii) order $F_1 = +\infty$, otherwise.

C 2009 University of Białystok ISSN 1426-2630(p), 1898-9934(e) Let us consider X and let F be a finite-order family of subsets of X. Observe that order F + 1 is natural and order F is integer.

Next we state three propositions:

- (1) If order $F_1 \leq n$, then F_1 is finite-order.
- (2) If order $F_1 \leq n$, then for every G_1 such that $G_1 \subseteq F_1$ and $n+1 \in \operatorname{Card} G_1$ holds $\bigcap G_1$ is empty.
- (3) If for every finite family G of subsets of X such that $G \subseteq F_1$ and $n+1 < \overline{\overline{G}}$ holds $\bigcap G$ is empty, then order $F_1 \leq n$.

2. Basic Properties of *n*-dimensional Topological Spaces

One can verify that there exists a topological space which is finite-ind, second-countable, and metrizable.

For simplicity, we adopt the following convention: T_1 is a metrizable topological space, T_2 , T_3 are finite-ind second-countable metrizable topological spaces, A, B, L, H are subsets of T_1 , U, W are open subsets of T_1 , p is a point of T_1 , F, G are finite families of subsets of T_1 , and I is an integer.

- We now state several propositions:
- (4) Let given T_1 . Suppose that
- (i) T_1 is second-countable, and
- (ii) there exists F such that F is closed, a cover of T_1 , countable, and finite-ind and ind $F \leq n$.

Then T_1 is finite-ind and $\operatorname{ind} T_1 \leq n$.

- (5) Let A, B be finite-ind subsets of T_1 . Suppose A is closed and $T_1 \upharpoonright (A \cup B)$ is second-countable and $\operatorname{ind} A \leq I$ and $\operatorname{ind} B \leq I$. Then $\operatorname{ind}(A \cup B) \leq I$ and $A \cup B$ is finite-ind.
- (6) Let given T_1 . Suppose T_1 is second-countable and finite-ind and $T_1 \leq n$. Then there exist A, B such that $\Omega_{(T_1)} = A \cup B$ and A misses B and $A \leq n-1$ and $A \leq 0$.
- (7) Let given T_1 . Suppose T_1 is second-countable and finite-ind and $T_1 \leq I$. Then there exists F such that
- (i) F is a cover of T_1 and finite-ind,
- (ii) $\operatorname{ind} F \leq 0$,
- (iii) $\overline{F} \leq I+1$, and
- (iv) for all A, B such that A, $B \in F$ and A meets B holds A = B.
- (8) Let given T_1 . Suppose T_1 is second-countable and there exists F such that F is a cover of T_1 and finite-ind and $\operatorname{ind} F \leq 0$ and $\overline{\overline{F}} \leq I + 1$. Then T_1 is finite-ind and $\operatorname{ind} T_1 \leq I$.

Let T_1 be a second-countable metrizable topological space and let A, B be finite-ind subsets of T_1 . One can check that $A \cup B$ is finite-ind.

Next we state two propositions:

- (9) If A is finite-ind and B is finite-ind and $T_1 \upharpoonright (A \cup B)$ is second-countable, then $A \cup B$ is finite-ind and $\operatorname{ind}(A \cup B) \leq \operatorname{ind} A + \operatorname{ind} B + 1$.
- (10) For all topological spaces T_4 , T_5 and for every subset A_1 of T_4 and for every subset A_2 of T_5 holds $\operatorname{Fr}(A_1 \times A_2) = \operatorname{Fr} A_1 \times \overline{A_2} \cup \overline{A_1} \times \operatorname{Fr} A_2$. Let us consider T_2 , T_3 . Observe that $T_2 \times T_3$ is finite-ind.

We now state several propositions:

- (11) Let given A, B. Suppose A is closed and B is closed and A misses B. Let given H. Suppose ind $H \leq n$ and $T_1 \upharpoonright H$ is second-countable and finite-ind. Then there exists L such that L separates A, B and $\operatorname{ind}(L \cap H) \leq n-1$.
- (12) Let given T_1 . Suppose T_1 is finite-ind and second-countable and $\operatorname{ind} T_1 \leq n$. Let given A, B. Suppose A is closed and B is closed and A misses B. Then there exists L such that L separates A, B and $\operatorname{ind} L \leq n 1$.
- (13) Let given H. Suppose $T_1 \upharpoonright H$ is second-countable. Then H is finite-ind and ind $H \leq n$ if and only if for all p, U such that $p \in U$ there exists W such that $p \in W$ and $W \subseteq U$ and $H \cap \operatorname{Fr} W$ is finite-ind and $\operatorname{ind}(H \cap \operatorname{Fr} W) \leq n-1$.
- (14) Let given H. Suppose $T_1 \upharpoonright H$ is second-countable. Then H is finite-ind and ind $H \leq n$ if and only if there exists a basis B_1 of T_1 such that for every A such that $A \in B_1$ holds $H \cap \operatorname{Fr} A$ is finite-ind and $\operatorname{ind}(H \cap \operatorname{Fr} A) \leq n-1$.
- (15) If T_2 is non empty or T_3 is non empty, then $\operatorname{ind}(T_2 \times T_3) \leq \operatorname{ind} T_2 + \operatorname{ind} T_3$.
- (16) If ind $T_3 = 0$, then $ind(T_2 \times T_3) = ind T_2$.

3. Small Inductive Dimension of Euclidean Spaces

For simplicity, we follow the rules: u denotes a point of \mathcal{E}^1 , U denotes a point of $\mathcal{E}^1_{\mathrm{T}}$, r, u_1 denote real numbers, and s denotes a real number.

Next we state three propositions:

- (17) If $\langle u_1 \rangle = u$ and r > 0, then $\overline{\text{Ball}}(u, r) = \{ \langle s \rangle : u_1 r \le s \land s \le u_1 + r \}.$
- (18) If $\langle u_1 \rangle = U$ and r > 0, then Fr Ball $(U, r) = \{ \langle u_1 r \rangle, \langle u_1 + r \rangle \}$.
- (19) Let T be a topological space and A be a countable subset of T. If $T \upharpoonright A$ is a T_4 space, then A is finite-ind and $\operatorname{ind} A \leq 0$.

Let T_1 be a metrizable topological space. Observe that every subset of T_1 which is countable is also finite-ind.

Let n be a natural number. Observe that $\mathcal{E}^n_{\mathrm{T}}$ is finite-ind.

One can prove the following propositions:

- (20) If $n \leq 1$, then $\operatorname{ind}(\mathcal{E}_{\mathrm{T}}^n) = n$.
- (21) $\operatorname{ind}(\mathcal{E}_{\mathrm{T}}^n) \leq n.$

KAROL PĄK

- (22) Let given A. Suppose $T_1 \upharpoonright A$ is second-countable and finite-ind and ind $A \leq 0$. Let given F. Suppose F is open and a cover of A. Then there exists a function g from F into 2^{the carrier of T₁} such that
 - (i) $\operatorname{rng} g$ is open,
 - (ii) $\operatorname{rng} g$ is a cover of A,
- (iii) for every set a such that $a \in F$ holds $g(a) \subseteq a$, and
- (iv) for all sets a, b such that $a, b \in F$ and $a \neq b$ holds g(a) misses g(b).
- (23) Let given T_1 . Suppose T_1 is second-countable and finite-ind and $T_1 \leq n$. Let given F. Suppose F is open and a cover of T_1 . Then there exists G such that G is open, a cover of T_1 , and finer than F and $\overline{\overline{G}} \leq \overline{\overline{F}} \cdot (n+1)$ and order $G \leq n$.
- (24) Let given T_1 . Suppose T_1 is finite-ind. Let given A. Suppose $\operatorname{ind}(A^c) \leq n$ and $T_1 \upharpoonright A^c$ is second-countable. Let A_1, A_2 be closed subsets of T_1 . Suppose $A = A_1 \cup A_2$. Then there exist closed subsets X_1, X_2 of T_1 such that $\Omega_{(T_1)} =$ $X_1 \cup X_2$ and $A_1 \subseteq X_1$ and $A_2 \subseteq X_2$ and $A_1 \cap X_2 = A_1 \cap A_2 = X_1 \cap A_2$ and $\operatorname{ind}(X_1 \cap X_2 \setminus A_1 \cap A_2) \leq n - 1$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- 3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- 4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [10] Ryszard Engelking. Teoria wymiaru. PWN, 1981.
- [11] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285–294, 1998.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
- [14] Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.
- [15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received August 7, 2009

222