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Summary. In this article, we give a definition of a functional space which
is constructed from all continuous functions defined on a compact topological
space. We prove that this functional space is a Banach algebra. Next, we give a
definition of a function space which is constructed from all real-valued continuous
functions with bounded support. We prove that this function space is a real
normed space.
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The notation and terminology used here have been introduced in the following
papers: [2], [15], [7], [17], [16], [10], [3], [18], [14], [13], [12], [1], [4], [11], [6], [8],
[19], [20], [9], and [5].

1. Banach Algebra of Continuous Functionals

Let X be a 1-sorted structure and let y be a real number. The functor
X 7−→ y yielding a real map of X is defined as follows:

(Def. 1) X 7−→ y = (the carrier of X) 7−→ y.
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11
c© 2010 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/c0sp2.miz
http://ftp.mizar.org/


12 katuhiko kanazashi et al.

Let X be a topological space and let y be a real number. Note that X 7−→ y

is continuous.
Next we state the proposition

(1) Let X be a non empty topological space and f be a real map of X. Then
f is continuous if and only if for every point x of X and for every subset
V of R such that f(x) ∈ V and V is open there exists a subset W of X
such that x ∈W and W is open and f◦W ⊆ V.

In the sequel X denotes a non empty topological space.
Let us consider X. The functor C(X; R) yielding a subset of RAlgebra (the

carrier of X) is defined by:

(Def. 2) C(X; R) = {f : f ranges over continuous real maps of X}.
Let us consider X. Observe that C(X; R) is non empty.
Let us consider X. One can verify that C(X; R) is additively-linearly-closed

and multiplicatively-closed.
Let X be a non empty topological space. The functor CA(X; R) yielding an

algebra structure is defined by the condition (Def. 3).

(Def. 3) CA(X; R) = 〈C(X; R),mult(C(X; R),RAlgebra (the carrier of X)),
Add(C(X; R),RAlgebra (the carrier of X)),Mult(C(X; R),RAlgebra (the car-
rier of X)),One(C(X; R),RAlgebra (the carrier of X)),Zero(C(X; R),
RAlgebra (the carrier of X))〉.

One can prove the following proposition

(2) CA(X; R) is a subalgebra of RAlgebra (the carrier of X).

Let us consider X. Note that CA(X; R) is strict and non empty.
Let us consider X. Observe that CA(X; R) is Abelian, add-associative, right

zeroed, right complementable, vector distributive, scalar distributive, scalar as-
sociative, scalar unital, commutative, associative, right unital, right distributive,
vector distributive, scalar distributive, scalar associative, and vector associative.

We use the following convention: F , G, H denote vectors of CA(X; R), g, h
denote real maps of X, and a denotes a real number.

One can prove the following propositions:

(3) Suppose f = F and g = G and h = H. Then H = F + G if and only if
for every element x of the carrier of X holds h(x) = f(x) + g(x).

(4) If f = F and g = G, then G = a · F iff for every element x of X holds
g(x) = a · f(x).

(5) Suppose f = F and g = G and h = H. Then H = F · G if and only if
for every element x of the carrier of X holds h(x) = f(x) · g(x).

(6) 0CA(X;R) = X 7−→ 0.

(7) 1CA(X;R) = X 7−→ 1.

In the sequel X denotes a compact non empty topological space and f , g, h
denote real maps of X.
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We now state two propositions:

(8) Let A be an algebra and A1, A2 be subalgebras of A. Suppose the carrier
of A1 ⊆ the carrier of A2. Then A1 is a subalgebra of A2.

(9) CA(X; R) is a subalgebra of the R-algebra of bounded functions on the
carrier of X.

Let us consider X. The functor || · ||C(X;R) yielding a function from C(X; R)
into R is defined as follows:

(Def. 4) || · ||C(X;R) = BoundedFunctionsNorm (the carrier of X)� C(X; R).

Let us consider X. The functor CNA(X; R) yielding a normed algebra struc-
ture is defined by the condition (Def. 5).

(Def. 5) CNA(X; R) = 〈C(X; R),mult(C(X; R),RAlgebra (the carrier of X)),
Add(C(X; R),RAlgebra (the carrier of X)),Mult(C(X; R),RAlgebra (the
carrier of X)),One(C(X; R),RAlgebra (the carrier of X)),Zero(C(X; R),
RAlgebra (the carrier of X)), || · ||C(X;R)〉.

Let us consider X. Observe that CNA(X; R) is strict and non empty.
Let us consider X. Note that CNA(X; R) is unital.
Next we state the proposition

(10) Let W be a normed algebra structure and V be an algebra. If the algebra
structure of W = V, then W is an algebra.

In the sequel F , G, H denote points of CNA(X; R).
Let us consider X. Note that CNA(X; R) is Abelian, add-associative, right

zeroed, right complementable, commutative, associative, right unital, right di-
stributive, vector distributive, scalar distributive, scalar associative, and vector
associative.

We now state the proposition

(11) (Mult(C(X; R),RAlgebra (the carrier of X)))(1, F ) = F.

Let us consider X. Note that CNA(X; R) is vector distributive, scalar distri-
butive, scalar associative, and scalar unital.

We now state several propositions:

(12) X 7−→ 0 = 0CNA(X;R).

(13) 0 ≤ ‖F‖.
(14) 0 = ‖(0CNA(X;R))‖.
(15) If f = F and g = G and h = H, then H = F +G iff for every element x

of X holds h(x) = f(x) + g(x).

(16) If f = F and g = G, then G = a · F iff for every element x of X holds
g(x) = a · f(x).

(17) If f = F and g = G and h = H, then H = F ·G iff for every element x
of X holds h(x) = f(x) · g(x).
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(18) ‖F‖ = 0 iff F = 0CNA(X;R) and ‖a · F‖ = |a| · ‖F‖ and ‖F + G‖ ≤
‖F‖+ ‖G‖.

Let us consider X. One can check that CNA(X; R) is reflexive, discernible,
and real normed space-like.

Next we state four propositions:

(19) If f = F and g = G and h = H, then H = F −G iff for every element x
of X holds h(x) = f(x)− g(x).

(20) Let X be a real Banach space, Y be a subset of X, and s1 be a sequence
of X. Suppose Y is closed and rng s1 ⊆ Y and s1 is Cauchy sequence by
norm. Then s1 is convergent and lim s1 ∈ Y.

(21) Let Y be a subset of the R-normed algebra of bounded functions on the
carrier of X. If Y = C(X; R), then Y is closed.

(22) For every sequence s1 of CNA(X; R) such that s1 is Cauchy sequence by
norm holds s1 is convergent.

Let us consider X. One can verify that CNA(X; R) is complete.
Let us consider X. Observe that CNA(X; R) is Banach Algebra-like.

2. Some Properties of Support

Next we state three propositions:

(23) For every non empty topological space X and for all real maps f , g of
X holds support(f + g) ⊆ support f ∪ support g.

(24) For every non empty topological space X and for every real number a
and for every real map f of X holds support(a f) ⊆ support f.

(25) For every non empty topological space X and for all real maps f , g of
X holds support(f g) ⊆ support f ∪ support g.

3. The Space of Real-valued Continuous Functionals with
Bounded Support

Let X be a non empty topological space. The functor C0(X) yielding a non
empty subset of Rthe carrier of X

R is defined by the condition (Def. 6).

(Def. 6) C0(X) = {f ; f ranges over real maps of X: f is continuous ∧∨
Y : non empty subset of X (Y is compact ∧

∧
A : subset of X (A =

support f ⇒ A is a subset of Y ))}.
The following propositions are true:

(26) For every non empty topological space X holds C0(X) is a non empty
non empty subset of RAlgebra (the carrier of X).
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(27) Let X be a non empty topological space and W be a non empty subset of
RAlgebra (the carrier of X). If W = C0(X), then W is additively-linearly-
closed.

(28) For every non empty topological space X holds C0(X) is linearly closed.

Let X be a non empty topological space. Note that C0(X) is non empty and
linearly closed.

Let X be a non empty topological space. The functor CVS
0 (X) yielding a real

linear space is defined by:

(Def. 7) CVS
0 (X) = 〈C0(X),Zero(C0(X),Rthe carrier of X

R ),Add(C0(X),
Rthe carrier of X

R ),Mult(C0(X),Rthe carrier of X
R )〉.

The following two propositions are true:

(29) For every non empty topological space X holds CVS
0 (X) is a subspace of

Rthe carrier of X
R .

(30) For every non empty topological space X and for every set x such that
x ∈ C0(X) holds x ∈ BoundedFunctions (the carrier of X).

Let X be a non empty topological space. The functor || · ||C0(X) yielding a
function from C0(X) into R is defined by:

(Def. 8) || · ||C0(X) = BoundedFunctionsNorm (the carrier of X)� C0(X).

Let X be a non empty topological space. The functor CNS
0 (X) yields a non

empty normed structure and is defined as follows:

(Def. 9) CNS
0 (X) = 〈C0(X),Zero(C0(X),Rthe carrier of X

R ),Add(C0(X),
Rthe carrier of X

R ),Mult(C0(X),Rthe carrier of X
R ), || · ||C0(X)〉.

Let X be a non empty topological space. One can verify that CNS
0 (X) is

strict and non empty.
Next we state several propositions:

(31) For every non empty topological space X and for every set x such that
x ∈ C0(X) holds x ∈ C(X; R).

(32) For every non empty topological space X holds 0CVS0 (X) = X 7−→ 0.

(33) For every non empty topological space X holds 0CNS0 (X) = X 7−→ 0.

(34) Let a be a real number, X be a non empty topological space, and F , G
be points of CNS

0 (X). Then ‖F‖ = 0 iff F = 0CNS0 (X) and ‖a ·F‖ = |a| ·‖F‖
and ‖F +G‖ ≤ ‖F‖+ ‖G‖.

(35) For every non empty topological space X holds CNS
0 (X) is real normed

space-like.

Let X be a non empty topological space. Note that CNS
0 (X) is reflexive,

discernible, real normed space-like, vector distributive, scalar distributive, sca-
lar associative, scalar unital, Abelian, add-associative, right zeroed, and right
complementable.

Next we state the proposition
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(36) For every non empty topological space X holds CNS
0 (X) is a real normed

space.
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