More on Continuous Functions on Normed Linear Spaces

Hiroyuki Okazaki Shinshu University Nagano, Japan Noboru Endou Nagano National College of Technology Japan

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article we formalize the definition and some facts about continuous functions from \mathbb{R} into normed linear spaces [14].

MML identifier: NFCONT_3, version: 7.11.07 4.156.1112

The terminology and notation used in this paper have been introduced in the following papers: [2], [12], [3], [4], [10], [11], [1], [5], [13], [7], [17], [18], [15], [9], [8], [16], [19], and [6].

1. Preliminaries

For simplicity, we adopt the following rules: n denotes an element of \mathbb{N} , X, X_1 denote sets, r, p denote real numbers, s, x_0 , x_1 , x_2 denote real numbers, S, T denote real normed spaces, f, f_1 , f_2 denote partial functions from \mathbb{R} to the carrier of S, s_1 denotes a sequence of real numbers, and Y denotes a subset of \mathbb{R} .

The following propositions are true:

- (1) Let s_2 be a sequence of real numbers and h be a partial function from \mathbb{R} to the carrier of S. If rng $s_2 \subseteq \text{dom } h$, then $s_2(n) \in \text{dom } h$.
- (2) Let h_1 , h_2 be partial functions from \mathbb{R} to the carrier of S and s_2 be a sequence of real numbers. If $\operatorname{rng} s_2 \subseteq \operatorname{dom} h_1 \cap \operatorname{dom} h_2$, then $(h_1+h_2)_*s_2 = (h_{1*}s_2) + (h_{2*}s_2)$ and $(h_1 h_2)_*s_2 = (h_{1*}s_2) (h_{2*}s_2)$.

C 2011 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

HIROYUKI OKAZAKI et al.

- (3) For every sequence h of S and for every real number r holds $r h = r \cdot h$.
- (4) Let *h* be a partial function from \mathbb{R} to the carrier of *S*, s_2 be a sequence of real numbers, and *r* be a real number. If $\operatorname{rng} s_2 \subseteq \operatorname{dom} h$, then $r h_* s_2 = r \cdot (h_* s_2)$.
- (5) Let h be a partial function from \mathbb{R} to the carrier of S and s_2 be a sequence of real numbers. If $\operatorname{rng} s_2 \subseteq \operatorname{dom} h$, then $||h_*s_2|| = ||h||_*s_2$ and $-(h_*s_2) = -h_*s_2$.

2. Continuous Real Functions into Normed Linear Spaces

Let us consider S, f, x_0 . We say that f is continuous in x_0 if and only if:

(Def. 1) $x_0 \in \text{dom } f$ and for every s_1 such that $\text{rng } s_1 \subseteq \text{dom } f$ and s_1 is convergent and $\lim s_1 = x_0$ holds f_*s_1 is convergent and $f_{x_0} = \lim(f_*s_1)$.

Next we state a number of propositions:

- (6) If $x_0 \in X$ and f is continuous in x_0 , then $f \upharpoonright X$ is continuous in x_0 .
- (7) f is continuous in x_0 if and only if the following conditions are satisfied:
- (i) $x_0 \in \operatorname{dom} f$, and
- (ii) for every s_1 such that $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and s_1 is convergent and $\lim s_1 = x_0$ and for every n holds $s_1(n) \neq x_0$ holds f_*s_1 is convergent and $f_{x_0} = \lim(f_*s_1)$.
- (8) f is continuous in x_0 if and only if the following conditions are satisfied:
- (i) $x_0 \in \text{dom } f$, and
- (ii) for every r such that 0 < r there exists s such that 0 < s and for every x_1 such that $x_1 \in \text{dom } f$ and $|x_1 x_0| < s$ holds $||f_{x_1} f_{x_0}|| < r$.
- (9) Let given S, f, x_0 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
- (i) $x_0 \in \text{dom } f$, and
- (ii) for every neighbourhood N_1 of f_{x_0} there exists a neighbourhood N of x_0 such that for every x_1 such that $x_1 \in \text{dom } f$ and $x_1 \in N$ holds $f_{x_1} \in N_1$.
- (10) Let given S, f, x_0 . Then f is continuous in x_0 if and only if the following conditions are satisfied:
 - (i) $x_0 \in \operatorname{dom} f$, and
 - (ii) for every neighbourhood N_1 of f_{x_0} there exists a neighbourhood N of x_0 such that $f^{\circ}N \subseteq N_1$.
- (11) If there exists a neighbourhood N of x_0 such that dom $f \cap N = \{x_0\}$, then f is continuous in x_0 .
- (12) If $x_0 \in \text{dom } f_1 \cap \text{dom } f_2$ and f_1 is continuous in x_0 and f_2 is continuous in x_0 , then $f_1 + f_2$ is continuous in x_0 and $f_1 f_2$ is continuous in x_0 .
- (13) If f is continuous in x_0 , then r f is continuous in x_0 .

- (14) If $x_0 \in \text{dom } f$ and f is continuous in x_0 , then ||f|| is continuous in x_0 and -f is continuous in x_0 .
- (15) Let f_1 be a partial function from \mathbb{R} to the carrier of S and f_2 be a partial function from the carrier of S to the carrier of T. Suppose $x_0 \in \text{dom}(f_2 \cdot f_1)$ and f_1 is continuous in x_0 and f_2 is continuous in $(f_1)_{x_0}$. Then $f_2 \cdot f_1$ is continuous in x_0 .

Let us consider S, f. We say that f is continuous if and only if:

- (Def. 2) For every x_0 such that $x_0 \in \text{dom } f$ holds f is continuous in x_0 . Next we state two propositions:
 - (16) Let given X, f. Suppose $X \subseteq \text{dom } f$. Then $f \upharpoonright X$ is continuous if and only if for every s_1 such that $\operatorname{rng} s_1 \subseteq X$ and s_1 is convergent and $\lim s_1 \in X$ holds f_*s_1 is convergent and $f_{\lim s_1} = \lim(f_*s_1)$.
 - (17) Suppose $X \subseteq \text{dom } f$. Then $f \upharpoonright X$ is continuous if and only if for all x_0, r such that $x_0 \in X$ and 0 < r there exists s such that 0 < s and for every x_1 such that $x_1 \in X$ and $|x_1 x_0| < s$ holds $||f_{x_1} f_{x_0}|| < r$.

Let us consider S. One can check that every partial function from \mathbb{R} to the carrier of S which is constant is also continuous.

Let us consider S. Note that there exists a partial function from \mathbb{R} to the carrier of S which is continuous.

Let us consider S, let f be a continuous partial function from \mathbb{R} to the carrier of S, and let X be a set. Observe that $f \upharpoonright X$ is continuous.

Next we state the proposition

(18) If $f \upharpoonright X$ is continuous and $X_1 \subseteq X$, then $f \upharpoonright X_1$ is continuous.

Let us consider S. Observe that every partial function from \mathbb{R} to the carrier of S which is empty is also continuous.

Let us consider S, f and let X be a trivial set. Observe that $f \upharpoonright X$ is continuous.

Let us consider S and let f_1 , f_2 be continuous partial functions from \mathbb{R} to the carrier of S. Observe that $f_1 + f_2$ is continuous and $f_1 - f_2$ is continuous.

The following two propositions are true:

- (19) Let given X, f_1 , f_2 . Suppose $X \subseteq \text{dom } f_1 \cap \text{dom } f_2$ and $f_1 \upharpoonright X$ is continuous and $f_2 \upharpoonright X$ is continuous. Then $(f_1 + f_2) \upharpoonright X$ is continuous and $(f_1 f_2) \upharpoonright X$ is continuous.
- (20) Let given X, X₁, f_1 , f_2 . Suppose $X \subseteq \text{dom } f_1$ and $X_1 \subseteq \text{dom } f_2$ and $f_1 \upharpoonright X$ is continuous and $f_2 \upharpoonright X_1$ is continuous. Then $(f_1 + f_2) \upharpoonright (X \cap X_1)$ is continuous and $(f_1 f_2) \upharpoonright (X \cap X_1)$ is continuous.

Let us consider S, let f be a continuous partial function from \mathbb{R} to the carrier of S, and let us consider r. One can check that r f is continuous.

We now state several propositions:

(21) If $X \subseteq \text{dom } f$ and $f \upharpoonright X$ is continuous, then $(r f) \upharpoonright X$ is continuous.

HIROYUKI OKAZAKI et al.

- (22) If $X \subseteq \text{dom } f$ and $f \upharpoonright X$ is continuous, then $||f|| \upharpoonright X$ is continuous and $(-f) \upharpoonright X$ is continuous.
- (23) If f is total and for all x_1 , x_2 holds $f_{x_1+x_2} = f_{x_1} + f_{x_2}$ and there exists x_0 such that f is continuous in x_0 , then $f \upharpoonright \mathbb{R}$ is continuous.
- (24) If dom f is compact and $f \upharpoonright \text{dom } f$ is continuous, then rng f is compact.
- (25) If $Y \subseteq \text{dom } f$ and Y is compact and $f \upharpoonright Y$ is continuous, then $f^{\circ}Y$ is compact.

3. Lipschitz Continuity

Let us consider S, f. We say that f is Lipschitzian if and only if:

(Def. 3) There exists a real number r such that 0 < r and for all x_1, x_2 such that $x_1, x_2 \in \text{dom } f$ holds $||f_{x_1} - f_{x_2}|| \le r \cdot |x_1 - x_2|$.

The following proposition is true

(26) $f \upharpoonright X$ is Lipschitzian if and only if there exists a real number r such that 0 < r and for all x_1, x_2 such that $x_1, x_2 \in \text{dom}(f \upharpoonright X)$ holds $||f_{x_1} - f_{x_2}|| \le r \cdot |x_1 - x_2|$.

Let us consider S. Observe that every partial function from \mathbb{R} to the carrier of S which is empty is also Lipschitzian.

Let us consider S. One can verify that there exists a partial function from \mathbb{R} to the carrier of S which is empty.

Let us consider S, let f be a Lipschitzian partial function from \mathbb{R} to the carrier of S, and let X be a set. One can check that $f \upharpoonright X$ is Lipschitzian.

The following proposition is true

(27) If $f \upharpoonright X$ is Lipschitzian and $X_1 \subseteq X$, then $f \upharpoonright X_1$ is Lipschitzian.

Let us consider S and let f_1 , f_2 be Lipschitzian partial functions from \mathbb{R} to the carrier of S. One can check that $f_1 + f_2$ is Lipschitzian and $f_1 - f_2$ is Lipschitzian.

One can prove the following propositions:

- (28) If $f_1 \upharpoonright X$ is Lipschitzian and $f_2 \upharpoonright X_1$ is Lipschitzian, then $(f_1 + f_2) \upharpoonright (X \cap X_1)$ is Lipschitzian.
- (29) If $f_1 \upharpoonright X$ is Lipschitzian and $f_2 \upharpoonright X_1$ is Lipschitzian, then $(f_1 f_2) \upharpoonright (X \cap X_1)$ is Lipschitzian.

Let us consider S, let f be a Lipschitzian partial function from \mathbb{R} to the carrier of S, and let us consider p. Note that p f is Lipschitzian.

Next we state the proposition

(30) If $f \upharpoonright X$ is Lipschitzian and $X \subseteq \text{dom } f$, then $(p f) \upharpoonright X$ is Lipschitzian.

Let us consider S and let f be a Lipschitzian partial function from \mathbb{R} to the carrier of S. Note that ||f|| is Lipschitzian.

48

One can prove the following proposition

(31) If $f \upharpoonright X$ is Lipschitzian, then $-f \upharpoonright X$ is Lipschitzian and $(-f) \upharpoonright X$ is Lipschitzian and $||f|| \upharpoonright X$ is Lipschitzian.

Let us consider S. One can verify that every partial function from \mathbb{R} to the carrier of S which is constant is also Lipschitzian.

Let us consider S. Observe that every partial function from \mathbb{R} to the carrier of S which is Lipschitzian is also continuous.

Next we state two propositions:

- (32) If there exists a point r of S such that rng $f = \{r\}$, then f is continuous.
- (33) For all points r, p of S such that for every x_0 such that $x_0 \in X$ holds $f_{x_0} = x_0 \cdot r + p$ holds $f \upharpoonright X$ is continuous.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [8] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [10] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. *Formalized Mathematics*, 12(3):269–275, 2004.
- [11] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [14] Laurent Schwartz. Cours d'analyse, vol. 1. Hermann Paris, 1967.
- [15] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
 [10] Hyperbolic Value and Value a
- [19] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171–175, 1992.

Received August 17, 2010