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Summary. First of a series of articles laying down the bases for classical
first order model theory. These articles introduce a framework for treating ar-
bitrary languages with equality. This framework is kept as generic and modular
as possible: both the language and the derivation rule are introduced as a type,
rather than a fixed functor; definitions and results regarding syntax, semantics,
interpretations and sequent derivation rules, respectively, are confined to separa-
te articles, to mark out the hierarchy of dependences among different definitions
and constructions.

As an application limited to countable languages, satisfiability theorem and
a full version of the Godel completeness theorem are delivered, with respect to
a fixed, remarkably thrifty, set of correct rules. Besides the self-referential si-
gnificance for the Mizar project itself of those theorems being formalized with
respect to a generic, equality-furnished, countable language, this is the first step
to work out other milestones of model theory, such as Lowenheim-Skolem and
compactness theorems. Being the receptacle of all results of broader scope stem-
med during the various formalizations, this first article stays at a very generic
level, with results and registrations about objects already in the Mizar Mathe-
matical Library.

Without introducing the Language structure yet, three fundamental defini-
tions of wide applicability are also given: the ‘unambiguous’ attribute (see [20],
definition on page 5), the functor ‘-multiCat’, which is the iteration of ¢*’ over
a FinSequence of FinSequence, and the functor SubstWith, which realizes the
substitution of a single symbol inside a generic FinSequence.

MML identifier: FOMODELO, version: 7.11.07 4.160.1126

IThe author wrote this paper as part of his PhD thesis research.
2T would like to thank Marco Pedicini for his encouragement and support.

(© 2011 University of Bialystok
155 ISSN 1426-2630(p), 1898-9934(c)


http://fm.mizar.org/miz/fomodel0.miz
http://ftp.mizar.org/

156 MARCO B. CAMINATI

The papers [11]7 [2]’ [4]7 [12]? [23]’ [7]7 [13]7 [19]7 [22]’ [14]7 [15]7 [10]7 [16}7 [9]7 [25]7
(1], [27], [8], [24], [6], [3], [5], [17], [28], [30], [29], [21], [26], and [18] provide the
notation and terminology for this paper.
For simplicity, we adopt the following rules: U, D are non empty sets, X is
a non empty subset of D, d is an element of D, A, B, C, Y, z, y, z are sets, f
is a binary operation on D, ¢, m, n are natural numbers, and ¢ is a function.
Let X be a set and let f be a function. We say that f is X-one-to-one if and
only if:
(Def. 1)  f[X is one-to-one.
Let us consider D, f and let X be a set. We say that X is f-unambiguous
if and only if:
(Def. 2) fis X x D-one-to-one.
Let us consider D and let X be a set. We say that X is D-prefix if and only
if:
(Def. 3) X is (the concatenation of D)-unambiguous.

Let D be a set. The functor D-prl yielding a binary operation on D is
defined by:
(Def. 4) D-prl = m(D x D).
One can prove the following propositions:
(1) Am"NB*=A"nNB™.
(2) A"NB*=(ANnB)™.
(3) (AnB)™ = A"nNB™.
(4) For all finite sequences x, y such that z is U-valued and y is U-valued
holds (the concatenation of U)(z, y) = =~ y.
(5) For every set x holds z is a non empty finite sequence of elements of D
iff x € D*\ {0}.
Let D be a non empty set. One can check that D-prl is associative.
Let D be a set. Note that there exists a binary operation on D which is
associative.
Let X be a set and let Y be a subset of X. Then Y™* is a non empty subset
of X*.
Let D be a non empty set. Observe that the concatenation of D is associative.
Observe that D* \ {(} is non empty.
Let m be a natural number. Note that there exists an element of D* which
is m-element.
Let X be a set and let f be a function. Let us observe that f is X-one-to-one
if and only if:
(Def. 5) For all sets x, y such that z, y € XNdom f and f(x) = f(y) holds z = y.

Let us consider D, f. Note that there exists a set which is f-unambiguous.
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Let f be a function and let = be a set. Note that f[{x} is one-to-one.

One can verify that every set which is empty is also empty-membered. Let
e be an empty set. Note that {e} is empty-membered.

Let us consider U and let mq be a non zero natural number. Observe that
U™ has non empty elements.

Let X be an empty-membered set. Note that every subset of X is empty-
membered.

Let us consider A and let mg be a zero number. Note that A™° is empty-
membered.

Let e be an empty set and let mq be a non zero natural number. Observe
that ™! is empty.

Let us consider D, f and let e be an empty set. One can verify that eN f is
f-unambiguous.

Let us consider U and let e be an empty set. One can check that e N U is
U-prefix.

Let us consider U. Observe that there exists a set which is U-prefix.

Let us consider D, f and let x be a finite sequence of elements of D. The
functor MultPlace(f, ) yields a function and is defined by:

(Def. 6) dom MultPlace(f,z) = N and (MultPlace(f,z))(0) = =z(1) and
for every natural number n holds (MultPlace(f,z))(n + 1) =
f(MultPlace(f, z))(n), z(n +2)).

Let us consider D, f and let = be an element of D* \ {0}. The functor
MultPlace(f, ) yields a function and is defined as follows:
(Def. 7)  MultPlace(f, z) = MultPlace(f, (z qua element of D*)).

Let us consider D, f. The functor MultPlace f yielding a function from
D*\ {0} into D is defined as follows:

(Def. 8) For every element z of D* \ {0} holds (MultPlacef)(z) =
(MultPlace(f,z))(lenz — 1).
Let us consider D, f and let X be a set. Let us observe that X is f-
unambiguous if and only if:
(Def. 9) For all sets z, y, di, do such that z, y € X N D and dy, dy € D and f(x,
dy) = f(y, d2) holds z = y and dy = ds.
Let us consider D. The functor D-firstChar yields a function from D* \ {(}}
into D and is defined as follows:
(Def. 10) D-firstChar = MultPlace(D-prl).
One can prove the following proposition
(6) For every finite sequence p such that p is U-valued and non empty holds
U-firstChar(p) = p(1).

Let us consider D. The functor D-multiCat yielding a function is defined as
follows:
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(Def. 11)  D-multiCat = ()——0)+- MultPlace (the concatenation of D).
Let us consider D. Then D-multiCat is a function from (D*)* into D*.
Let us consider D and let e be an empty set. One can check that
D-multiCat(e) is empty.
Let us consider D. Observe that every subset of D! is D-prefix.
The following propositions are true:

(7) If Ais D-prefix, then D-multiCat® A™ is D-prefix.
(8) If Ais D-prefix, then D-multiCat is A™-one-to-one.
(9) Y™t Cy*\ {0}

(10) If m is zero, then Y™ = {0}.

(11) Y? = ySest,

(12) If x € A™, then x is a finite sequence of elements of A.

Let A, X be sets. Then X4 x is a function from X into Boolean.
Next we state three propositions:

(13) (MultPlace f)((d)) = d and for every non empty finite sequence z of
elements of D holds (MultPlace f)(x ™ (d)) = f((MultPlace f)(x), d).

(14) For every non empty element d of (D*)* holds D-multiCat(d) =
(MultPlace (the concatenation of D))(d).

(15) For all elements dj, dy of D* holds D-multiCat((d;, d2)) = d1 ~ da.

Let f, g be finite sequences. One can verify that (f, g) is finite sequence-like.

Let us consider m and let f, g be m-element finite sequences. Note that
(f,g) is m-element.

Let X, Y be sets, let f be an X-defined function, and let g be a Y-defined
function. Observe that (f, g) is X N Y-defined.

Let X be a set and let f, g be X-defined functions. Observe that (f,g) is
X-defined.

Let X, Y be sets, let f be a total X-defined function, and let g be a total
Y-defined function. Note that (f, g) is total.

Let X be a set and let f, g be total X-defined functions. Note that (f, g) is
total.

Let X, Y be sets, let f be an X-valued function, and let g be a Y-valued
function. One can verify that (f,g) is X x Y-valued.

Let us consider D. Observe that there exists a finite sequence which is D-
valued.

Let us consider D, m. Note that there exists a D-valued finite sequence
which is m-element.

Let X, Y be non empty sets, let f be a function from X into Y, and let p
be an X-valued finite sequence. Observe that f - p is finite sequence-like.

Let us consider m, let f be a function from X into Y, and let p be an
m~element X-valued finite sequence. Note that f - p is m-element.
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Let us consider D, f and let p, g be elements of D*.
The functor f AppliedPairwiseTo(p, q) yields a finite sequence of elements of
D and is defined by:

(Def. 12)  f AppliedPairwiseTo(p,q) = f - (p,q).

Let us consider D, f, m and let p, ¢ be m-element elements of D*. Note that
f AppliedPairwiseTo(p, q) is m-element.
Let us consider D, f and let p, ¢ be elements of D*. We introduce f\ (p,q)
as a synonym of f AppliedPairwiseTo(p, q).
Z can be characterized by the condition:
(Def. 13) Z=NU ({0} x N\ {{0, 0)}).
We now state the proposition
(16) For every finite sequence p such that p is Y-valued and m-element holds
peY™.
Let us consider A, B. The functor A~ N B yields a subset of A and is defined
by:
(Def. 14) A~ NB=ANB.
The functor AN~ B yielding a subset of B is defined as follows:
(Def. 15) AN~ B=ANB.
Let us consider B, A. The functor Anull B is defined by:
(Def. 16) Anull B = A.

Let us consider A, B, C. One can check that (B\ A) N (AN C) is empty.

Let us consider A, B. The functor A\~ B yields a subset of A and is defined
as follows:

(Def. 17) A\~ B= A\ B.

Let us consider A, B. The functor A U™ B yielding a subset of A U B is
defined by:

(Def. 18) AUT B = A.

For simplicity, we adopt the following convention: X is a set, P, @), R are
binary relations, f is a function, p, ¢ are finite sequences, and Uy, Us are non
empty sets.

Let R be a binary relation. Note that R* is transitive and R* is reflexive.

The function plus from C into C is defined as follows:

(Def. 19) For every complex number z holds plus(z) = z + 1.
The following two propositions are true:
(17) If rng f C dom f, then f* = J{f™2 : mg ranges over elements of N}.
(18) 1If f C g, then f™ C g™.

Let X be a functional set. Note that | J X is relation-like.

Next we state the proposition
(19) IfY C B4 then JY C A x B.



160 MARCO B. CAMINATI

Let us consider Y. Observe that Y \ Y is empty.
Let us consider D, d. One can check that {idp(d)} \ {d} is empty.
One can prove the following propositions:

20) f={{(z, f(x));x ranges over elements of dom f : = € dom f}.

21) For every total Y-defined binary relation R holds idy C R- R™.

22) D™ = (the concatenation of D)°(D™ x D™).

23) For all binary relations P, Q holds (PUQ)~}(Y) = P L{(Y)uQ (V).

24
25
26

(Xa,5)""({0}) = B\ A and (Xa,5)"'({1}) = AN B.
For every non empty set y holds y = f(z) iff x € f~1({y}).

(
(
(
(
(
(
(
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If f is Y-valued and finite sequence-like, then f is a finite sequence of
elements of Y.
Let us consider Y and let X be a subset of Y. Observe that every binary
relation which is X-valued is also Y-valued.
Let us consider A, U. One can verify that every relation between A and U
which is quasi total is also total.
The following propositions are true:

(27) Let @ be a quasi total relation between B and Uj, R be a quasi total
relation between B and Us, and P be a relation between A and B. If
P-Q-Q> - R is function-like, then P- Q- @Q~-R =P - R.

(28) For all finite sequences p, ¢ such that p is non empty holds (p ™~ ¢)(1) =
p(1).

Let us consider U and let p, ¢ be U-valued finite sequences. One can check
that p ™~ ¢ is U-valued.
Let X be a set. We see that the finite sequence of elements of X is an element
of X*.
Let us consider U, X. Let us observe that X is U-prefix if and only if:
(Def. 20) For all U-valued finite sequences p1, q1, p2, g2 such that p;, ps € X and
P11 =p2” g2 holds p1 = p2 and ¢1 = ¢o.
Let X be a set. Observe that every element of X* is X-valued.
Let us consider U, m and let X be a U-prefix set. Observe that
U-multiCat® X™ is U-prefix.
Next we state the proposition
(29) X-Y=0if X =Y.
Let us consider . Note that id,)~{(z, =)} is empty.
Let us consider z, y. Observe that (z——y)={(z, y)} is empty.
Let us consider . Note that idy,) =~ (z——wx) is empty.
The following proposition is true
(30) x € D*\ {0} iff x is a D-valued finite sequence and non empty.

In the sequel f denotes a binary operation on D.
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The following proposition is true

(31) (MultPlace f)((d)) = d and for every D-valued finite sequence x such
that x is non empty holds (MultPlace f)(z = (d)) = f((MultPlace f)(x),
d).
For simplicity, we adopt the following rules: A, B, C, X, Y, Z, x, z1, y, y1,
yo are sets, U, Uy, Uy, Us are non empty sets, u, uq, ug are elements of U, P,
R are binary relations, f, g are functions, k, m, n are natural numbers, ky, ms,
ny are elements of N, mq, no are non zero natural numbers, p, p1, p2 are finite
sequences, and ¢, g1, g2 are U-valued finite sequences.
Let us consider p, x, y. Note that p+(z,y) is finite sequence-like.
Let us consider z, y, p. The functor (z,y)-SymbolSubstIn p yielding a finite
sequence is defined by:
(Def. 21) (z,y)-SymbolSubstInp = p+(z,y).

Let us consider z, y, m and let p be an m-element finite sequence. Observe
that (z,y)-SymbolSubstIn p is m-element.

Let us consider X. Observe that there exists a finite sequence which is X-
valued.

Let us consider z, U, u and let p be a U-valued finite sequence. Observe that
(z,u)-SymbolSubstIn p is U-valued.

Let us consider X, z, y and let p be an X-valued finite sequence. Then
(x,y)-SymbolSubstIn p can be characterized by the condition:

(Def. 22) (z,y)-SymbolSubstInp = (idx +- (z,y)) - p.

Let us consider U, x, u, q. Then (z,u)-SymbolSubstIn ¢ is a finite sequence

of elements of U.

Let us consider U, z, u. The functor & SubstWith u yielding a function from
U™ into U™ is defined as follows:

(Def. 23) For every g holds (z SubstWithu)(q) = (x, u)-SymbolSubstln q.

Let us consider U, x, u. Note that x SubstWith u is finite sequence-yielding.

Let F' be a finite sequence-yielding function and let « be a set. Observe that
F(x) is finite sequence-like.

Let us consider U, x, u, m and let p be a U-valued m-element finite sequence.
Note that (x SubstWithu)(p) is m-element.

Let e be an empty set. One can verify that (x SubstWithu)(e) is empty.

Let us consider U. Note that U-multiCat is finite sequence-yielding.

One can verify that there exists a U-valued finite sequence which is non
empty.

Let us consider U, mi, n and let p be an m; + n-element U-valued finite
sequence. Observe that {p(m)} \ U is empty.

Let us consider U, m, n and let p be an m + 1 + n-element element of U*.
One can check that {p(m + 1)} \ U is empty.

Let us consider z. Note that (x)=—{(1, x)} is empty.
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Let us consider m and let p be an m + 1-element finite sequence. Observe
that (p] Segm) ™ (p(m + 1))=p is empty.
Let us consider m, n and let p be an m + n-element finite sequence. One can
verify that p| Segm is m-element.
Let us observe that every binary relation which is {(}-valued is also empty
yielding and every binary relation which is empty yielding is also {(}-valued.
The following two propositions are true:
(32) U-multiCat(z) = (MultPlace (the concatenation of U))(x).
(33) If p is U*-valued, then U-multiCat(p ~ (q)) = U-multiCat(p) ~ g.
Let us consider Y, let X be a subset of Y, and let R be a total Y-defined
binary relation. One can check that R[X is total.
The following propositions are true:
(34) If u = wy, then (uy,x2)-SymbolSubstIn(u) = (z2) and if u # wuj, then
(u1,x2)-SymbolSubstIn(u) = (u).
(35) If u = wuy, then (u; SubstWithus)((u)) = (ug) and if w # wq, then
(u1 SubstWith ug)((u)) = (u).
(36) (zSubstWithu)(q1 ~ g2) = (x SubstWithu)(q1) ~ (x SubstWith u)(g2).
(37) If p is U*-valued,
then (z SubstWith v)(U-multiCat(p)) = U-multiCat((z SubstWithu) - p).

(38) (The concatenation of U)°(idg1) = {(u,u) : u ranges over elements of
U}.
Let us consider f, U, u. One can verify that (f[U)(u)=f(u) is empty.
Let us consider f, Uy, Us, let u be an element of Uy, and let g be a function
from U; into Us. Observe that (f - ¢)(u)=f(g(u)) is empty.
One can verify that every integer number which is non negative is also na-
tural.
Let x, y be real numbers. One can verify that max(z,y) — = is non negative.
The following proposition is true

(39) If x is boolean, then x = 1 iff z # 0.

Let us consider Y and let X be a subset of Y. Note that X \ Y is empty.

Let us consider z, y. Observe that {z} \ {z,y} is empty and (z, y), =~z is
empty.

Let us consider z, y. Observe that (z, y),~y is empty.

Let n be a positive natural number and let X be a non empty set. Note that
there exists an element of X* \ {(}} which is n-element.

Let us consider m;. One can verify that every finite sequence which is mj +0-
element is also non empty.

Let us consider R, x. Note that Rnull x is relation-like.

Let f be a function-like set and let us consider x. One can check that f null z
is function-like.
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Let p be a finite sequence-like binary relation and let us consider x. One can
check that pnull z is finite sequence-like.

Let us consider p, . Observe that pnull x is len p-element.

Let p be a non empty finite sequence. Note that len p is non zero.

Let R be a binary relation and let X be a set. Observe that R[ X is X-defined.

Let us consider x and let e be an empty set. Observe that enull x is empty.

Let us consider X and let e be an empty set. One can verify that enull X is
X-valued.

Let Y be a non empty finite sequence-membered set. One can check that
every function which is Y-valued is also finite sequence-yielding.

Let us consider X, Y. Note that every element of (Y*)¥ is finite sequence-
yielding.

We now state the proposition

(40) If f is X*-valued, then f(x) € X*.

Let us consider m, n and let p be an m-element finite sequence. Observe
that pnulln is Seg m + n-defined.

Let us consider m, n, let p be an m-element finite sequence, and let ¢ be an
n-element finite sequence. Observe that p ™ ¢ is m + n-element.

The following two propositions are true:

(41) Let p1, p2, q1, g2 be finite sequences. Suppose p; is m-element but ¢ is
m~element but p;1 " p2 = q1 " q2 or po " p1 = q2 " q1. Then p; = ¢; and
b2 = q2.

(42) If U-multiCat(z) is Ui-valued and = € (U*)*, then z is a finite sequence
of elements of Uy*.

Let us consider U. One can verify that there exists a reflexive binary relation
on U which is total.
Let us consider m. Note that every finite sequence which is m + 1-element
is also non empty.
Let us consider U, u. Note that idy (u)=u is empty.
Let us consider U and let p be a U-valued non empty finite sequence. Observe
that {p(1)} \ U is empty.
Next we state the proposition
(43) 1If &1 = x9, then f+-(z1——y1)+:(xe——>y2) = f+-(x2——y2) and if x1 #
T2, then f+ (v1-—y1)+ (z2r-—y2) = f+-(v2——y2)+ (T1-—Yy1).
Let us consider X, U. Note that there exists an X-defined function which is
U-valued and total.
Let us consider X, U, let P be a U-valued total X-defined binary relation,
and let @ be a total U-defined binary relation. One can verify that P- (@ is total.
We now state the proposition
(44) If p~p1 " p2 is X-valued, then py is X-valued and p; is X-valued and p
is X-valued.

163
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Let us consider X and let R be a binary relation. One can check that Rnull X
is X Urng R-valued.

Let X, Y be functional sets. One can verify that X UY is functional.

Let us note that every set which is finite sequence-membered is also finite-
membered.

Let X be a functional set. The functor SymbolsOf X is defined by:

(Def. 24)  SymbolsOf X = [J{rng z; z ranges over elements of X U {0} : z € X}.

Let us observe that there exists a set which is trivial, finite sequence-
membered, and non empty.
Let X be a functional finite finite-membered set. Note that SymbolsOf X is
finite.
Let X be a finite finite sequence-membered set. One can verify that
SymbolsOf X is finite.
The following proposition is true
(45) SymbolsOf{f} = rng f.
Let z be a non zero complex number. One can check that |z| is positive.
The scheme Sc1 deals with a set A, a set 3, and a unary functor F yielding
a set, and states that:
{F(z); x ranges over elements of A : z € A} = {F(x);x ranges
over elements of B: x € A}
provided the following condition is satisfied:
e ACB.
Let X be a functional set. Then SymbolsOf X can be characterized by the
condition:
(Def. 25) SymbolsOf X = [J{rng z; z ranges over elements of X: z € X}.
One can prove the following propositions:
(46) For every functional set B and for every subset A of B holds
SymbolsOf A C SymbolsOf B.
(47) For all functional sets A, B holds SymbolsOf(A U B) = SymbolsOf A U
SymbolsOf B.
Let us consider X and let F be a subset of 2%. One can verify that |J F'\ X
is empty.
The following four propositions are true:
(48) X =(X\Y)uXnY.
(49) If A™ meets B", then m = n.
(50) If B is D-prefix and A C B, then A is D-prefix.
(51) f C g iff for every x such that € dom f holds = € domg and f(x) =
9(x).
Let us consider U. One can verify that every element of (U*\ {0})* which
is non empty is also non empty yielding.
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Let e be an empty set. One can verify that every element of e* is empty.
The following proposition is true
(62)(1)  If Up-multiCat(z) # 0 and Us-multiCat(z) # 0, then
Ur-multiCat(z) = Uz-multiCat(x),
(i)  if p is (*-valued, then U;-multiCat(p) = 0, and
(ii)  if Ur-multiCat(p) = 0 and p is Uy *-valued, then p is 0*-valued.
Let us consider U, z. Note that U-multiCat(z) is U-valued.
Let us consider x. The functor z null is defined by:
(Def. 26) znull = z.
Let Y be a set with non empty elements. Observe that every Y-valued binary
relation which is non empty is also non empty yielding.
Let us consider X. Observe that X \ {#} has non empty elements.
Let X be a set with non empty elements. One can check that every subset
of X has non empty elements.
Let us consider U. Note that U* is infinite. Observe that U* has a non-empty
element.
Let X be a set with a non-empty element. Note that there exists a subset
of X which is non empty and has non empty elements.
One can prove the following propositions:
(563) IfU; CUyand Y C U;* and p is Y-valued and p # () and Y has non
empty elements, then Uj-multiCat(p) = Us-multiCat(p).
(54) If there exists p such that = p and p is X *-valued, then U-multiCat(x)
is X-valued.
Let us consider X, m. Observe that X\ X* is empty.
The following two propositions are true:
(55) (AN B)" = A*N B*.
(56) (PUQ)IX =PIXUQIX.
Let us consider X. One can check that 2% \ X is non empty.
Let us consider X and let R be a binary relation. One can verify that R null X
is X U dom R-defined.
Next we state the proposition

(57) fI1X+g=fI(X\domg)Ug.
We now state the proposition
(68) If y ¢ ma(X), then A x {y} misses X.
Let us consider X. The functor X-freeCountableSet is defined by:
(Def. 27)  X-freeCountableSet = N x {the element of 2 72(X) \ my(X)}.
Next we state the proposition
(59) X-freeCountableSet NX = () and X-freeCountableSet is infinite.
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Let us consider X. Observe that X-freeCountableSet is infinite. Observe
that X-freeCountableSet NX is empty. One can verify that X-freeCountableSet
is countable.

One can check that N\ Z is empty.

Let us consider z, p. Observe that ((x) ~ p)(1)=z is empty.

Let us consider m, let mg be a zero number, and let p be an m-element finite
sequence. Note that pnull mg is total.

Let us consider U, ¢1, g2. One can check that U-multiCat({q1,¢2))~q1 ~ ¢2
is empty.
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