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Summary. First of a series of articles laying down the bases for classical
first order model theory. These articles introduce a framework for treating ar-
bitrary languages with equality. This framework is kept as generic and modular
as possible: both the language and the derivation rule are introduced as a type,
rather than a fixed functor; definitions and results regarding syntax, semantics,
interpretations and sequent derivation rules, respectively, are confined to separa-
te articles, to mark out the hierarchy of dependences among different definitions
and constructions.

As an application limited to countable languages, satisfiability theorem and
a full version of the Gödel completeness theorem are delivered, with respect to
a fixed, remarkably thrifty, set of correct rules. Besides the self-referential si-
gnificance for the Mizar project itself of those theorems being formalized with
respect to a generic, equality-furnished, countable language, this is the first step
to work out other milestones of model theory, such as Lowenheim-Skolem and
compactness theorems. Being the receptacle of all results of broader scope stem-
med during the various formalizations, this first article stays at a very generic
level, with results and registrations about objects already in the Mizar Mathe-
matical Library.

Without introducing the Language structure yet, three fundamental defini-
tions of wide applicability are also given: the ‘unambiguous’ attribute (see [20],
definition on page 5), the functor ‘-multiCat’, which is the iteration of ‘ˆ ’ over
a FinSequence of FinSequence, and the functor SubstWith, which realizes the
substitution of a single symbol inside a generic FinSequence.
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The papers [11], [2], [4], [12], [23], [7], [13], [19], [22], [14], [15], [10], [16], [9], [25],
[1], [27], [8], [24], [6], [3], [5], [17], [28], [30], [29], [21], [26], and [18] provide the
notation and terminology for this paper.

For simplicity, we adopt the following rules: U , D are non empty sets, X is
a non empty subset of D, d is an element of D, A, B, C, Y , x, y, z are sets, f
is a binary operation on D, i, m, n are natural numbers, and g is a function.

Let X be a set and let f be a function. We say that f is X-one-to-one if and
only if:

(Def. 1) f�X is one-to-one.

Let us consider D, f and let X be a set. We say that X is f -unambiguous
if and only if:

(Def. 2) f is X ×D-one-to-one.

Let us consider D and let X be a set. We say that X is D-prefix if and only
if:

(Def. 3) X is (the concatenation of D)-unambiguous.

Let D be a set. The functor D-pr1 yielding a binary operation on D is
defined by:

(Def. 4) D-pr1 = π1(D ×D).

One can prove the following propositions:

(1) Am ∩B∗ = Am ∩Bm.

(2) Am ∩B∗ = (A ∩B)m.

(3) (A ∩B)m = Am ∩Bm.

(4) For all finite sequences x, y such that x is U -valued and y is U -valued
holds (the concatenation of U)(x, y) = x a y.

(5) For every set x holds x is a non empty finite sequence of elements of D
iff x ∈ D∗ \ {∅}.

Let D be a non empty set. One can check that D-pr1 is associative.
Let D be a set. Note that there exists a binary operation on D which is

associative.
Let X be a set and let Y be a subset of X. Then Y ∗ is a non empty subset

of X∗.
LetD be a non empty set. Observe that the concatenation ofD is associative.

Observe that D∗ \ {∅} is non empty.
Let m be a natural number. Note that there exists an element of D∗ which

is m-element.
Let X be a set and let f be a function. Let us observe that f is X-one-to-one

if and only if:

(Def. 5) For all sets x, y such that x, y ∈ X∩dom f and f(x) = f(y) holds x = y.

Let us consider D, f . Note that there exists a set which is f -unambiguous.
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Let f be a function and let x be a set. Note that f�{x} is one-to-one.
One can verify that every set which is empty is also empty-membered. Let

e be an empty set. Note that {e} is empty-membered.
Let us consider U and let m1 be a non zero natural number. Observe that

Um1 has non empty elements.
Let X be an empty-membered set. Note that every subset of X is empty-

membered.
Let us consider A and let m0 be a zero number. Note that Am0 is empty-

membered.
Let e be an empty set and let m1 be a non zero natural number. Observe

that em1 is empty.
Let us consider D, f and let e be an empty set. One can verify that e∩ f is

f -unambiguous.
Let us consider U and let e be an empty set. One can check that e ∩ U is

U -prefix.
Let us consider U . Observe that there exists a set which is U -prefix.
Let us consider D, f and let x be a finite sequence of elements of D. The

functor MultPlace(f, x) yields a function and is defined by:

(Def. 6) dom MultPlace(f, x) = N and (MultPlace(f, x))(0) = x(1) and
for every natural number n holds (MultPlace(f, x))(n + 1) =
f((MultPlace(f, x))(n), x(n+ 2)).

Let us consider D, f and let x be an element of D∗ \ {∅}. The functor
MultPlace(f, x) yields a function and is defined as follows:

(Def. 7) MultPlace(f, x) = MultPlace(f, (x qua element of D∗)).

Let us consider D, f . The functor MultPlace f yielding a function from
D∗ \ {∅} into D is defined as follows:

(Def. 8) For every element x of D∗ \ {∅} holds (MultPlace f)(x) =
(MultPlace(f, x))(lenx− 1).

Let us consider D, f and let X be a set. Let us observe that X is f -
unambiguous if and only if:

(Def. 9) For all sets x, y, d1, d2 such that x, y ∈ X ∩D and d1, d2 ∈ D and f(x,
d1) = f(y, d2) holds x = y and d1 = d2.

Let us consider D. The functor D-firstChar yields a function from D∗ \ {∅}
into D and is defined as follows:

(Def. 10) D-firstChar = MultPlace(D-pr1).

One can prove the following proposition

(6) For every finite sequence p such that p is U -valued and non empty holds
U -firstChar(p) = p(1).

Let us consider D. The functor D-multiCat yielding a function is defined as
follows:
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(Def. 11) D-multiCat = (∅7−→. ∅)+·MultPlace (the concatenation of D).

Let us consider D. Then D-multiCat is a function from (D∗)∗ into D∗.
Let us consider D and let e be an empty set. One can check that

D-multiCat(e) is empty.
Let us consider D. Observe that every subset of D1 is D-prefix.
The following propositions are true:

(7) If A is D-prefix, then D-multiCat◦Am is D-prefix.

(8) If A is D-prefix, then D-multiCat is Am-one-to-one.

(9) Y m+1 ⊆ Y ∗ \ {∅}.
(10) If m is zero, then Y m = {∅}.
(11) Y i = Y Seg i.

(12) If x ∈ Am, then x is a finite sequence of elements of A.

Let A, X be sets. Then χA,X is a function from X into Boolean.
Next we state three propositions:

(13) (MultPlace f)(〈d〉) = d and for every non empty finite sequence x of
elements of D holds (MultPlace f)(x a 〈d〉) = f((MultPlace f)(x), d).

(14) For every non empty element d of (D∗)∗ holds D-multiCat(d) =
(MultPlace (the concatenation of D))(d).

(15) For all elements d1, d2 of D∗ holds D-multiCat(〈d1, d2〉) = d1
a d2.

Let f , g be finite sequences. One can verify that 〈f, g〉 is finite sequence-like.
Let us consider m and let f , g be m-element finite sequences. Note that

〈f, g〉 is m-element.
Let X, Y be sets, let f be an X-defined function, and let g be a Y -defined

function. Observe that 〈f, g〉 is X ∩ Y -defined.
Let X be a set and let f , g be X-defined functions. Observe that 〈f, g〉 is

X-defined.
Let X, Y be sets, let f be a total X-defined function, and let g be a total

Y -defined function. Note that 〈f, g〉 is total.
Let X be a set and let f , g be total X-defined functions. Note that 〈f, g〉 is

total.
Let X, Y be sets, let f be an X-valued function, and let g be a Y -valued

function. One can verify that 〈f, g〉 is X × Y -valued.
Let us consider D. Observe that there exists a finite sequence which is D-

valued.
Let us consider D, m. Note that there exists a D-valued finite sequence

which is m-element.
Let X, Y be non empty sets, let f be a function from X into Y , and let p

be an X-valued finite sequence. Observe that f · p is finite sequence-like.
Let us consider m, let f be a function from X into Y , and let p be an

m-element X-valued finite sequence. Note that f · p is m-element.
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Let us consider D, f and let p, q be elements of D∗.
The functor f AppliedPairwiseTo(p, q) yields a finite sequence of elements of

D and is defined by:

(Def. 12) f AppliedPairwiseTo(p, q) = f · 〈p, q〉.
Let us consider D, f , m and let p, q be m-element elements of D∗. Note that

f AppliedPairwiseTo(p, q) is m-element.
Let us consider D, f and let p, q be elements of D∗. We introduce f\(p, q)

as a synonym of f AppliedPairwiseTo(p, q).
Z can be characterized by the condition:

(Def. 13) Z = N ∪ ({0} × N \ {〈〈0, 0〉〉}).
We now state the proposition

(16) For every finite sequence p such that p is Y -valued and m-element holds
p ∈ Y m.

Let us consider A, B. The functor A←∩B yields a subset of A and is defined
by:

(Def. 14) A← ∩B = A ∩B.
The functor A ∩→ B yielding a subset of B is defined as follows:

(Def. 15) A ∩→ B = A ∩B.
Let us consider B, A. The functor AnullB is defined by:

(Def. 16) AnullB = A.

Let us consider A, B, C. One can check that (B \A) ∩ (A ∩ C) is empty.
Let us consider A, B. The functor A\←B yields a subset of A and is defined

as follows:

(Def. 17) A \← B = A \B.
Let us consider A, B. The functor A ∪↔ B yielding a subset of A ∪ B is

defined by:

(Def. 18) A ∪↔ B = A.

For simplicity, we adopt the following convention: X is a set, P , Q, R are
binary relations, f is a function, p, q are finite sequences, and U1, U2 are non
empty sets.

Let R be a binary relation. Note that R∗ is transitive and R∗ is reflexive.
The function plus from C into C is defined as follows:

(Def. 19) For every complex number z holds plus(z) = z + 1.

The following two propositions are true:

(17) If rng f ⊆ dom f, then f∗ =
⋃
{fm2 : m2 ranges over elements of N}.

(18) If f ⊆ g, then fm ⊆ gm.
Let X be a functional set. Note that

⋃
X is relation-like.

Next we state the proposition

(19) If Y ⊆ BA, then
⋃
Y ⊆ A×B.
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Let us consider Y . Observe that Y \ Y is empty.
Let us consider D, d. One can check that {idD(d)} \ {d} is empty.
One can prove the following propositions:

(20) f = {〈〈x, f(x)〉〉;x ranges over elements of dom f : x ∈ dom f}.
(21) For every total Y -defined binary relation R holds idY ⊆ R ·R`.
(22) Dm+n = (the concatenation of D)◦(Dm ×Dn).

(23) For all binary relations P , Q holds (P ∪Q)−1(Y ) = P−1(Y ) ∪Q−1(Y ).

(24) (χA,B)−1({0}) = B \A and (χA,B)−1({1}) = A ∩B.
(25) For every non empty set y holds y = f(x) iff x ∈ f−1({y}).
(26) If f is Y -valued and finite sequence-like, then f is a finite sequence of

elements of Y .

Let us consider Y and let X be a subset of Y . Observe that every binary
relation which is X-valued is also Y -valued.

Let us consider A, U . One can verify that every relation between A and U

which is quasi total is also total.
The following propositions are true:

(27) Let Q be a quasi total relation between B and U1, R be a quasi total
relation between B and U2, and P be a relation between A and B. If
P ·Q ·Q` ·R is function-like, then P ·Q ·Q` ·R = P ·R.

(28) For all finite sequences p, q such that p is non empty holds (p a q)(1) =
p(1).

Let us consider U and let p, q be U -valued finite sequences. One can check
that p a q is U -valued.

Let X be a set. We see that the finite sequence of elements of X is an element
of X∗.

Let us consider U , X. Let us observe that X is U -prefix if and only if:

(Def. 20) For all U -valued finite sequences p1, q1, p2, q2 such that p1, p2 ∈ X and
p1
a q1 = p2

a q2 holds p1 = p2 and q1 = q2.

Let X be a set. Observe that every element of X∗ is X-valued.
Let us consider U , m and let X be a U -prefix set. Observe that

U -multiCat◦Xm is U -prefix.
Next we state the proposition

(29) X−. Y = ∅ iff X = Y.

Let us consider x. Note that id{x}−. {〈〈x, x〉〉} is empty.
Let us consider x, y. Observe that (x 7−→. y)−. {〈〈x, y〉〉} is empty.
Let us consider x. Note that id{x}−. (x 7−→. x) is empty.
The following proposition is true

(30) x ∈ D∗ \ {∅} iff x is a D-valued finite sequence and non empty.

In the sequel f denotes a binary operation on D.



preliminaries to classical first order model . . . 161

The following proposition is true

(31) (MultPlace f)(〈d〉) = d and for every D-valued finite sequence x such
that x is non empty holds (MultPlace f)(x a 〈d〉) = f((MultPlace f)(x),
d).

For simplicity, we adopt the following rules: A, B, C, X, Y , Z, x, x1, y, y1,
y2 are sets, U , U1, U2, U3 are non empty sets, u, u1, u2 are elements of U , P ,
R are binary relations, f , g are functions, k, m, n are natural numbers, k1, m2,
n1 are elements of N, m1, n2 are non zero natural numbers, p, p1, p2 are finite
sequences, and q, q1, q2 are U -valued finite sequences.

Let us consider p, x, y. Note that p+̃(x, y) is finite sequence-like.
Let us consider x, y, p. The functor (x, y) -SymbolSubstIn p yielding a finite

sequence is defined by:

(Def. 21) (x, y) -SymbolSubstIn p = p+̃(x, y).

Let us consider x, y, m and let p be an m-element finite sequence. Observe
that (x, y) -SymbolSubstIn p is m-element.

Let us consider X. Observe that there exists a finite sequence which is X-
valued.

Let us consider x, U , u and let p be a U -valued finite sequence. Observe that
(x, u) -SymbolSubstIn p is U -valued.

Let us consider X, x, y and let p be an X-valued finite sequence. Then
(x, y) -SymbolSubstIn p can be characterized by the condition:

(Def. 22) (x, y) -SymbolSubstIn p = (idX +· (x, y)) · p.
Let us consider U , x, u, q. Then (x, u) -SymbolSubstIn q is a finite sequence

of elements of U .
Let us consider U , x, u. The functor x SubstWithu yielding a function from

U∗ into U∗ is defined as follows:

(Def. 23) For every q holds (x SubstWithu)(q) = (x, u) -SymbolSubstIn q.

Let us consider U , x, u. Note that x SubstWithu is finite sequence-yielding.
Let F be a finite sequence-yielding function and let x be a set. Observe that

F (x) is finite sequence-like.
Let us consider U , x, u, m and let p be a U -valued m-element finite sequence.

Note that (x SubstWithu)(p) is m-element.
Let e be an empty set. One can verify that (x SubstWithu)(e) is empty.
Let us consider U . Note that U -multiCat is finite sequence-yielding.
One can verify that there exists a U -valued finite sequence which is non

empty.
Let us consider U , m1, n and let p be an m1 + n-element U -valued finite

sequence. Observe that {p(m1)} \ U is empty.
Let us consider U , m, n and let p be an m + 1 + n-element element of U∗.

One can check that {p(m+ 1)} \ U is empty.
Let us consider x. Note that 〈x〉−. {〈〈1, x〉〉} is empty.
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Let us consider m and let p be an m + 1-element finite sequence. Observe
that (p� Segm) a 〈p(m+ 1)〉−. p is empty.

Let us consider m, n and let p be an m+n-element finite sequence. One can
verify that p� Segm is m-element.

Let us observe that every binary relation which is {∅}-valued is also empty
yielding and every binary relation which is empty yielding is also {∅}-valued.

The following two propositions are true:

(32) U -multiCat(x) = (MultPlace (the concatenation of U))(x).

(33) If p is U∗-valued, then U -multiCat(p a 〈q〉) = U -multiCat(p) a q.

Let us consider Y , let X be a subset of Y , and let R be a total Y -defined
binary relation. One can check that R�X is total.

The following propositions are true:

(34) If u = u1, then (u1, x2) -SymbolSubstIn〈u〉 = 〈x2〉 and if u 6= u1, then
(u1, x2) -SymbolSubstIn〈u〉 = 〈u〉.

(35) If u = u1, then (u1 SubstWithu2)(〈u〉) = 〈u2〉 and if u 6= u1, then
(u1 SubstWithu2)(〈u〉) = 〈u〉.

(36) (x SubstWithu)(q1
a q2) = (x SubstWithu)(q1) a (x SubstWithu)(q2).

(37) If p is U∗-valued,
then (x SubstWithu)(U -multiCat(p)) = U -multiCat((x SubstWithu) · p).

(38) (The concatenation of U)◦(idU1) = {〈u, u〉 : u ranges over elements of
U}.

Let us consider f , U , u. One can verify that (f�U)(u)−. f(u) is empty.
Let us consider f , U1, U2, let u be an element of U1, and let g be a function

from U1 into U2. Observe that (f · g)(u)−. f(g(u)) is empty.
One can verify that every integer number which is non negative is also na-

tural.
Let x, y be real numbers. One can verify that max(x, y)−x is non negative.
The following proposition is true

(39) If x is boolean, then x = 1 iff x 6= 0.

Let us consider Y and let X be a subset of Y . Note that X \ Y is empty.
Let us consider x, y. Observe that {x} \ {x, y} is empty and 〈〈x, y〉〉1−

. x is
empty.

Let us consider x, y. Observe that 〈〈x, y〉〉2−
. y is empty.

Let n be a positive natural number and let X be a non empty set. Note that
there exists an element of X∗ \ {∅} which is n-element.

Let us consider m1. One can verify that every finite sequence which is m1+0-
element is also non empty.

Let us consider R, x. Note that R nullx is relation-like.
Let f be a function-like set and let us consider x. One can check that f nullx

is function-like.
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Let p be a finite sequence-like binary relation and let us consider x. One can
check that p nullx is finite sequence-like.

Let us consider p, x. Observe that p nullx is len p-element.
Let p be a non empty finite sequence. Note that len p is non zero.
Let R be a binary relation and letX be a set. Observe that R�X isX-defined.
Let us consider x and let e be an empty set. Observe that e nullx is empty.
Let us consider X and let e be an empty set. One can verify that enullX is

X-valued.
Let Y be a non empty finite sequence-membered set. One can check that

every function which is Y -valued is also finite sequence-yielding.
Let us consider X, Y . Note that every element of (Y ∗)X is finite sequence-

yielding.
We now state the proposition

(40) If f is X∗-valued, then f(x) ∈ X∗.
Let us consider m, n and let p be an m-element finite sequence. Observe

that p nulln is Segm+ n-defined.
Let us consider m, n, let p be an m-element finite sequence, and let q be an

n-element finite sequence. Observe that p a q is m+ n-element.
The following two propositions are true:

(41) Let p1, p2, q1, q2 be finite sequences. Suppose p1 is m-element but q1 is
m-element but p1

a p2 = q1
a q2 or p2

a p1 = q2
a q1. Then p1 = q1 and

p2 = q2.

(42) If U -multiCat(x) is U1-valued and x ∈ (U∗)∗, then x is a finite sequence
of elements of U1

∗.

Let us consider U . One can verify that there exists a reflexive binary relation
on U which is total.

Let us consider m. Note that every finite sequence which is m + 1-element
is also non empty.

Let us consider U , u. Note that idU (u)−. u is empty.
Let us consider U and let p be a U -valued non empty finite sequence. Observe

that {p(1)} \ U is empty.
Next we state the proposition

(43) If x1 = x2, then f+·(x1 7−→. y1)+·(x2 7−→. y2) = f+·(x2 7−→. y2) and if x1 6=
x2, then f+·(x1 7−→. y1)+·(x2 7−→. y2) = f+·(x2 7−→. y2)+·(x1 7−→. y1).

Let us consider X, U . Note that there exists an X-defined function which is
U -valued and total.

Let us consider X, U , let P be a U -valued total X-defined binary relation,
and let Q be a total U -defined binary relation. One can verify that P ·Q is total.

We now state the proposition

(44) If p a p1
a p2 is X-valued, then p2 is X-valued and p1 is X-valued and p

is X-valued.
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Let us consider X and let R be a binary relation. One can check that R nullX
is X ∪ rngR-valued.

Let X, Y be functional sets. One can verify that X ∪ Y is functional.
Let us note that every set which is finite sequence-membered is also finite-

membered.
Let X be a functional set. The functor SymbolsOf X is defined by:

(Def. 24) SymbolsOf X =
⋃
{rng x;x ranges over elements of X ∪ {∅} : x ∈ X}.

Let us observe that there exists a set which is trivial, finite sequence-
membered, and non empty.

Let X be a functional finite finite-membered set. Note that SymbolsOf X is
finite.

Let X be a finite finite sequence-membered set. One can verify that
SymbolsOf X is finite.

The following proposition is true

(45) SymbolsOf{f} = rng f.

Let z be a non zero complex number. One can check that |z| is positive.
The scheme Sc1 deals with a set A, a set B, and a unary functor F yielding

a set, and states that:
{F(x);x ranges over elements of A : x ∈ A} = {F(x);x ranges
over elements of B : x ∈ A}

provided the following condition is satisfied:
• A ⊆ B.

Let X be a functional set. Then SymbolsOf X can be characterized by the
condition:

(Def. 25) SymbolsOf X =
⋃
{rng x;x ranges over elements of X: x ∈ X}.

One can prove the following propositions:

(46) For every functional set B and for every subset A of B holds
SymbolsOf A ⊆ SymbolsOf B.

(47) For all functional sets A, B holds SymbolsOf(A ∪ B) = SymbolsOf A ∪
SymbolsOf B.

Let us consider X and let F be a subset of 2X . One can verify that
⋃
F \X

is empty.
The following four propositions are true:

(48) X = (X \ Y ) ∪X ∩ Y.
(49) If Am meets Bn, then m = n.

(50) If B is D-prefix and A ⊆ B, then A is D-prefix.

(51) f ⊆ g iff for every x such that x ∈ dom f holds x ∈ dom g and f(x) =
g(x).

Let us consider U . One can verify that every element of (U∗ \ {∅})∗ which
is non empty is also non empty yielding.
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Let e be an empty set. One can verify that every element of e∗ is empty.
The following proposition is true

(52)(i) If U1-multiCat(x) 6= ∅ and U2-multiCat(x) 6= ∅, then
U1-multiCat(x) = U2-multiCat(x),

(ii) if p is ∅∗-valued, then U1-multiCat(p) = ∅, and
(iii) if U1-multiCat(p) = ∅ and p is U1

∗-valued, then p is ∅∗-valued.

Let us consider U , x. Note that U -multiCat(x) is U -valued.
Let us consider x. The functor x null is defined by:

(Def. 26) x null = x.

Let Y be a set with non empty elements. Observe that every Y -valued binary
relation which is non empty is also non empty yielding.

Let us consider X. Observe that X \ {∅} has non empty elements.
Let X be a set with non empty elements. One can check that every subset

of X has non empty elements.
Let us consider U . Note that U∗ is infinite. Observe that U∗ has a non-empty

element.
Let X be a set with a non-empty element. Note that there exists a subset

of X which is non empty and has non empty elements.
One can prove the following propositions:

(53) If U1 ⊆ U2 and Y ⊆ U1
∗ and p is Y -valued and p 6= ∅ and Y has non

empty elements, then U1-multiCat(p) = U2-multiCat(p).

(54) If there exists p such that x = p and p is X∗-valued, then U -multiCat(x)
is X-valued.

Let us consider X, m. Observe that Xm \X∗ is empty.
The following two propositions are true:

(55) (A ∩B)∗ = A∗ ∩B∗.
(56) (P ∪Q)�X = P �X ∪Q�X.

Let us consider X. One can check that 2X \X is non empty.
Let us considerX and let R be a binary relation. One can verify that R nullX

is X ∪ domR-defined.
Next we state the proposition

(57) f�X+·g = f�(X \ dom g) ∪ g.
We now state the proposition

(58) If y /∈ π2(X), then A× {y} misses X.

Let us consider X. The functor X-freeCountableSet is defined by:

(Def. 27) X-freeCountableSet = N× {the element of 2 π2(X) \ π2(X)}.
Next we state the proposition

(59) X-freeCountableSet∩X = ∅ and X-freeCountableSet is infinite.
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Let us consider X. Observe that X-freeCountableSet is infinite. Observe
that X-freeCountableSet∩X is empty. One can verify that X-freeCountableSet
is countable.

One can check that N \ Z is empty.
Let us consider x, p. Observe that (〈x〉 a p)(1)−. x is empty.
Let us consider m, let m0 be a zero number, and let p be an m-element finite

sequence. Note that pnullm0 is total.
Let us consider U , q1, q2. One can check that U -multiCat(〈q1, q2〉)−. q1

a q2

is empty.
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