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Summary. In this article, first we give a definition of a functional space
which is constructed from all complex-valued continuous functions defined on
a compact topological space. We prove that this functional space is a Banach
algebra. Next, we give a definition of a function space which is constructed from
all complex-valued continuous functions with bounded support. We also prove
that this function space is a complex normed space.
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The terminology and notation used here have been introduced in the following
articles: [6], [24], [25], [1], [26], [5], [4], [2], [21], [15], [3], [18], [19], [23], [22], [17],
[7], [11], [12], [9], [10], [13], [8], [14], [20], and [16].

Let X be a topological structure and let f be a function from the carrier of
X into C. We say that f is continuous if and only if:

(Def. 1) For every subset Y of C such that Y is closed holds f−1(Y ) is closed.

Let X be a 1-sorted structure and let y be a complex number. The functor
X 7−→ y yielding a function from the carrier of X into C is defined by:

(Def. 2) X 7−→ y = (the carrier of X) 7−→ y.

One can prove the following proposition

(1) Let X be a non empty topological space, y be a complex number, and
f be a function from the carrier of X into C. If f = X 7−→ y, then f is
continuous.

Let X be a non empty topological space and let y be a complex number.
Observe that X 7−→ y is continuous.
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Let X be a non empty topological space. One can verify that there exists a
function from the carrier of X into C which is continuous.

The following propositions are true:

(2) Let X be a non empty topological space and f be a function from the
carrier of X into C. Then f is continuous if and only if for every subset Y
of C such that Y is open holds f−1(Y ) is open.

(3) Let X be a non empty topological space and f be a function from the
carrier of X into C. Then f is continuous if and only if for every point x
of X and for every subset V of C such that f(x) ∈ V and V is open there
exists a subset W of X such that x ∈W and W is open and f◦W ⊆ V.

(4) Let X be a non empty topological space and f , g be continuous functions
from the carrier of X into C. Then f +g is a continuous function from the
carrier of X into C.

(5) Let X be a non empty topological space, a be a complex number, and
f be a continuous function from the carrier of X into C. Then a · f is a
continuous function from the carrier of X into C.

(6) Let X be a non empty topological space and f , g be continuous functions
from the carrier of X into C. Then f −g is a continuous function from the
carrier of X into C.

(7) Let X be a non empty topological space and f , g be continuous functions
from the carrier of X into C. Then f · g is a continuous function from the
carrier of X into C.

(8) Let X be a non empty topological space and f be a continuous function
from the carrier of X into C. Then |f | is a function from the carrier of X
into R and |f | is continuous.

Let X be a non empty topological space. The C-continuous functions of X
yields a subset of C-Algebra(the carrier of X) and is defined by:

(Def. 3) The C-continuous functions of X = {f : f ranges over continuous func-
tions from the carrier of X into C}.

Let X be a non empty topological space. Observe that the C-continuous
functions of X is non empty.

Let X be a non empty topological space. Observe that the C-continuous
functions of X is C-additively linearly closed and multiplicatively closed.

Let X be a non empty topological space. The C-algebra of continuous func-
tions of X yielding a complex algebra is defined by the condition (Def. 4).

(Def. 4) The C-algebra of continuous functions of X = 〈the C-continuous func-
tions of X, mult(the C-continuous functions of X, C-Algebra(the car-
rier of X)),Add(the C-continuous functions of X, C-Algebra(the car-
rier of X)),Mult(the C-continuous functions of X, C-Algebra(the carrier
of X)),One(the C-continuous functions of X, C-Algebra(the carrier of
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X)),Zero(the C-continuous functions of X, C-Algebra(the carrier of X))〉.
Next we state the proposition

(9) Let X be a non empty topological space. Then the C-algebra of conti-
nuous functions of X is a complex subalgebra of C-Algebra(the carrier of
X).

Let X be a non empty topological space. Observe that the C-algebra of
continuous functions of X is strict and non empty.

Let X be a non empty topological space. One can check that the C-algebra of
continuous functions of X is Abelian, add-associative, right zeroed, right com-
plementable, vector distributive, scalar distributive, scalar associative, scalar
unital, commutative, associative, right unital, right distributive, vector distri-
butive, scalar distributive, scalar associative, and vector associative.

Next we state several propositions:

(10) Let X be a non empty topological space, F , G, H be vectors of the
C-algebra of continuous functions of X, and f , g, h be functions from
the carrier of X into C. Suppose f = F and g = G and h = H. Then
H = F + G if and only if for every element x of the carrier of X holds
h(x) = f(x) + g(x).

(11) Let X be a non empty topological space, F , G be vectors of the C-
algebra of continuous functions of X, f , g be functions from the carrier of
X into C, and a be a complex number. Suppose f = F and g = G. Then
G = a · F if and only if for every element x of X holds g(x) = a · f(x).

(12) Let X be a non empty topological space, F , G, H be vectors of the
C-algebra of continuous functions of X, and f , g, h be functions from
the carrier of X into C. Suppose f = F and g = G and h = H. Then
H = F · G if and only if for every element x of the carrier of X holds
h(x) = f(x) · g(x).

(13) For every non empty topological space X holds
0the C-algebra of continuous functions of X = X 7−→ 0C.

(14) For every non empty topological space X holds
1the C-algebra of continuous functions of X = X 7−→ 1C.

(15) Let A be a complex algebra and A1, A2 be complex subalgebras of A.
Suppose the carrier of A1 ⊆ the carrier of A2. Then A1 is a complex
subalgebra of A2.

(16) Let X be a non empty compact topological space. Then the C-algebra
of continuous functions of X is a complex subalgebra of the C-algebra of
bounded functions of the carrier of X.

Let X be a non empty compact topological space. The C-continuous func-
tions norm of X yields a function from the C-continuous functions of X into R
and is defined by:
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(Def. 5) The C-continuous functions norm ofX = (C-BoundedFunctionsNorm (the
carrier of X))�the C-continuous functions of X.

Let X be a non empty compact topological space. The C-normed algebra
of continuous functions of X yields a normed complex algebra structure and is
defined by the condition (Def. 6).

(Def. 6) The C-normed algebra of continuous functions of X = 〈the C-continuous
functions of X, mult(the C-continuous functions of X, C-Algebra(the car-
rier of X)),Add(the C-continuous functions of X, C-Algebra(the car-
rier of X)),Mult(the C-continuous functions of X, C-Algebra(the car-
rier of X)),One(the C-continuous functions of X, C-Algebra(the carrier
of X)),Zero(the C-continuous functions of X, C-Algebra(the carrier of
X)), the C-continuous functions norm of X〉.

Let X be a non empty compact topological space. Note that the C-normed
algebra of continuous functions of X is non empty and strict.

Let X be a non empty compact topological space. Observe that the C-
normed algebra of continuous functions of X is unital.

Next we state the proposition

(17) Let X be a non empty compact topological space. Then the C-normed
algebra of continuous functions of X is a complex algebra.

Let X be a non empty compact topological space. One can check that the
C-normed algebra of continuous functions of X is right complementable, Abe-
lian, add-associative, right zeroed, vector distributive, scalar distributive, scalar
associative, associative, commutative, right distributive, right unital, and vector
associative.

One can prove the following proposition

(18) Let X be a non empty compact topological space and F be a point
of the C-normed algebra of continuous functions of X. Then (Mult(the
C-continuous functions of X, C-Algebra(the carrier of X)))(1C, F ) = F.

Let X be a non empty compact topological space. Observe that the C-
normed algebra of continuous functions of X is vector distributive, scalar distri-
butive, scalar associative, and scalar unital.

We now state a number of propositions:

(19) Let X be a non empty compact topological space. Then the C-normed
algebra of continuous functions of X is a complex linear space.

(20) Let X be a non empty compact topological space. Then X 7−→ 0 =
0the C-normed algebra of continuous functions of X .

(21) Let X be a non empty compact topological space and F be a point of
the C-normed algebra of continuous functions of X. Then 0 ≤ ‖F‖.

(22) Let X be a non empty compact topological space, f , g, h be functions
from the carrier of X into C, and F , G, H be points of the C-normed
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algebra of continuous functions of X. Suppose f = F and g = G and
h = H. Then H = F + G if and only if for every element x of X holds
h(x) = f(x) + g(x).

(23) Let a be a complex number, X be a non empty compact topological
space, f , g be functions from the carrier of X into C, and F , G be points
of the C-normed algebra of continuous functions of X. Suppose f = F

and g = G. Then G = a · F if and only if for every element x of X holds
g(x) = a · f(x).

(24) Let X be a non empty compact topological space, f , g, h be functions
from the carrier of X into C, and F , G, H be points of the C-normed
algebra of continuous functions of X. Suppose f = F and g = G and
h = H. Then H = F · G if and only if for every element x of X holds
h(x) = f(x) · g(x).

(25) Let X be a non empty compact topological space.
Then ‖0the C-normed algebra of continuous functions of X‖ = 0.

(26) Let X be a non empty compact topological space and F be a point of
the C-normed algebra of continuous functions of X. Suppose ‖F‖ = 0.
Then F = 0the C-normed algebra of continuous functions of X .

(27) Let a be a complex number, X be a non empty compact topological
space, and F be a point of the C-normed algebra of continuous functions
of X. Then ‖a · F‖ = |a| · ‖F‖.

(28) Let X be a non empty compact topological space and F , G be points
of the C-normed algebra of continuous functions of X. Then ‖F + G‖ ≤
‖F‖+ ‖G‖.

Let X be a non empty compact topological space. Observe that the C-
normed algebra of continuous functions of X is discernible, reflexive, and com-
plex normed space-like.

The following propositions are true:

(29) Let X be a non empty compact topological space, f , g, h be functions
from the carrier of X into C, and F , G, H be points of the C-normed
algebra of continuous functions of X. Suppose f = F and g = G and
h = H. Then H = F − G if and only if for every element x of X holds
h(x) = f(x)− g(x).

(30) Let X be a complex Banach space, Y be a subset of X, and s1 be a
sequence of X. Suppose Y is closed and rng s1 ⊆ Y and s1 is C-Cauchy.
Then s1 is convergent and lim s1 ∈ Y.

(31) Let X be a non empty compact topological space and Y be a subset of
the C-normed algebra of bounded functions of the carrier of X. If Y = the
C-continuous functions of X, then Y is closed.

(32) Let X be a non empty compact topological space and s1 be a sequence
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of the C-normed algebra of continuous functions of X. If s1 is C-Cauchy,
then s1 is convergent.

Let X be a non empty compact topological space. One can verify that the
C-normed algebra of continuous functions of X is complete.

Let X be a non empty compact topological space. Observe that the C-
normed algebra of continuous functions of X is Banach Algebra-like.

Next we state three propositions:

(33) For every non empty topological space X and for all functions f , g from
the carrier of X into C holds support(f + g) ⊆ support f ∪ support g.

(34) Let X be a non empty topological space, a be a complex number, and f
be a function from the carrier of X into C. Then support(a·f) ⊆ support f.

(35) For every non empty topological space X and for all functions f , g from
the carrier of X into C holds support(f · g) ⊆ support f ∪ support g.

Let X be a non empty topological space. The CC0-functions of X yielding
a non empty subset of the C-vector space of the carrier of X is defined by the
condition (Def. 7).

(Def. 7) The CC0-functions of X = {f ; f ranges over functions from the
carrier of X into C: f is continuous ∧

∨
Y : non empty subset of X (Y is

compact ∧
∧
A : subset of X (A = support f ⇒ A is a subset of Y ))}.

The following propositions are true:

(36) Let X be a non empty topological space. Then the CC0-functions of X
is a non empty subset of C-Algebra(the carrier of X).

(37) Let X be a non empty topological space and W be a non empty subset
of C-Algebra(the carrier of X). Suppose W = the CC0-functions of X.
Then W is C-additively linearly closed.

(38) For every non empty topological space X holds the CC0-functions of X
is add closed.

(39) For every non empty topological space X holds the CC0-functions of X
is linearly closed.

Let X be a non empty topological space. Observe that the CC0-functions
of X is non empty and linearly closed.

The following propositions are true:

(40) Let V be a complex linear space and V1 be a subset of
V . Suppose V1 is linearly closed and V1 is not empty. Then
〈V1,Zero(V1, V ),Add(V1, V ),Mult(V1, V )〉 is a subspace of V .

(41) Let X be a non empty topological space. Then 〈the CC0-functions of
X, Zero(the CC0-functions of X, the C-vector space of the carrier of
X),Add(the CC0-functions of X, the C-vector space of the carrier of
X),Mult(the CC0-functions of X, the C-vector space of the carrier of
X)〉 is a subspace of the C-vector space of the carrier of X.
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Let X be a non empty topological space. The C-vector space of C0-functions
of X yielding a complex linear space is defined by the condition (Def. 8).

(Def. 8) The C-vector space of C0-functions of X = 〈the CC0-functions of
X, Zero(the CC0-functions of X, the C-vector space of the carrier of
X),Add(the CC0-functions of X, the C-vector space of the carrier of
X),Mult(the CC0-functions of X, the C-vector space of the carrier of
X)〉.

Next we state the proposition

(42) Let X be a non empty topological space and x be a set. If x ∈ the
CC0-functions of X, then x ∈ C-BoundedFunctions (the carrier of X).

Let X be a non empty topological space. The CC0-functions norm of X
yielding a function from the CC0-functions of X into R is defined by:

(Def. 9) The CC0-functions norm of X = (C-BoundedFunctionsNorm (the car-
rier of X))�the CC0-functions of X.

LetX be a non empty topological space. The C-normed space ofC0-functions
of X yielding a complex normed space structure is defined by the condition
(Def. 10).

(Def. 10) The C-normed space of C0-functions of X = 〈the CC0-functions of
X, Zero(the CC0-functions of X, the C-vector space of the carrier of
X),Add(the CC0-functions of X, the C-vector space of the carrier of
X),Mult(the CC0-functions of X, the C-vector space of the carrier of
X), the CC0-functions norm of X〉.

Let X be a non empty topological space. One can check that the C-normed
space of C0-functions of X is strict and non empty.

One can prove the following propositions:

(43) Let X be a non empty topological space and x be a set. Suppose x ∈ the
CC0-functions of X. Then x ∈ the C-continuous functions of X.

(44) For every non empty topological space X holds
0the C-vector space of C0-functions of X = X 7−→ 0.

(45) For every non empty topological space X holds
0the C-normed space of C0-functions of X = X 7−→ 0.

(46) Let a be a complex number, X be a non empty topological space, and
F , G be points of the C-normed space of C0-functions of X. Then ‖F‖ =
0 iff F = 0the C-normed space of C0-functions of X and ‖a · F‖ = |a| · ‖F‖ and
‖F +G‖ ≤ ‖F‖+ ‖G‖.

Let X be a non empty topological space. Note that the C-normed space of
C0-functions of X is reflexive, discernible, complex normed space-like, vector
distributive, scalar distributive, scalar associative, scalar unital, Abelian, add-
associative, right zeroed, and right complementable.

The following proposition is true
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(47) Let X be a non empty topological space. Then the C-normed space of
C0-functions of X is a complex normed space.
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