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Summary. In this article, we formalize Z-module, that is a module over
integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-
Lovász) base reduction algorithm and cryptographic systems with lattices [11].

MML identifier: ZMODUL01, version: 7.1 .0 4.16 .11

The papers [10], [17], [18], [7], [2], [9], [14], [8], [6], [13], [5], [1], [15], [4], [3], [19],
[16], and [12] provide the terminology and notation for this paper.

1. Definition of Z-module

We introduce Z-module structures which are extensions of additive loop
structure and are systems
〈 a carrier, a zero, an addition, an external multiplication 〉,

where the carrier is a set, the zero is an element of the carrier, the addition is
a binary operation on the carrier, and the external multiplication is a function
from Z× the carrier into the carrier.

Let us mention that there exists a Z-module structure which is non empty.
Let V be a Z-module structure. A vector of V is an element of V .
In the sequel V denotes a non empty Z-module structure and v denotes a

vector of V .
Let us consider V , v and let a be an integer number. The functor a · v yields

an element of V and is defined by:

(Def. 1) a · v = (the external multiplication of V )(a, v).
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Let Z1 be a non empty set, let O be an element of Z1, let F be a binary
operation on Z1, and let G be a function from Z × Z1 into Z1. One can verify
that 〈〈Z1, O, F,G〉〉 is non empty.

Let I1 be a non empty Z-module structure. We say that I1 is vector distri-
butive if and only if:

(Def. 2) For every a and for all vectors v, w of I1 holds a · (v+w) = a · v+ a ·w.
We say that I1 is scalar distributive if and only if:

(Def. 3) For all a, b and for every vector v of I1 holds (a+ b) · v = a · v + b · v.
We say that I1 is scalar associative if and only if:

(Def. 4) For all a, b and for every vector v of I1 holds (a · b) · v = a · (b · v).

We say that I1 is scalar unital if and only if:

(Def. 5) For every vector v of I1 holds 1 · v = v.

The strict Z-module structure the trivial structure of Z-module is defined
as follows:

(Def. 6) The trivial structure of Z-module = 〈〈1, op0, op2, π2(Z× 1)〉〉.
Let us observe that the trivial structure of Z-module is trivial and non empty.
Let us observe that there exists a non empty Z-module structure which

is strict, Abelian, add-associative, right zeroed, right complementable, scalar
distributive, vector distributive, scalar associative, and scalar unital.

A Z-module is an Abelian add-associative right zeroed right complementable
scalar distributive vector distributive scalar associative scalar unital non empty
Z-module structure.

In the sequel v, w denote vectors of V .
Let I1 be a non empty Z-module structure. We say that I1 inherits cancelable

on multiplication if and only if:

(Def. 7) For every a and for every vector v of I1 such that a ·v = 0(I1) holds a = 0
or v = 0(I1).

The following propositions are true:

(1) If a = 0 or v = 0V , then a · v = 0V .

(2) −v = (−1) · v.
(3) If V inherits cancelable on multiplication and v = −v, then v = 0V .

(4) If V inherits cancelable on multiplication and v + v = 0V , then v = 0V .

(5) a · −v = (−a) · v.
(6) a · −v = −a · v.
(7) (−a) · −v = a · v.
(8) a · (v − w) = a · v − a · w.
(9) (a− b) · v = a · v − b · v.

(10) If V inherits cancelable on multiplication and a 6= 0 and a · v = a · w,
then v = w.
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(11) If V inherits cancelable on multiplication and v 6= 0V and a · v = b · v,
then a = b.

For simplicity, we follow the rules: V is a Z-module, u, v, w are vectors of
V , F , G, H, I are finite sequences of elements of V , j, k, n are elements of N,
and f9 is a function from N into the carrier of V .

Next we state several propositions:

(12) If lenF = lenG and for all k, v such that k ∈ domF and v = G(k) holds
F (k) = a · v, then

∑
F = a ·

∑
G.

(13) For every Z-module V and for every integer a holds a ·∑
(ε(the carrier of V )) = 0V .

(14) For every Z-module V and for every integer a and for all vectors v, u of
V holds a ·

∑
〈v, u〉 = a · v + a · u.

(15) For every Z-module V and for every integer a and for all vectors v, u, w
of V holds a ·

∑
〈v, u, w〉 = a · v + a · u+ a · w.

(16) (−a) · v = −a · v.
(17) If lenF = lenG and for every k such that k ∈ domF holds G(k) = a ·Fk,

then
∑
G = a ·

∑
F.

2. Submodules and Cosets of Submodules in Z-module

We use the following convention: V , X are Z-modules, V1, V2, V3 are subsets
of V , and x is a set.

Let us consider V , V1. We say that V1 is linearly closed if and only if:

(Def. 8) For all v, u such that v, u ∈ V1 holds v + u ∈ V1 and for all a, v such
that v ∈ V1 holds a · v ∈ V1.

One can prove the following propositions:

(18) If V1 6= ∅ and V1 is linearly closed, then 0V ∈ V1.
(19) If V1 is linearly closed, then for every v such that v ∈ V1 holds −v ∈ V1.
(20) If V1 is linearly closed, then for all v, u such that v, u ∈ V1 holds

v − u ∈ V1.
(21) If the carrier of V = V1, then V1 is linearly closed.

(22) If V1 is linearly closed and V2 is linearly closed and V3 = {v + u : v ∈
V1 ∧ u ∈ V2}, then V3 is linearly closed.

Let us consider V . Observe that {0V } is linearly closed.
Let us consider V . Note that there exists a subset of V which is linearly

closed.
Let us consider V and let V1, V2 be linearly closed subsets of V . Note that

V1 ∩ V2 is linearly closed.
Let us consider V . A Z-module is called a submodule of V if it satisfies the

conditions (Def. 9).
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(Def. 9)(i) The carrier of it ⊆ the carrier of V ,
(ii) 0it = 0V ,
(iii) the addition of it = (the addition of V ) � (the carrier of it), and
(iv) the external multiplication of it = (the external multiplication of

V )�(Z× the carrier of it).

In the sequel W2 denotes a submodule of V and w, w1, w2 denote vectors of
W .

We now state a number of propositions:

(23) If x ∈W1 and W1 is a submodule of W2, then x ∈W2.
(24) If x ∈W, then x ∈ V.
(25) w is a vector of V .

(26) 0W = 0V .

(27) 0(W1) = 0(W2).

(28) If w1 = v and w2 = u, then w1 + w2 = v + u.

(29) If w = v, then a · w = a · v.
(30) If w = v, then −v = −w.
(31) If w1 = v and w2 = u, then w1 − w2 = v − u.
(32) V is a submodule of V .

(33) 0V ∈W.
(34) 0(W1) ∈W2.
(35) 0W ∈ V.
(36) If u, v ∈W, then u+ v ∈W.
(37) If v ∈W, then a · v ∈W.
(38) If v ∈W, then −v ∈W.
(39) If u, v ∈W, then u− v ∈W.

In the sequel d1 is an element of D, A is a binary operation on D, and M is
a function from Z×D into D.

We now state several propositions:

(40) Suppose V1 = D and d1 = 0V and A = (the addition of V ) � (V1) and
M = (the external multiplication of V )�(Z× V1). Then 〈〈D, d1, A,M〉〉 is a
submodule of V .

(41) For all strict Z-modules V , X such that V is a submodule of X and X

is a submodule of V holds V = X.

(42) If V is a submodule of X and X is a submodule of Y , then V is a
submodule of Y .

(43) If the carrier of W1 ⊆ the carrier of W2, then W1 is a submodule of W2.

(44) If for every v such that v ∈ W1 holds v ∈ W2, then W1 is a submodule
of W2.
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Let us consider V . Note that there exists a submodule of V which is strict.
Next we state several propositions:

(45) For all strict submodules W1, W2 of V such that the carrier of W1 = the
carrier of W2 holds W1 = W2.

(46) For all strict submodules W1, W2 of V such that for every v holds v ∈W1
iff v ∈W2 holds W1 = W2.

(47) Let V be a strict Z-module and W be a strict submodule of V . If the
carrier of W = the carrier of V , then W = V.

(48) Let V be a strict Z-module and W be a strict submodule of V . If for
every vector v of V holds v ∈W iff v ∈ V, then W = V.

(49) If the carrier of W = V1, then V1 is linearly closed.

(50) If V1 6= ∅ and V1 is linearly closed, then there exists a strict submodule
W of V such that V1 = the carrier of W .

Let us consider V . The functor 0V yielding a strict submodule of V is defined
by:

(Def. 10) The carrier of 0V = {0V }.
Let us consider V . The functor ΩV yields a strict submodule of V and is

defined by:

(Def. 11) ΩV = the Z-module structure of V .

We now state several propositions:

(51) 0W = 0V .

(52) 0(W1) = 0(W2).

(53) 0W is a submodule of V .

(54) 0V is a submodule of W .

(55) 0(W1) is a submodule of W2.

(56) Every strict Z-module V is a submodule of ΩV .

Let us consider V , v, W . The functor v + W yields a subset of V and is
defined as follows:

(Def. 12) v +W = {v + u : u ∈W}.
Let us consider V , W . A subset of V is called a coset of W if:

(Def. 13) There exists v such that it = v +W.

In the sequel B, C are cosets of W .
The following propositions are true:

(57) 0V ∈ v +W iff v ∈W.
(58) v ∈ v +W.

(59) 0V +W = the carrier of W .

(60) v + 0V = {v}.
(61) v + ΩV = the carrier of V .
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(62) 0V ∈ v +W iff v +W = the carrier of W .

(63) v ∈W iff v +W = the carrier of W .

(64) If v ∈W, then a · v +W = the carrier of W .

(65) u ∈W iff v +W = v + u+W.

(66) u ∈W iff v +W = (v − u) +W.

(67) v ∈ u+W iff u+W = v +W.

(68) If u ∈ v1 +W and u ∈ v2 +W, then v1 +W = v2 +W.

(69) If v ∈W, then a · v ∈ v +W.

(70) u+ v ∈ v +W iff u ∈W.
(71) v − u ∈ v +W iff u ∈W.
(72) u ∈ v +W iff there exists v1 such that v1 ∈W and u = v + v1.

(73) u ∈ v +W iff there exists v1 such that v1 ∈W and u = v − v1.
(74) There exists v such that v1, v2 ∈ v +W iff v1 − v2 ∈W.
(75) If v+W = u+W, then there exists v1 such that v1 ∈W and v+ v1 = u.

(76) If v+W = u+W, then there exists v1 such that v1 ∈W and v− v1 = u.

(77) For all strict submodules W1, W2 of V such that v+W1 = v+W2 holds
W1 = W2.

(78) For all strict submodules W1, W2 of V such that v+W1 = u+W2 holds
W1 = W2.

(79) C is linearly closed iff C = the carrier of W .

(80) For all strict submodules W1, W2 of V and for every coset C1 of W1 and
for every coset C2 of W2 such that C1 = C2 holds W1 = W2.

(81) {v} is a coset of 0V .

(82) If V1 is a coset of 0V , then there exists v such that V1 = {v}.
(83) The carrier of W is a coset of W .

(84) The carrier of V is a coset of ΩV .

(85) If V1 is a coset of ΩV , then V1 = the carrier of V .

(86) 0V ∈ C iff C = the carrier of W .

(87) u ∈ C iff C = u+W.

(88) If u, v ∈ C, then there exists v1 such that v1 ∈W and u+ v1 = v.

(89) If u, v ∈ C, then there exists v1 such that v1 ∈W and u− v1 = v.

(90) There exists C such that v1, v2 ∈ C iff v1 − v2 ∈W.
(91) If u ∈ B and u ∈ C, then B = C.



Z-modules 53

3. Operations on Submodules in Z-module

For simplicity, we use the following convention: V is a Z-module, W , W1,
W2, W3 are submodules of V , u, u1, u2, v, v1, v2 are vectors of V , a, a1, a2 are
integer numbers, and X, Y , y, y1, y2 are sets.

Let us consider V , W1, W2. The functor W1+W2 yielding a strict submodule
of V is defined by:

(Def. 14) The carrier of W1 +W2 = {v + u : v ∈W1 ∧ u ∈W2}.
Let us notice that the functor W1 +W2 is commutative.

Let us consider V , W1, W2. The functor W1 ∩W2 yields a strict submodule
of V and is defined as follows:

(Def. 15) The carrier of W1 ∩W2 = (the carrier of W1) ∩ (the carrier of W2).

Let us observe that the functor W1 ∩W2 is commutative.
We now state a number of propositions:

(92) x ∈ W1 + W2 iff there exist v1, v2 such that v1 ∈ W1 and v2 ∈ W2 and
x = v1 + v2.

(93) If v ∈W1 or v ∈W2, then v ∈W1 +W2.

(94) x ∈W1 ∩W2 iff x ∈W1 and x ∈W2.
(95) For every strict submodule W of V holds W +W = W.

(96) W1 + (W2 +W3) = (W1 +W2) +W3.

(97) W1 is a submodule of W1 +W2.

(98) For every strict submodule W2 of V holds W1 is a submodule of W2 iff
W1 +W2 = W2.

(99) For every strict submodule W of V holds 0V +W = W.

(100) 0V + ΩV = the Z-module structure of V .

(101) ΩV +W = the Z-module structure of V .

(102) For every strict Z-module V holds ΩV + ΩV = V.

(103) For every strict submodule W of V holds W ∩W = W.

(104) W1 ∩ (W2 ∩W3) = (W1 ∩W2) ∩W3.
(105) W1 ∩W2 is a submodule of W1.

(106) For every strict submodule W1 of V holds W1 is a submodule of W2 iff
W1 ∩W2 = W1.

(107) 0V ∩W = 0V .

(108) 0V ∩ ΩV = 0V .

(109) For every strict submodule W of V holds ΩV ∩W = W.

(110) For every strict Z-module V holds ΩV ∩ ΩV = V.

(111) W1 ∩W2 is a submodule of W1 +W2.

(112) For every strict submodule W2 of V holds W1 ∩W2 +W2 = W2.
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(113) For every strict submodule W1 of V holds W1 ∩ (W1 +W2) = W1.

(114) W1 ∩W2 +W2 ∩W3 is a submodule of W2 ∩ (W1 +W3).

(115) If W1 is a submodule of W2, then W2∩(W1+W3) = W1∩W2+W2∩W3.
(116) W2 +W1 ∩W3 is a submodule of (W1 +W2) ∩ (W2 +W3).

(117) If W1 is a submodule of W2, then W2+W1∩W3 = (W1+W2)∩(W2+W3).

(118) If W1 is a strict submodule of W3, then W1+W2∩W3 = (W1+W2)∩W3.
(119) For all strict submodules W1, W2 of V holds W1+W2 = W2 iff W1∩W2 =

W1.

(120) For all strict submodules W2, W3 of V such that W1 is a submodule of
W2 holds W1 +W3 is a submodule of W2 +W3.

(121) There exists W such that the carrier of W = (the carrier of W1) ∪ (the
carrier of W2) if and only if W1 is a submodule of W2 or W2 is a submodule
of W1.

Let us consider V . The functor Sub(V ) yields a set and is defined by:

(Def. 16) For every x holds x ∈ Sub(V ) iff x is a strict submodule of V .

Let us consider V . One can verify that Sub(V ) is non empty.
We now state the proposition

(122) For every strict Z-module V holds V ∈ Sub(V ).

Let us consider V , W1, W2. We say that V is the direct sum of W1 and W2
if and only if:

(Def. 17) The Z-module structure of V = W1 +W2 and W1 ∩W2 = 0V .

Let V be a Z-module and let W be a submodule of V . We say that W has
linear complement if and only if:

(Def. 18) There exists a submodule C of V such that V is the direct sum of C and
W .

Let V be a Z-module. Observe that there exists a submodule of V which has
linear complement.

Let V be a Z-module and let W be a submodule of V . Let us assume that
W has linear complement. A submodule of V is called a linear complement of
W if:

(Def. 19) V is the direct sum of it and W .

One can prove the following propositions:

(123) Let V be a Z-module and W1, W2 be submodules of V . Suppose V is
the direct sum of W1 and W2. Then W2 is a linear complement of W1.

(124) Let V be a Z-module, W be a submodule of V with linear complement,
and L be a linear complement of W . Then V is the direct sum of L and
W and the direct sum of W and L.
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(125) Let V be a Z-module, W be a submodule of V with linear complement,
and L be a linear complement of W . Then W+L = the Z-module structure
of V .

(126) Let V be a Z-module, W be a submodule of V with linear complement,
and L be a linear complement of W . Then W ∩ L = 0V .

(127) If V is the direct sum of W1 and W2, then V is the direct sum of W2
and W1.

(128) Let V be a Z-module, W be a submodule of V with linear complement,
and L be a linear complement of W . Then W is a linear complement of
L.

(129) Every Z-module V is the direct sum of 0V and ΩV and the direct sum
of ΩV and 0V .

(130) For every Z-module V holds 0V is a linear complement of ΩV and ΩV is
a linear complement of 0V .

In the sequel C is a coset of W , C1 is a coset of W1, and C2 is a coset of W2.
Next we state several propositions:

(131) If C1 meets C2, then C1 ∩ C2 is a coset of W1 ∩W2.
(132) Let V be a Z-module and W1, W2 be submodules of V . Then V is the

direct sum of W1 and W2 if and only if for every coset C1 of W1 and for
every coset C2 of W2 there exists a vector v of V such that C1∩C2 = {v}.

(133) Let V be a Z-module and W1, W2 be submodules of V . Then W1+W2 =
the Z-module structure of V if and only if for every vector v of V there
exist vectors v1, v2 of V such that v1 ∈W1 and v2 ∈W2 and v = v1 + v2.

(134) If V is the direct sum of W1 and W2 and v1 + v2 = u1 + u2 and v1,
u1 ∈W1 and v2, u2 ∈W2, then v1 = u1 and v2 = u2.

(135) Suppose V = W1 + W2 and there exists v such that for all v1, v2, u1,
u2 such that v1 + v2 = u1 + u2 and v1, u1 ∈ W1 and v2, u2 ∈ W2 holds
v1 = u1 and v2 = u2. Then V is the direct sum of W1 and W2.

Let us consider V , v, W1, W2. Let us assume that V is the direct sum of
W1 and W2. The functor v〈〈W1,W2〉〉 yields an element of (the carrier of V )× (the

carrier of V ) and is defined as follows:

(Def. 20) v = (v〈〈W1,W2〉〉)1+(v〈〈W1,W2〉〉)2 and (v〈〈W1,W2〉〉)1 ∈W1 and (v〈〈W1,W2〉〉)2 ∈
W2.

Next we state several propositions:

(136) If V is the direct sum of W1 and W2, then (v〈〈W1,W2〉〉)1 = (v〈〈W2,W1〉〉)2.

(137) If V is the direct sum of W1 and W2, then (v〈〈W1,W2〉〉)2 = (v〈〈W2,W1〉〉)1.

(138) Let V be a Z-module, W be a submodule of V with linear complement,
L be a linear complement of W , v be a vector of V , and t be an element
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of (the carrier of V ) × (the carrier of V ). If t1 + t2 = v and t1 ∈ W and
t2 ∈ L, then t = v〈〈W,L〉〉.

(139) Let V be a Z-module, W be a submodule of V with linear complement,
L be a linear complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1+

(v〈〈W,L〉〉)2 = v.

(140) Let V be a Z-module, W be a submodule of V with linear complement, L
be a linear complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1 ∈W
and (v〈〈W,L〉〉)2 ∈ L.

(141) Let V be a Z-module, W be a submodule of V with linear complement,
L be a linear complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1 =

(v〈〈L,W〉〉)2.
(142) Let V be a Z-module, W be a submodule of V with linear complement,

L be a linear complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)2 =

(v〈〈L,W〉〉)1.

In the sequel A1, A2, B are elements of Sub(V ).
Let us consider V . The functor SubJoinV yielding a binary operation on

Sub(V ) is defined by:

(Def. 21) For all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubJoinV )(A1, A2) = W1 +W2.

Let us consider V . The functor SubMeetV yields a binary operation on
Sub(V ) and is defined by:

(Def. 22) For all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubMeetV )(A1, A2) = W1 ∩W2.

One can prove the following proposition

(143) 〈Sub(V ),SubJoinV,SubMeetV 〉 is a lattice.

Let us consider V . Note that 〈Sub(V ), SubJoinV,SubMeetV 〉 is lattice-like.
We now state several propositions:

(144) For every Z-module V holds 〈Sub(V ), SubJoinV,SubMeetV 〉 is lower-
bounded.

(145) For every Z-module V holds 〈Sub(V ), SubJoinV,SubMeetV 〉 is upper-
bounded.

(146) For every Z-module V holds 〈Sub(V ), SubJoinV,SubMeetV 〉 is a bound
lattice.

(147) For every Z-module V holds 〈Sub(V ), SubJoinV,SubMeetV 〉 is modular.

(148) Let V be a Z-module and W1, W2, W3 be strict submodules of V . If W1
is a submodule of W2, then W1 ∩W3 is a submodule of W2 ∩W3.

(149) Let V be a Z-module and W be a strict submodule of V . Suppose that
for every vector v of V holds v ∈ W. Then W = the Z-module structure
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of V .

(150) There exists C such that v ∈ C.

4. Transformation of Abelian Group to Z-module

LetA3 be a non empty additive loop structure. The left integer multiplication
of A3 yielding a function from Z × the carrier of A3 into the carrier of A3 is
defined by the condition (Def. 23).

(Def. 23) Let i be an element of Z and a be an element of A3. Then
(i) if i ≥ 0, then (the left integer multiplication of A3)(i, a) =

(Nat-mult-leftA3)(i, a), and
(ii) if i < 0, then (the left integer multiplication of A3)(i, a) =

(Nat-mult-leftA3)(−i,−a).

The following propositions are true:

(151) Let R be a non empty additive loop structure, a be an element of R, i
be an element of Z, and i1 be an element of N. If i = i1, then (the left
integer multiplication of R)(i, a) = i1 · a.

(152) Let R be a non empty additive loop structure, a be an element of R,
and i be an element of Z. If i = 0, then (the left integer multiplication of
R)(i, a) = 0R.

(153) Let R be an add-associative right zeroed right complementable non
empty additive loop structure and i be an element of N. Then
(Nat-mult-leftR)(i, 0R) = 0R.

(154) Let R be an add-associative right zeroed right complementable non emp-
ty additive loop structure and i be an element of Z. Then (the left integer
multiplication of R)(i, 0R) = 0R.

(155) Let R be a right zeroed non empty additive loop structure, a be an
element of R, and i be an element of Z. If i = 1, then (the left integer
multiplication of R)(i, a) = a.

(156) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i, j, k be
elements of N. If i ≤ j and k = j − i, then (Nat-mult-leftR)(k, a) =
(Nat-mult-leftR)(j, a)− (Nat-mult-leftR)(i, a).

(157) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i be an
element of N. Then −(Nat-mult-leftR)(i, a) = (Nat-mult-leftR)(i,−a).

(158) Let R be an Abelian right zeroed add-associative right complementa-
ble non empty additive loop structure, a be an element of R, and i, j be
elements of Z. Suppose i ∈ N and j /∈ N. Then (the left integer multipli-
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cation of R)(i + j, a) = (the left integer multiplication of R)(i, a) + (the
left integer multiplication of R)(j, a).

(159) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i, j be
elements of Z. Then (the left integer multiplication of R)(i+ j, a) = (the
left integer multiplication of R)(i, a) + (the left integer multiplication of
R)(j, a).

(160) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a, b be elements of R, and i be an
element of N. Then (Nat-mult-leftR)(i, a+ b) = (Nat-mult-leftR)(i, a) +
(Nat-mult-leftR)(i, b).

(161) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a, b be elements of R, and i be an
element of Z. Then (the left integer multiplication of R)(i, a + b) = (the
left integer multiplication of R)(i, a) + (the left integer multiplication of
R)(i, b).

(162) Let R be an Abelian right zeroed add-associative right comple-
mentable non empty additive loop structure, a be an element of
R, and i, j be elements of N. Then (Nat-mult-leftR)(i · j, a) =
(Nat-mult-leftR)(i, (Nat-mult-leftR)(j, a)).

(163) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i, j be
elements of Z. Then (the left integer multiplication of R)(i·j, a) = (the left
integer multiplication of R)(i, (the left integer multiplication of R)(j, a)).

(164) Let A3 be a non empty Abelian add-associative right zeroed right com-
plementable additive loop structure. Then 〈〈the carrier of A3, the zero of
A3, the addition of A3, the left integer multiplication of A3〉〉 is a Z-module.
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