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Summary. In this article, we formalize Z-module, that is a module over
integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-
Lovdsz) base reduction algorithm and cryptographic systems with lattices [11].
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The papers [10], [17], [18], [7], [2], [9], [14], [8], [6], [13], [5], [1], [15], [4], [3], [19],
[16], and [12] provide the terminology and notation for this paper.

1. DEFINITION OF Z-MODULE

We introduce Z-module structures which are extensions of additive loop
structure and are systems

( a carrier, a zero, an addition, an external multiplication ),
where the carrier is a set, the zero is an element of the carrier, the addition is
a binary operation on the carrier, and the external multiplication is a function
from Z x the carrier into the carrier.

Let us mention that there exists a Z-module structure which is non empty.

Let V' be a Z-module structure. A vector of V is an element of V.

In the sequel V' denotes a non empty Z-module structure and v denotes a
vector of V.

Let us consider V', v and let a be an integer number. The functor a - v yields
an element of V' and is defined by:

(Def. 1)  a-v = (the external multiplication of V')(a,v).
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Let Z1 be a non empty set, let O be an element of Z7, let F' be a binary
operation on Zp, and let G be a function from Z x Z; into Z;. One can verify
that (Z1,0, F,G) is non empty.

Let I; be a non empty Z-module structure. We say that I is vector distri-
butive if and only if:

(Def. 2) For every a and for all vectors v, w of I; holds a- (v+w) =a-v+a-w.
We say that I is scalar distributive if and only if:

(Def. 3) For all a, b and for every vector v of I; holds (a +b)-v=a-v+b-wv.
We say that I; is scalar associative if and only if:

(Def. 4) For all a, b and for every vector v of I1 holds (a-b)-v=a- (b-v).
We say that I; is scalar unital if and only if:

(Def. 5) For every vector v of I; holds 1-v = v.

The strict Z-module structure the trivial structure of Z-module is defined
as follows:

(Def. 6) The trivial structure of Z-module = (1, opg, 0ps, m2(Z X 1)).

Let us observe that the trivial structure of Z-module is trivial and non empty.

Let us observe that there exists a non empty Z-module structure which
is strict, Abelian, add-associative, right zeroed, right complementable, scalar
distributive, vector distributive, scalar associative, and scalar unital.

A Z-module is an Abelian add-associative right zeroed right complementable
scalar distributive vector distributive scalar associative scalar unital non empty
Z-module structure.

In the sequel v, w denote vectors of V.

Let I; be a non empty Z-module structure. We say that I; inherits cancelable
on multiplication if and only if:

(Def. 7)  For every a and for every vector v of I; such that a-v = 0(;,) holds a = 0
or v = 0( IE

The following propositions are true:

1) Ifa=0orv=0y, then a-v=0y.
2) —v=(-1)-w.
3) If V inherits cancelable on multiplication and v = —v, then v = Oy .

N

If V inherits cancelable on multiplication and v + v = Oy, then v = Oy .

a-—v=(—a)-v.

(=)

a:-—v=—a-.

J

(—a)-—v=a-v.

oo

a-(v—w)=a-v—a-w.

Ne)

(a—b)-v=a-v—>b-v.
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If V' inherits cancelable on multiplication and ¢ # 0 and a - v = a - w,
then v = w.
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(11) If V inherits cancelable on multiplication and v # Oy and a-v = b - v,
then a = 0.
For simplicity, we follow the rules: V is a Z-module, u, v, w are vectors of
V, F, G, H, I are finite sequences of elements of V', j, k, n are elements of N,
and fy is a function from N into the carrier of V.
Next we state several propositions:
(12) Iflen F' =lenG and for all k, v such that k € dom F' and v = G(k) holds
F(k)=a-v,then } F=a-> G.
(13) For every Z-module V and for every integer a holds a -
Z(g(the carrier of V)) =0y.
(14) For every Z-module V and for every integer a and for all vectors v, u of
V holds a - > (v,u) =a-v+a-u.
(15) For every Z-module V and for every integer a and for all vectors v, u, w
of V holds a- > {(v,u,w) =a-v+a-u+a-w.
(16) (—a)-v=—a-wv.
(17) Iflen F' = len G and for every k such that k € dom F holds G(k) = a- F,
then "G =a-) F.

2. SUBMODULES AND COSETS OF SUBMODULES IN Z-MODULE

We use the following convention: V', X are Z-modules, Vi, V5, V3 are subsets
of V, and x is a set.
Let us consider V', V;. We say that Vj is linearly closed if and only if:
(Def. 8) For all v, u such that v, u € V] holds v +u € Vj and for all a, v such
that v € V] holds a-v € V4.
One can prove the following propositions:
(18) 1If V4 # 0 and V; is linearly closed, then Oy € Vj.
(19) If V4 is linearly closed, then for every v such that v € V; holds —v € V;.
(20) If V; is linearly closed, then for all v, u such that v, w € V; holds
v—u€W.
(21) If the carrier of V = Vi, then V; is linearly closed.
(22) 1If V is linearly closed and V5 is linearly closed and Vi = {v +u : v €
Vi A u € Va}, then V3 is linearly closed.
Let us consider V. Observe that {Oy} is linearly closed.
Let us consider V. Note that there exists a subset of V which is linearly
closed.
Let us consider V' and let Vi, V5 be linearly closed subsets of V. Note that
V1 N Vy is linearly closed.
Let us consider V. A Z-module is called a submodule of V if it satisfies the
conditions (Def. 9).
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(Def. 9)(i)  The carrier of it C the carrier of V,

(ii)) Oy = Oy,
(iii)  the addition of it = (the addition of V') | (the carrier of it), and
(iv)  the external multiplication of it = (the external multiplication of

V)I(Z x the carrier of it).

In the sequel W5 denotes a submodule of V' and w, wy, we denote vectors of
w.
We now state a number of propositions:

If x € Wy and W7 is a submodule of Ws, then x € Wa.
Ifx € W, then z € V.

w 1s a vector of V.

DN NN
S O s W

Ow = Oy .

\)
-

Owr) = Oqwy)-
If wqy = v and wy = u, then wy + wy = v + .

N DN
O

Ifw=wv,thena -w=a-w.
If w=wv, then —v = —w.

If w1 = v and wy = u, then wq — wy = v — .

32) V is a submodule of V.
33) Oy e W.

34) Oy, € Wa.

35) Oy V.

w
(=2}

Ifu,ve W, thenu+veW.
Ifve W, thena-veW.
If v € W, then —v € W.
If u,ve W, thenu—v e W.

In the sequel d; is an element of D, A is a binary operation on D, and M is

w w
-~ S
P N e N N N N N i N N N
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a function from Z x D into D.
We now state several propositions:

(40) Suppose V4 = D and dy = Oy and A = (the addition of V') [ (V4) and
M = (the external multiplication of V')[(Z x V1). Then (D, d;, A, M) is a
submodule of V.

(41) For all strict Z-modules V', X such that V is a submodule of X and X
is a submodule of V holds V' = X.

(42) If V is a submodule of X and X is a submodule of Y, then V is a
submodule of Y.

(43) If the carrier of W C the carrier of Wy, then W is a submodule of Wj.

(44) If for every v such that v € Wj holds v € Wa, then W; is a submodule
of WQ.
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Let us consider V. Note that there exists a submodule of V' which is strict.
Next we state several propositions:

(45) For all strict submodules Wy, W5 of V' such that the carrier of W; = the
carrier of W5 holds W7 = Wh.

(46) For all strict submodules W7, W5 of V such that for every v holds v € W
iffve W5 holds W7 = Wh,.

(47) Let V be a strict Z-module and W be a strict submodule of V. If the
carrier of W = the carrier of V, then W = V.

(48) Let V be a strict Z-module and W be a strict submodule of V. If for
every vector v of V holds v e W iff v € V, then W = V.

(49) If the carrier of W = Vi, then V; is linearly closed.

(50) If V4 # 0 and V; is linearly closed, then there exists a strict submodule
W of V such that V; = the carrier of W.

Let us consider V. The functor Oy yielding a strict submodule of V' is defined
by:
(Def. 10) The carrier of Oy = {0y }.

Let us consider V. The functor €y yields a strict submodule of V and is
defined by:

(Def. 11)  Qy = the Z-module structure of V.

We now state several propositions:

51) Opw = Oy.
52 Owy) = O(wy)-
53) Oy is a submodule of V.

54
55
56

Let us consider V', v, W. The functor v + W yields a subset of V' and is
defined as follows:

(Def. 12) v+W ={v+u:ue W}
Let us consider V', W. A subset of V' is called a coset of W if:
(Def. 13) There exists v such that it = v + W.

In the sequel B, C are cosets of W.
The following propositions are true:

Oy is a submodule of W.
Ow,) is a submodule of Wj.
Every strict Z-module V' is a submodule of Qy,.

(
(
(
(
(
(

~— — — ~— ' ~—

(57) Oy v+ W iffveW.

(58) vewv+W.

(59) Oy + W = the carrier of W.
(60) v+ 0y = {v}.

(61)

61) v+ Qy = the carrier of V.
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(62) Oy € v+ W iff v+ W = the carrier of W.

(63) v e W iff v+ W = the carrier of W.

(64) If v € W, then a- v+ W = the carrier of W.

(65) ueWifv+W =v+u+W.

(66) veWifv+W = (v—u)+W.

(67) veu+Wifu+W =v+ W.

(68) Ifue€wv+W and u € vg + W, then vy + W = v + W.

(69) Ifve W, thena-vev+W.

(70) u+vev+Wiff ue W.

(7M1) v—uev+Wiffue W

(72) w € v+ W iff there exists v1 such that v; € W and u = v + vy.

(73) uw € v+ W iff there exists v1 such that v1 € W and u = v — vy.

(74) There exists v such that vy, vo € v + W iff v; — vy € WL

(75) If v+ W = u+ W, then there exists v; such that v; € W and v+ v1 = u.

(76) If v+ W = u+ W, then there exists v; such that v1 € W and v — vy = u.

(77) For all strict submodules W1, Wa of V such that v+ W; = v+ W5 holds
Wi = Was.

(78) For all strict submodules Wy, Ws of V' such that v+ Wy = u+ W5 holds
W1 = Was.

(79) C is linearly closed iff C' = the carrier of W.

(80) For all strict submodules W7, Wy of V' and for every coset C; of W; and
for every coset C of Wy such that C; = C9 holds W, = Wh.

(81) {wv} is a coset of Oy .

(82) If Vi is a coset of Oy, then there exists v such that Vi = {v}.

(83) The carrier of W is a coset of W.

(84) The carrier of V' is a coset of Qy .

(85) If V; is a coset of Qy, then V; = the carrier of V.

(86) Oy € C iff C' = the carrier of W.

87) weCiff C=u+W.

(88) 1If u, v € C, then there exists vy such that vy € W and u + v; = v.
(89) If u, v € C, then there exists v; such that v; € W and v — vy = v.
(90) There exists C such that vy, vg € C iff v] — vy € W.

(91) Ifue Bandu e C, then B=C.
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3. OPERATIONS ON SUBMODULES IN Z-MODULE

For simplicity, we use the following convention: V' is a Z-module, W, Wy,
Ws, W3 are submodules of V', u, u1, us, v, v1, v are vectors of V', a, a1, ay are
integer numbers, and X, Y, y, y1, yo are sets.
Let us consider V', Wi, Ws. The functor W1 4+ W3 yielding a strict submodule
of V is defined by:
(Def. 14) The carrier of W1 + Wo ={v+u:v e Wy A u € Wa}.
Let us notice that the functor W7 + W5 is commutative.
Let us consider V', W1, Ws. The functor Wy N Wy yields a strict submodule
of V and is defined as follows:
(Def. 15) The carrier of W7 N Wy = (the carrier of Wy) N (the carrier of Wa).

Let us observe that the functor W7 N Ws is commutative.
We now state a number of propositions:
(92) x € Wy + Wy iff there exist v, vy such that v; € Wy and vy € Wo and
Tr = v1 + v9.

(93) If v e W; or v e Wa, then v € Wy + Wha.

(94) zeWiNnW,yiff z € W and o € Wa.

(95) For every strict submodule W of V holds W + W = W.

(96) Wi+ (Wa+ Ws) = (W + Wa) + Ws.

(97) W is a submodule of Wy + Wj.

(98) For every strict submodule Wy of V' holds W is a submodule of Wy iff

Wi+ Wy =W,

(99) For every strict submodule W of V holds Oy + W = W.
(100) Oy + Qy = the Z-module structure of V.
(101) Qy + W = the Z-module structure of V.
(102) For every strict Z-module V holds Qy + Qy = V.
(103) For every strict submodule W of V holds WNW = W.
(104) Win (WQ N Wg) = (W1 N Wg) N Wis.
(105) Wy N Wy is a submodule of 7.
(106) For every strict submodule W of V' holds W is a submodule of Wy iff
Wy N Wy = Wi,
107) Oy NW = 0y.
108) Oy NQy = 0y

For every strict submodule W of V' holds Qy NW = W.

For every strict Z-module V holds Qy N Qy = V.

Wy N Wy is a submodule of W7 + W,

For every strict submodule W5 of V' holds W1 N Wo 4+ Wo = W,

—_
—
(=)

e e e N e
[a— [a—
— e
— ©

S N e S N
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For every strict submodule Wj of V holds Wy N (Wy + Wa) = Wh.

W1 N Wy + Wy N Wi is a submodule of Wo N (W7 + W3).

If W7 is a submodule of Wy, then Wo N(W1 + W3) = Wi NWa+WoNWs.
Wy + W1 N W3 is a submodule of (W + Wa) N (W, + W3).

If W is a submodule of Wy, then Wo+W1NW5 = (W1 +Wa)N(Wa+Ws3).
If W7 is a strict submodule of W3, then Wi +WonWs = (W1 4+Wa)NWs.

For all strict submodules W7, W of V holds W1 +Wy = Wh iff WiNWsy =
Wi.

(120) For all strict submodules Wa, W3 of V' such that W is a submodule of
W5 holds W7 + W3 is a submodule of Wo + W3,

(121) There exists W such that the carrier of W = (the carrier of Wj) U (the
carrier of Ws) if and only if W7 is a submodule of W5 or W5 is a submodule
of Wl.

Let us consider V. The functor Sub(V) yields a set and is defined by:

(Def. 16) For every x holds = € Sub(V) iff z is a strict submodule of V.
Let us consider V. One can verify that Sub(V') is non empty.

[EE—
[ Y
(2 NN

e N e N N e N
— =
— =
~N

— Y ~— Y Y ~— —

—_
—_
(0.0)

We now state the proposition
(122) For every strict Z-module V holds V' € Sub(V).
Let us consider V', Wy, Ws. We say that V' is the direct sum of Wy and Wh
if and only if:
(Def. 17) The Z-module structure of V= W; + Wy and W; N Wy = Oy .
Let V be a Z-module and let W be a submodule of V. We say that W has
linear complement if and only if:
(Def. 18) There exists a submodule C of V such that V' is the direct sum of C' and
wW.
Let V be a Z-module. Observe that there exists a submodule of V' which has
linear complement.
Let V' be a Z-module and let W be a submodule of V. Let us assume that
W has linear complement. A submodule of V is called a linear complement of
W if:
(Def. 19) V is the direct sum of it and W.
One can prove the following propositions:
(123) Let V be a Z-module and Wy, W5 be submodules of V. Suppose V is
the direct sum of Wy and Ws. Then Ws is a linear complement of Wj.

(124) Let V be a Z-module, W be a submodule of V' with linear complement,
and L be a linear complement of W. Then V is the direct sum of L and
W and the direct sum of W and L.
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(125) Let V be a Z-module, W be a submodule of V' with linear complement,
and L be a linear complement of W. Then W+ L = the Z-module structure
of V.

(126) Let V be a Z-module, W be a submodule of V' with linear complement,
and L be a linear complement of W. Then W N L = Oy.

(127) 1If V is the direct sum of W; and Wa, then V is the direct sum of Wj
and Wi.

(128) Let V be a Z-module, W be a submodule of V' with linear complement,
and L be a linear complement of W. Then W is a linear complement of
L.

(129) Every Z-module V is the direct sum of 0Oy and 2y and the direct sum
of QV and Ov.
(130) For every Z-module V holds Oy is a linear complement of Qy and Qy is
a linear complement of Oy .
In the sequel C' is a coset of W, ('} is a coset of Wy, and Cs is a coset of Ws.
Next we state several propositions:
(131) If Cq meets Co, then C1 N Cy is a coset of Wi N Wo.
(132) Let V be a Z-module and W;, W5 be submodules of V. Then V is the

direct sum of W7 and Ws if and only if for every coset C of W7 and for
every coset Co of W5 there exists a vector v of V' such that C1 NCy = {v}.

(133) Let V be a Z-module and Wi, Wa be submodules of V. Then W; 4+ Wy =
the Z-module structure of V if and only if for every vector v of V there
exist vectors vy, v9 of V' such that v1 € W7 and vy € Wy and v = v1 + vs.

(134) If V is the direct sum of W; and Wy and vy + vo = uj + ug and vy,
u; € Wq and vs, us € Ws, then v1 = uq and vg = uo.

(135) Suppose V. = W; + Wy and there exists v such that for all vy, ve, ug,
ug such that vy + vo = u; + ug and vy, vy € Wy and ve, us € Ws holds
v1 = uq and vo = ug. Then V is the direct sum of W7 and Whs.

Let us consider V', v, Wi, Ws. Let us assume that V is the direct sum of
W1 and Wa. The functor v (Wi, w2) yields an element of (the carrier of V') x (the

carrier of V') and is defined as follows:
(Def. 20) v = (U(WI,W2>>1 + (U(Wl,W2>)2 and (U(Wl,Wz))l € Wy and (v<W1,W2))2 €
Wa.
Next we state several propositions:
(136) If V is the direct sum of W and Wy, then (U(Wl,Wg))l = (U(W27W1>)2.
(137) If V is the direct sum of W and Wa, then (U(W17W2>)2 = (U(W%Wl))l.

(138) Let V be a Z-module, W be a submodule of V' with linear complement,
L be a linear complement of W, v be a vector of V, and ¢ be an element
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of (the carrier of V) x (the carrier of V). If t1 +t2 = v and t; € W and
to € L, then t = U(WL)'

(139) Let V be a Z-module, W be a submodule of V' with linear complement,
L be a linear complement of W, and v be a vector of V. Then (v<WL))1 +

(U(W,L))2 = .

(140) Let V be a Z-module, W be a submodule of V' with linear complement, L
be a linear complement of W, and v be a vector of V. Then (U<WL))1 ew
and (U(W,L))z € L.

(141) Let V be a Z-module, W be a submodule of V' with linear complement,
L be a linear complement of W, and v be a vector of V. Then (v<WL))1 =

(U<L7W> )2.
(142) Let V be a Z-module, W be a submodule of V' with linear complement,
L be a linear complement of W, and v be a vector of V. Then (v<WL))2 =

(U(L,W))l'
In the sequel Ay, Ag, B are elements of Sub(V).
Let us consider V. The functor SubJoin V' yielding a binary operation on
Sub(V) is defined by:
(Def. 21) For all Ay, As, Wi, Wy such that Ay = W; and Ay = Wy holds
(SubJoin V)(Al, Az) = Wi+ Wa.

Let us consider V. The functor SubMeet V' yields a binary operation on
Sub(V') and is defined by:

(Def. 22) For all Ay, As, Wy, Wy such that Ay = W; and As = Wy holds
(SubMeet V')(A1, A2) = Wi N Wa.
One can prove the following proposition
(143) (Sub(V'), SubJoin V, SubMeet V') is a lattice.

Let us consider V. Note that (Sub(V'), SubJoin V, SubMeet V') is lattice-like.
We now state several propositions:

(144) For every Z-module V holds (Sub(V'), SubJoin V, SubMeet V') is lower-

bounded.

(145) For every Z-module V holds (Sub(V'), SubJoin V, SubMeet V') is upper-
bounded.

(146) For every Z-module V holds (Sub(V'), SubJoin V, SubMeet V') is a bound
lattice.

(147) For every Z-module V holds (Sub(V'), SubJoin V, SubMeet V') is modular.
(148) Let V be a Z-module and W7, Wy, W3 be strict submodules of V. If W
is a submodule of W5, then W7 N W3 is a submodule of Wy N W3.

(149) Let V be a Z-module and W be a strict submodule of V. Suppose that
for every vector v of V' holds v € W. Then W = the Z-module structure
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of V.
(150) There exists C such that v € C.

4. TRANSFORMATION OF ABELIAN GROUP TO Z-MODULE

Let Az be a non empty additive loop structure. The left integer multiplication
of As yielding a function from Z x the carrier of A3 into the carrier of Ag is
defined by the condition (Def. 23).

(Def. 23) Let i be an element of Z and a be an element of As. Then
(i) if ¢ > 0, then (the left integer multiplication of As)(i,a) =
(Nat-mult-left A3)(i,a), and
(i) if ¢ < 0, then (the left integer multiplication of Ajs)(i,a) =
(Nat-mult-left A3)(—i, —a).
The following propositions are true:

(151) Let R be a non empty additive loop structure, a be an element of R, i
be an element of Z, and i; be an element of N. If ¢ = 41, then (the left
integer multiplication of R)(i,a) =i - a.

(152) Let R be a non empty additive loop structure, a be an element of R,
and i be an element of Z. If i = 0, then (the left integer multiplication of
R)(i,a) = Op.

(153) Let R be an add-associative right zeroed right complementable non
empty additive loop structure and ¢ be an element of N. Then
(Nat-mult-left R)(,0r) = Og.

(154) Let R be an add-associative right zeroed right complementable non emp-
ty additive loop structure and ¢ be an element of Z. Then (the left integer
multiplication of R)(i,0r) = Og.

(155) Let R be a right zeroed non empty additive loop structure, a be an
element of R, and ¢ be an element of Z. If i = 1, then (the left integer
multiplication of R)(i,a) = a.

(156) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and ¢, j, k be
elements of N. If ¢ < j and k = j — 4, then (Nat-mult-left R)(k,a) =
(Nat-mult-left R)(j,a) — (Nat-mult-left R)(7, a).

(157) Let R be an Abelian right zeroed add-associative right complementable

non empty additive loop structure, a be an element of R, and i be an
element of N. Then —(Nat-mult-left R) (i, a) = (Nat-mult-left R) (i, —a).

(158) Let R be an Abelian right zeroed add-associative right complementa-
ble non empty additive loop structure, a be an element of R, and ¢, j be
elements of Z. Suppose i € N and j ¢ N. Then (the left integer multipli-
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cation of R)(i + j,a) = (the left integer multiplication of R)(i,a) + (the
left integer multiplication of R)(j,a).

(159) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i, j be
elements of Z. Then (the left integer multiplication of R)(i + j,a) = (the
left integer multiplication of R)(7,a) + (the left integer multiplication of
R)(j,a).

(160) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a, b be elements of R, and i be an
element of N. Then (Nat-mult-left R)(i,a + b) = (Nat-mult-left R)(¢, a) +
(Nat-mult-left R)(7,b).

(161) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a, b be elements of R, and ¢ be an
element of Z. Then (the left integer multiplication of R)(i,a + b) = (the
left integer multiplication of R)(i,a) + (the left integer multiplication of
R)(i,Db).

(162) Let R be an Abelian right zeroed add-associative right comple-
mentable non empty additive loop structure, a be an element of
R, and i, j be elements of N. Then (Nat-mult-left R)(i - j,a) =
(Nat-mult-left R)(7, (Nat-mult-left R)(j, a)).

(163) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i, j be
elements of Z. Then (the left integer multiplication of R)(i-j,a) = (the left
integer multiplication of R)(i, (the left integer multiplication of R)(j,a)).

(164) Let Az be a non empty Abelian add-associative right zeroed right com-
plementable additive loop structure. Then (the carrier of As, the zero of
As, the addition of As, the left integer multiplication of As) is a Z-module.
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