Introduction to Rational Functions

Christoph Schwarzweller
Institute of Computer Science
University of Gdańsk
Wita Stwosza 57, 80-952 Gdańsk, Poland

Summary. In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks.

MML identifier: RATFUNC1, version: 7.12.02 4.181.1147

The notation and terminology used in this paper are introduced in the following articles: [14], [3], [4], [5], [18], [20], [16], [17], [1], [15], [2], [6], [12], [10], [11], [22], [19], [21], [9], [13], [23], and [7].

1. Preliminaries

One can prove the following three propositions:

(1) Let \(L \) be an add-associative right zeroed right complementable right distributive non empty double loop structure, \(a \) be an element of \(L \), and \(p, q \) be finite sequences of elements of \(L \). Suppose \(\text{len} \ p = \text{len} \ q \) and for every element \(i \) of \(\mathbb{N} \) such that \(i \in \text{dom} \ p \) holds \(q_i = a \cdot p_i \). Then \(\sum q = a \cdot \sum p \).

(2) Let \(L \) be an add-associative right zeroed right complementable right distributive non empty double loop structure, \(f \) be a finite sequence of elements of \(L \), and \(i, j \) be elements of \(\mathbb{N} \). If \(i \in \text{dom} \ f \) and \(j = i - 1 \), then \(\text{Ins}(f|_{i\downarrow} ; j, f_i) = f \).

(3) Let \(L \) be an add-associative right zeroed right complementable associative unital right distributive commutative non empty double loop structure, \(f \) be a finite sequence of elements of \(L \), and \(i \) be an element of \(\mathbb{N} \). If \(i \in \text{dom} \ f \), then \(\prod f = f_i \cdot \prod(f|_{\uparrow i}) \).
Let L be an add-associative right zeroed right complementable well unital associative left distributive commutative almost left invertible integral domain-like non trivial double loop structure and let x, y be non zero elements of L. Note that $\frac{x}{y}$ is non zero.

Let us note that every add-associative right zeroed right complementable right distributive non empty double loop structure which is integral domain-like is also almost left cancelable and every add-associative right zeroed right complementable left distributive non empty double loop structure which is integral domain-like is also almost right cancelable.

Let x, y be integers. Note that $\max(x, y)$ is integer and $\min(x, y)$ is integer.

One can prove the following proposition

(4) For all integers x, y, z holds $\max(x + y, x + z) = x + \max(y, z)$.

2. More on Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. We say that p is zero if and only if:

(Def. 1) \(p = 0_L\).

We say that p is constant if and only if:

(Def. 2) \(\deg p \leq 0\).

Let L be a non trivial zero structure. One can verify that there exists a polynomial of L which is non zero.

Let L be a non empty zero structure. One can verify that 0_L is zero and constant.

Let L be a non degenerated multiplicative loop with zero structure. Note that 1_L is non zero.

Let L be a non empty multiplicative loop with zero structure. Note that 1_L is constant.

Let L be a non empty zero structure. One can verify that every polynomial of L which is zero is also constant. Note that every polynomial of L which is non constant is also non zero.

Let L be a non trivial zero structure. One can verify that there exists a polynomial of L which is non constant.

Let L be a well unital non degenerated non empty double loop structure, let z be an element of L, and let k be an element of \mathbb{N}. Observe that $r\text{poly}(k, z)$ is non zero.

Let L be an add-associative right zeroed right complementable distributive non degenerated double loop structure. One can check that Polynom-Ring L is non degenerated.
Let L be an integral domain-like add-associative right zeroed right complementable distributive non trivial double loop structure. Observe that Polynom-Ring L is integral domain-like.

Next we state two propositions:

(5) Let L be an add-associative right zeroed right complementable right distributive associative non empty double loop structure, p, q be polynomials of L, and a be an element of L. Then $(a \cdot p) \ast q = a \cdot (p \ast q)$.

(6) Let L be an add-associative right zeroed right complementable right distributive commutative associative non empty double loop structure, p, q be polynomials of L, and a be an element of L. Then $p \ast (a \cdot q) = a \cdot (p \ast q)$.

Let L be an add-associative right zeroed right complementable well unital commutative associative distributive almost left invertible non trivial double loop structure, let p be a non zero polynomial of L, and let a be a non zero element of L. Note that $a \cdot p$ is non zero.

Let L be an integral domain-like add-associative right zeroed right complementable distributive non trivial double loop structure and let p_1, p_2 be non zero polynomials of L. Observe that $p_1 \ast p_2$ is non zero.

One can prove the following proposition

(7) Let L be an add-associative right zeroed right complementable distributive Abelian integral domain-like non trivial double loop structure, p_1, p_2 be polynomials of L, and p_3 be a non zero polynomial of L. If $p_1 \ast p_3 = p_2 \ast p_3$, then $p_1 = p_2$.

Let L be a non trivial zero structure and let p be a non zero polynomial of L. One can check that degree(p) is natural.

Next we state several propositions:

(8) Let L be an add-associative right zeroed right complementable unital right distributive non empty double loop structure and p be a polynomial of L. If $\deg p = 0$, then for every element x of L holds eval(p, x) $\neq 0_L$.

(9) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible non degenerated double loop structure, p be a polynomial of L, and x be an element of L. Then eval(p, x) = 0_L if and only if $rpoly(1, x) | p$.

(10) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible integral domain-like non degenerated double loop structure, p, q be polynomials of L, and x be an element of L. If $rpoly(1, x) | p \ast q$, then $rpoly(1, x) | p$ or $rpoly(1, x) | q$.

(11) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible non degenerated double loop structure and f be a finite sequence of elements
of Polynom-Ring L. Suppose that for every natural number i such that $i \in \text{dom } f$ there exists an element z of L such that $f(i) = \text{rpoly}(1, z)$. Let p be a polynomial of L. If $p = \prod f$, then $p \neq 0$. Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible integral domain-like non degenerated double loop structure.

(12) Suppose that for every natural number i such that $i \in \text{dom } f$ there exists an element z of L such that $f(i) = \text{rpoly}(1, z)$. Let p be a polynomial of L. Suppose $p = \prod f$. Let x be an element of L. Then eval(p, x) = 0_L if and only if there exists a natural number i such that $i \in \text{dom } f$ and $f(i) = \text{rpoly}(1, x)$.

3. Common Roots of Polynomials

Let L be a unital non empty double loop structure, let p_1, p_2 be polynomials of L, and let x be an element of L. We say that x is a common root of p_1 and p_2 if and only if:

(Def. 3) x is a root of p_1 and x is a root of p_2.

Let L be a unital non empty double loop structure and let p_1, p_2 be polynomials of L. We say that p_1 and p_2 have a common root if and only if:

(Def. 4) There exists an element of L which is a common root of p_1 and p_2.

Let L be a unital non empty double loop structure and let p_1, p_2 be polynomials of L. We introduce p_1 and p_2 have common roots as a synonym of p_1 and p_2 have a common root. We introduce p_1 and p_2 have no common roots as an antonym of p_1 and p_2 have a common root.

Next we state several propositions:

(13) Let L be an Abelian add-associative right zeroed right complementable unital distributive non empty double loop structure, p be a polynomial of L, and x be an element of L. If x is a root of p, then x is a root of $-p$.

(14) Let L be an Abelian add-associative right zeroed right complementable unital left distributive non empty double loop structure, p_1, p_2 be polynomials of L, and x be an element of L. If x is a common root of p_1 and p_2, then x is a root of $p_1 + p_2$.

(15) Let L be an Abelian add-associative right zeroed right complementable unital distributive non empty double loop structure, p_1, p_2 be polynomials of L, and x be an element of L. If x is a common root of p_1 and p_2, then x is a root of $-(p_1 + p_2)$.

(16) Let L be an Abelian add-associative right zeroed right complementable unital distributive non empty double loop structure, p, q be polynomials
of L, and x be an element of L. If x is a common root of p and q, then x is a root of $p + q$.

(17) Let L be an Abelian add-associative right zeroed right complementable well unital associative commutative distributive almost left invertible non trivial double loop structure and p_1, p_2 be polynomials of L. If $p_1 | p_2$ and p_1 has roots, then p_1 and p_2 have common roots.

Let L be a unital non empty double loop structure and let p, q be polynomials of L. The common roots of p and q yields a subset of L and is defined by:

(Def. 5) The common roots of p and $q = \{ x \in L : x$ is a common root of p and $q \}$.

4. Normalized Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. The leading coefficient of p yields an element of L and is defined by:

(Def. 6) The leading coefficient of $p = p(\text{len } p - 1)$.

We introduce LC_p as a synonym of the leading coefficient of p.

Let L be a non trivial double loop structure and let p be a non zero polynomial of L. One can check that LC_p is non zero.

One can prove the following proposition

(18) Let L be an add-associative right zeroed right complementable well unital commutative associative distributive almost left invertible non empty double loop structure, p be a polynomial of L, and a be an element of L.

Then $\text{LC}(a \cdot p) = a \cdot \text{LC}_p$.

Let L be a non empty double loop structure and let p be a polynomial of L. We say that p is normalized if and only if:

(Def. 7) $\text{LC}_p = 1_L$.

Let L be an add-associative right zeroed right complementable well unital commutative associative distributive almost left invertible non trivial double loop structure and let p be a non zero polynomial of L. One can check that $\frac{1_{L}}{\text{LC}_p} \cdot p$ is normalized.

Let L be a field and let p be a non zero polynomial of L. One can verify that $\text{NormPolynomial} p$ is normalized.

5. Rational Functions

Let L be a non trivial multiplicative loop with zero structure. Rational function of L is defined by:

(Def. 8) There exists a polynomial p_1 of L and there exists a non zero polynomial p_2 of L such that $i = \langle p_1, p_2 \rangle$.
Let L be a non trivial multiplicative loop with zero structure, let p_1 be a polynomial of L, and let p_2 be a non zero polynomial of L. Then $\langle p_1, p_2 \rangle$ is a rational function of L.

Let L be a non trivial multiplicative loop with zero structure and let z be a rational function of L. Then z_1 is a polynomial of L. Then z_2 is a non zero polynomial of L.

Let L be a non trivial multiplicative loop with zero structure and let z be a rational function of L. We say that z is zero if and only if:

\[z_1 = 0. L. \]

Let L be a non trivial multiplicative loop with zero structure. One can check that there exists a rational function of L which is non zero.

Next we state the proposition

(19) Let L be a non trivial multiplicative loop with zero structure and z be a rational function of L. Then $z = \langle z_1, z_2 \rangle$.

Let L be an add-associative right zeroed right complementable distributive unital non trivial double loop structure and let z be a rational function of L. We say that z is irreducible if and only if:

\[z_1 \text{ and } z_2 \text{ have no common roots.} \]

Let L be an add-associative right zeroed right complementable distributive unital non trivial double loop structure and let z be a rational function of L. We introduce z is reducible as an antonym of z is irreducible.

Let L be an add-associative right zeroed right complementable distributive unital non trivial double loop structure and let z be a rational function of L. We say that z is normalized if and only if:

\[z \text{ is irreducible and } z_2 \text{ is normalized.} \]

Let L be an add-associative right zeroed right complementable distributive unital non trivial double loop structure. Observe that every rational function of L which is normalized is also irreducible.

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a rational function of L. Note that $\text{LC}(z_2)$ is non zero.

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a rational function of L. The norm rational function of z yields a rational function of L and is defined by:

\[\text{(Def. 12)} \quad \text{The norm rational function of } \frac{LC(z_2)}{z_11} \cdot z_1, \frac{LC(z_2)}{z_21} \cdot z_2. \]

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of L. We introduce NormRatF z as a synonym of the norm rational function of z.

Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a non zero rational function of L. Observe that the norm rational function of z is non zero.

Let L be a non degenerated multiplicative loop with zero structure. The functor $0.L$ yields a rational function of L and is defined by:

(Def. 13) $0.L = \langle 0.L, 1.L \rangle$.

The functor $1.L$ yields a rational function of L and is defined as follows:

(Def. 14) $1.L = \langle 1.L, 1.L \rangle$.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. One can check that $0.L$ is normalized.

Let L be a non degenerated multiplicative loop with zero structure. Note that $1.L$ is non zero.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. One can verify that $1.L$ is irreducible.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. Observe that there exists a rational function of L which is irreducible and non zero.

Let L be an add-associative right zeroed right complementable distributive Abelian associative well unital non degenerated double loop structure and let x be an element of L. One can check that $\langle \text{rpoly}(1, x), \text{rpoly}(1, x) \rangle$ is reducible and non zero as a rational function of L.

Let L be an add-associative right zeroed right complementable distributive Abelian associative well unital non degenerated double loop structure. Observe that there exists a rational function of L which is reducible and non zero.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. One can verify that there exists a rational function of L which is normalized.

Let L be a non degenerated multiplicative loop with zero structure. One can verify that $0.L$ is zero.

Let L be an add-associative right zeroed right complementable distributive associative well unital non degenerated double loop structure. One can check that $1.L$ is normalized.

Let L be an integral domain-like add-associative right zeroed right complementable distributive non trivial double loop structure and let p, q be rational functions of L. The functor $p + q$ yields a rational function of L and is defined by:
(Def. 15) \[p + q = \langle p_1 * q_2 + p_2 * q_1, p_2 * q_2 \rangle. \]

Let \(L \) be an integral domain-like add-associative right zeroed right complementable distributive non trivial double loop structure and let \(p, q \) be rational functions of \(L \). The functor \(p * q \) yielding a rational function of \(L \) is defined by:

(Def. 16) \[p * q = \langle \langle p_1 * q_1, p_2 * q_2 \rangle \rangle. \]

One can prove the following proposition

(20) Let \(L \) be an add-associative right zeroed right complementable well unital commutative associative distributive almost left invertible non trivial double loop structure, \(p \) be a rational function of \(L \), and \(a \) be a non zero element of \(L \). Then \(\langle a * p_1, a * p_2 \rangle \) is irreducible if and only if \(p \) is irreducible.

6. Normalized Rational Functions

We now state the proposition

(21) Let \(L \) be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative integral domain-like non trivial double loop structure and \(z \) be a rational function of \(L \). Then there exists a rational function \(z_1 \) of \(L \) and there exists a non zero polynomial \(z_2 \) of \(L \) such that

(i) \[z = \langle z_2 * (z_1)_1, z_2 * (z_1)_2 \rangle, \]

(ii) \(z_1 \) is irreducible, and

(iii) there exists a finite sequence \(f \) of elements of Polynom-Ring \(L \) such that \(z_2 = \prod f \) and for every element \(i \) of \(\mathbb{N} \) such that \(i \in \text{dom } f \) there exists an element \(x \) of \(L \) such that \(x \) is a common root of \(z_1 \) and \(z_2 \) and \(f(i) = rpoly(1, x) \).

Let \(L \) be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let \(z \) be a rational function of \(L \). The functor \(NF z \) yielding a rational function of \(L \) is defined by:

(Def. 17)(i) There exists a rational function \(z_1 \) of \(L \) and there exists a non zero polynomial \(z_2 \) of \(L \) such that \(z = \langle z_2 * (z_1)_1, z_2 * (z_1)_2 \rangle \) and \(z_1 \) is irreducible and \(NF z = \) the norm rational function of \(z_1 \) and there exists a finite sequence \(f \) of elements of Polynom-Ring \(L \) such that \(z_2 = \prod f \) and for every element \(i \) of \(\mathbb{N} \) such that \(i \in \text{dom } f \) there exists an element \(x \) of \(L \) such that \(x \) is a common root of \(z_1 \) and \(z_2 \) and \(f(i) = rpoly(1, x) \) if \(z \) is non zero,

(ii) \(NF z = 0. L, \) otherwise.

Let \(L \) be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral
Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let z be a non zero rational function of L. One can verify that $NF z$ is non zero.

One can prove the following propositions:

(22) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure, z be a non zero rational function of L, z_1 be a rational function of L, and z_2 be a non zero polynomial of L. Suppose that

(i) $z = \langle z_2 * (z_1)_1, z_2 * (z_1)_2 \rangle$,
(ii) z_1 is irreducible, and
(iii) there exists a finite sequence f of elements of Polynom-Ring L such that $z_2 = \prod f$ and for every element i of \mathbb{N} such that $i \in \text{dom } f$ there exists an element x of L such that x is a common root of z_1 and z_2 and $f(i) = \text{rpoly}(1, x)$.

Then $NF z = \text{the norm rational function of } z_1$.

(23) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure. Then $NF 0 \cdot L = 0 \cdot L$.

(24) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure. Then $NF 1 \cdot L = 1 \cdot L$.

(25) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and z be an irreducible non zero rational function of L. Then $NF z = \text{the norm rational function of } z$.

(26) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure, z be a rational function of L, and x be an element of L. Then $NF \langle \text{rpoly}(1, x) * z_1, \text{rpoly}(1, x) * z_2 \rangle = NF z$.

(27) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and z be a rational function of L. Then $NF NF z = NF z$.

(28) Let L be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible in-
tegal domain-like non degenerated double loop structure and \(z \) be a non zero rational function of \(L \). Then \(z \) is irreducible if and only if there exists an element \(a \) of \(L \) such that \(a \neq 0 \) and \(\langle a \cdot z_1, a \cdot z_2 \rangle = \text{NF} \, z \).

7. Degree of Rational Functions

Let \(L \) be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let \(z \) be a rational function of \(L \). The functor \(\text{degree}(z) \) yielding an integer is defined as follows:

\[
\text{(Def. 18)} \quad \text{degree}(z) = \max(\text{degree}((\text{NF} \, z)_1), \text{degree}((\text{NF} \, z)_2)).
\]

Let \(L \) be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and let \(z \) be a rational function of \(L \). We introduce \(\text{deg} \, z \) as a synonym of \(\text{degree}(z) \).

Next we state two propositions:

\[
\begin{align*}
(29) \quad & \text{Let } L \text{ be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and } z \text{ be a rational function of } L. \text{ Then } \text{degree}(z) \leq \max(\text{degree}(z_1), \text{degree}(z_2)). \\
(30) \quad & \text{Let } L \text{ be an Abelian add-associative right zeroed right complementable well unital associative distributive commutative almost left invertible integral domain-like non trivial double loop structure and } z \text{ be a non zero rational function of } L. \text{ Then } z \text{ is irreducible if and only if } \text{degree}(z) = \max(\text{degree}(z_1), \text{degree}(z_2)).
\end{align*}
\]

8. Evaluation of Rational Functions

Let \(L \) be a field, let \(z \) be a rational function of \(L \), and let \(x \) be an element of \(L \). The functor \(\text{eval}(z, x) \) yielding an element of \(L \) is defined by:

\[
\text{(Def. 19)} \quad \text{eval}(z, x) = \frac{\text{eval}(z_1, x)}{\text{eval}(z_2, x)}.
\]

The following propositions are true:

\[
\begin{align*}
(31) \quad & \text{For every field } L \text{ and for every element } x \text{ of } L \text{ holds } \text{eval}(0, L, x) = 0_L. \\
(32) \quad & \text{For every field } L \text{ and for every element } x \text{ of } L \text{ holds } \text{eval}(1, L, x) = 1_L. \\
(33) \quad & \text{Let } L \text{ be a field, } p, q \text{ be rational functions of } L, \text{ and } x \text{ be an element of } L. \text{ If } \text{eval}(p_2, x) \neq 0_L \text{ and } \text{eval}(q_2, x) \neq 0_L, \text{ then } \text{eval}(p + q, x) = \text{eval}(p, x) + \text{eval}(q, x). \\
(34) \quad & \text{Let } L \text{ be a field, } p, q \text{ be rational functions of } L, \text{ and } x \text{ be an element of } L. \text{ If } \text{eval}(p_2, x) \neq 0_L \text{ and } \text{eval}(q_2, x) \neq 0_L, \text{ then } \text{eval}(p \cdot q, x) = \text{eval}(p, x) \cdot \text{eval}(q, x).
\end{align*}
\]
Let L be a field, p be a rational function of L, and x be an element of L. If $\text{eval}(p_2, x) \neq 0_L$, then $\text{eval}(\text{the norm rational function of } p, x) = \text{eval}(p, x)$.

Let L be a field, p be a rational function of L, and x be an element of L. If $\text{eval}(p_2, x) \neq 0_L$, then x is a common root of p_1 and p_2 or $\text{eval}($\text{NF } p, x) = \text{eval}(p, x)$.

References

Received February 8, 2012