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Summary. Triviality of fundamental groups of spheres of dimension gre-
ater than 1 is proven, [17].
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The notation and terminology used in this paper have been introduced in the
following papers: [4], [11], [12], [19], [9], [3], [5], [6], [21], [22], [1], [2], [7], [18],
[20], [24], [25], [23], [16], [13], [14], [10], [15], and [8].

1. Preliminaries

In this paper T , U are non empty topological spaces, t is a point of T , and
n is a natural number.

Let S be a topological space and let T be a non empty topological space.
Note that every function from S into T which is constant is also continuous.

The following two propositions are true:

(1) L01(0, 1, 0, 1) = id[0, 1]T .

(2) For all real numbers r1, r2, r3, r4, r5, r6 such that r1 < r2 and r3 ≤ r4
and r5 < r6 holds L01(r1, r2, r3, r4) · L01(r5, r6, r1, r2) = L01(r5, r6, r3, r4).

Let n be a positive natural number. Observe that EnT is infinite and every
non empty topological space which is n-locally Euclidean is also infinite.

The following propositions are true:
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(3) For every point p of EnT such that p ∈ Sphere((0EnT), 1) holds −p ∈
Sphere((0EnT), 1) \ {p}.

(4) Let T be a non empty topological structure, t1, t2 be points of T , and p
be a path from t1 to t2. Then inf dom p = 0 and sup dom p = 1.

(5) For all constant loops C1, C2 of t holds C1, C2 are homotopic.

(6) Let S be a non empty subspace of T , t1, t2 be points of T , s1, s2 be
points of S, A, B be paths from t1 to t2, and C, D be paths from s1 to
s2. Suppose s1, s2 are connected and t1, t2 are connected and A = C and
B = D and C, D are homotopic. Then A, B are homotopic.

(7) Let S be a non empty subspace of T , t1, t2 be points of T , s1, s2 be points
of S, A, B be paths from t1 to t2, and C, D be paths from s1 to s2. Suppose
s1, s2 are connected and t1, t2 are connected and A = C and B = D and
[C]EqRel(S,s1,s2) = [D]EqRel(S,s1,s2). Then [A]EqRel(T,t1,t2) = [B]EqRel(T,t1,t2).

(8) Let T be a trivial non empty topological space, t be a point of T , and L
be a loop of t. Then the carrier of π1(T, t) = {[L]EqRel(T,t)}.

(9) For every point p of EnT and for every subset S of EnT such that n ≥ 2
and S = ΩEnT \ {p} holds EnT�S is pathwise connected.

(10) Let S be a non empty subset of T . Suppose n ≥ 2 and S = ΩT \ {t} and
EnT and T are homeomorphic. Then T �S is pathwise connected.

Let n be an element of N and let p, q be points of EnT. Observe that
TPlane(p, q) is convex.

2. Fundamental Groups

Let us consider T . We say that T has trivial fundamental group if and only
if:

(Def. 1) For every point t of T holds π1(T, t) is trivial.

Let us consider T . We say that T is simply connected if and only if:

(Def. 2) T is pathwise connected and has trivial fundamental group.

One can verify that every non empty topological space which is simply con-
nected is also pathwise connected and has trivial fundamental group and every
non empty topological space which is pathwise connected and has trivial funda-
mental group is also simply connected.

The following proposition is true

(11) If T has trivial fundamental group, then for every point t of T and for
all loops P , Q of t holds P , Q are homotopic.

Let n be a natural number. Note that EnT has trivial fundamental group.
Let us note that every non empty topological space which is trivial also has

trivial fundamental group.
The following proposition is true
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(12) T is simply connected if and only if for all points t1, t2 of T holds t1, t2
are connected and for all paths P , Q from t1 to t2 holds [P ]EqRel(T,t1,t2) =
[Q]EqRel(T,t1,t2).

Let T be a non empty topological space with trivial fundamental group and
let t be a point of T . One can check that π1(T, t) is trivial.

Next we state three propositions:

(13) Let S, T be non empty topological spaces. Suppose S and T are home-
omorphic. If S has trivial fundamental group, then T has trivial funda-
mental group.

(14) Let S, T be non empty topological spaces. Suppose S and T are home-
omorphic. If S is simply connected, then T is simply connected.

(15) Let T be a non empty topological space with trivial fundamental group,
t be a point of T , and P1, P2 be loops of t. Then P1, P2 are homotopic.

Let us consider T , t and let l be a loop of t. We say that l is null-homotopic
if and only if:

(Def. 3) There exists a constant loop c of t such that l, c are homotopic.

Let us consider T , t. Observe that every loop of t which is constant is also
null-homotopic.

Let us consider T , t. Note that there exists a loop of t which is constant.

The following proposition is true

(16) Let f be a loop of t and g be a continuous function from T into U . If f
is null-homotopic, then g · f is null-homotopic.

Let T , U be non empty topological spaces, let t be a point of T , let f be
a null-homotopic loop of t, and let g be a continuous function from T into U .
Note that g · f is null-homotopic.

Let T be a non empty topological space with trivial fundamental group and
let t be a point of T . Note that every loop of t is null-homotopic.

One can prove the following proposition

(17) If for every point t of T holds every loop of t is null-homotopic, then T

has trivial fundamental group.

Let n be an element of N and let p, q be points of EnT. Note that TPlane(p, q)
has trivial fundamental group.

We now state the proposition

(18) Let S be a non empty subspace of T , s be a point of S, f be a loop of
t, and g be a loop of s. If t = s and f = g and g is null-homotopic, then
f is null-homotopic.
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3. Curves

In the sequel T is a topological structure and f is a partial function from
R1 to T .

Let us consider T , f . We say that f is parametrized curve if and only if the
conditions (Def. 4) are satisfied.

(Def. 4)(i) dom f is an interval subset of R, and
(ii) there exists a subspace S of R1 and there exists a function g from S

into T such that f = g and S = R1�dom f and g is continuous.

Let us consider T . Observe that there exists a partial function from R1 to
T which is parametrized curve.

One can prove the following proposition

(19) ∅ is a parametrized curve partial function from R1 to T .

Let us consider T . The functor T -Curves yields a subset of R→̇ΩT and is
defined as follows:

(Def. 5) T -Curves = {f ∈ R→̇ΩT : f is a parametrized curve partial function
from R1 to T}.

Let us consider T . One can check that T -Curves is non empty.
Let us consider T . A curve of T is an element of T -Curves.
In the sequel c is a curve of T .
We now state several propositions:

(20) Every parametrized curve partial function from R1 to T is a curve of T .

(21) ∅ is a curve of T .

(22) Let t1, t2 be points of T and p be a path from t1 to t2. If t1, t2 are
connected, then p is a curve of T .

(23) c is a parametrized curve partial function from R1 to T .

(24) dom c ⊆ R and rng c ⊆ ΩT .

Let us consider T , c. One can verify that dom c is real-membered.
Let us consider T , c. We say that c has first point if and only if:

(Def. 6) dom c is left-ended.

We say that c has last point if and only if:

(Def. 7) dom c is right-ended.

Let us consider T , c. We say that c has endpoints if and only if:

(Def. 8) c has first point and last point.

Let us consider T . One can check that every curve of T which has first point
and last point also has endpoints and every curve of T which has endpoints also
has first point and last point.

In the sequel T denotes a non empty topological structure.
Let us consider T . Note that there exists a curve of T which has endpoints.
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Let us consider T and let c be a curve of T with first point. Note that dom c

is non empty and inf dom c is real.
Let us consider T and let c be a curve of T with last point. Note that dom c

is non empty and sup dom c is real.
Let us consider T . Observe that every curve of T which has first point is

also non empty and every curve of T which has last point is also non empty.
Let us consider T and let c be a curve of T with first point. The first point

of c yielding a point of T is defined by:

(Def. 9) The first point of c = c(inf dom c).

Let us consider T and let c be a curve of T with last point. The last point
of c yielding a point of T is defined by:

(Def. 10) The last point of c = c(sup dom c).

The following propositions are true:

(25) Let t1, t2 be points of T and p be a path from t1 to t2. If t1, t2 are
connected, then p is a curve of T with endpoints.

(26) For every curve c of T and for all real numbers r1, r2 holds c�[r1, r2] is
a curve of T .

(27) For every curve c of T with endpoints holds dom c = [inf dom c, sup dom c].

(28) Let c be a curve of T with endpoints. Suppose dom c = [0, 1]. Then c is
a path from the first point of c to the last point of c.

(29) Let c be a curve of T with endpoints. Then c·L01(0, 1, inf dom c, sup dom c)
is a path from the first point of c to the last point of c.

(30) Let c be a curve of T with endpoints and t1, t2 be points of T . Suppo-
se c · L01(0, 1, inf dom c, sup dom c) is a path from t1 to t2 and t1, t2 are
connected. Then t1 = the first point of c and t2 = the last point of c.

(31) For every curve c of T with endpoints holds the first point of c ∈ rng c
and the last point of c ∈ rng c.

(32) Let r1, r2 be real numbers, t1, t2 be points of T , and p1 be a path from
t1 to t2. Suppose t1, t2 are connected and r1 < r2. Then p1 ·L01(r1, r2, 0, 1)
is a curve of T with endpoints.

(33) For every curve c of T with endpoints holds the first point of c, the last
point of c are connected.

Let T be a non empty topological structure and let c1, c2 be curves of T
with endpoints. We say that c1, c2 are homotopic if and only if the condition
(Def. 11) is satisfied.

(Def. 11) There exist points a, b of T and there exist paths p1, p2 from a

to b such that p1 = c1 · L01(0, 1, inf dom c1, sup dom c1) and p2 = c2 ·
L01(0, 1, inf dom c2, sup dom c2) and p1, p2 are homotopic.

Let us note that the predicate c1, c2 are homotopic is symmetric.
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Let T be a non empty topological space and let c1, c2 be curves of T with
endpoints. Let us notice that the predicate c1, c2 are homotopic is reflexive and
symmetric.

The following three propositions are true:

(34) Let T be a non empty topological structure, c1, c2 be curves of T with
endpoints, a, b be points of T , and p1, p2 be paths from a to b. Suppose
c1 = p1 and c2 = p2 and a, b are connected. Then c1, c2 are homotopic if
and only if p1, p2 are homotopic.

(35) Let c1, c2 be curves of T with endpoints. Suppose c1, c2 are homotopic.
Then the first point of c1 = the first point of c2 and the last point of
c1 = the last point of c2.

(36) Let T be a non empty topological space, c1, c2 be curves of T with
endpoints, and S be a subset of R1. Suppose dom c1 = dom c2 and S =
dom c1. Then c1, c2 are homotopic if and only if there exists a function
f from (R1�S) × I into T and there exist points a, b of T such that f is
continuous and for every point t of R1�S holds f(t, 0) = c1(t) and f(t, 1) =
c2(t) and for every point t of I holds f(inf S, t) = a and f(supS, t) = b.

Let T be a topological structure and let c1, c2 be curves of T . The functor
c1 + c2 yielding a curve of T is defined as follows:

(Def. 12) c1 + c2 =

{
c1 ∪ c2, if c1 ∪ c2 is a curve of T ,
∅, otherwise.

One can prove the following three propositions:

(37) Let c be a curve of T with endpoints and r be a real number. Then
there exist elements c1, c2 of T -Curves such that c = c1 + c2 and c1 =
c�[inf dom c, r] and c2 = c�[r, sup dom c].

(38) Let T be a non empty topological space and c1, c2 be curves of T with
endpoints. Suppose sup dom c1 = inf dom c2 and the last point of c1 =
the first point of c2. Then c1 + c2 has endpoints and dom(c1 + c2) =
[inf dom c1, sup dom c2] and (c1 + c2)(inf dom c1) = the first point of c1
and (c1 + c2)(sup dom c2) = the last point of c2.

(39) Let T be a non empty topological space and c1, c2, c3, c4, c5, c6 be curves
of T with endpoints. Suppose that c1, c2 are homotopic and dom c1 =
dom c2 and c3, c4 are homotopic and dom c3 = dom c4 and c5 = c1 + c3
and c6 = c2 + c4 and the last point of c1 = the first point of c3 and
sup dom c1 = inf dom c3. Then c5, c6 are homotopic.

Let T be a topological structure and let f be a finite sequence of elements
of T -Curves. The functor (

∑κ
α=0 f(α))κ∈N yielding a finite sequence of elements

of T -Curves is defined as follows:

(Def. 13) len f = len((
∑κ
α=0 f(α))κ∈N) and f(1) = (

∑κ
α=0 f(α))κ∈N(1) and for

every natural number i such that 1 ≤ i < len f holds (
∑κ
α=0 f(α))κ∈N(i+
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1) = ((
∑κ
α=0 f(α))κ∈N)i + fi+1.

Let T be a topological structure and let f be a finite sequence of elements
of T -Curves. The functor

∑
f yields a curve of T and is defined as follows:

(Def. 14)
∑
f =

{
(
∑κ
α=0 f(α))κ∈N(len f), if len f > 0,

∅, otherwise.

Next we state several propositions:

(40) For every curve c of T holds
∑
〈c〉 = c.

(41) For every curve c of T and for every finite sequence f of elements of
T -Curves holds

∑
(f a 〈c〉) =

∑
f + c.

(42) Let X be a set and f be a finite sequence of elements of T -Curves.
Suppose that for every natural number i such that 1 ≤ i ≤ len f holds
rng(fi) ⊆ X. Then rng

∑
f ⊆ X.

(43) Let T be a non empty topological space and f be a finite sequence of
elements of T -Curves. Suppose that

(i) len f > 0,
(ii) for every natural number i such that 1 ≤ i < len f holds

fi(sup dom(fi)) = fi+1(inf dom(fi+1)) and sup dom(fi) = inf dom(fi+1),
and

(iii) for every natural number i such that 1 ≤ i ≤ len f holds fi has endpo-
ints.
Then there exists a curve c of T with endpoints such that

∑
f = c

and dom c = [inf dom(f1), sup dom(flen f )] and the first point of c =
f1(inf dom(f1)) and the last point of c = flen f (sup dom(flen f )).

(44) Let T be a non empty topological space, f1, f2 be finite sequen-
ces of elements of T -Curves, and c1, c2 be curves of T with end-
points. Suppose that len f1 > 0 and len f1 = len f2 and

∑
f1 =

c1 and
∑
f2 = c2 and for every natural number i such that 1 ≤

i < len f1 holds (f1)i(sup dom((f1)i)) = (f1)i+1(inf dom((f1)i+1)) and
sup dom((f1)i) = inf dom((f1)i+1) and for every natural number i such
that 1 ≤ i < len f2 holds (f2)i(sup dom((f2)i)) = (f2)i+1(inf dom((f2)i+1))
and sup dom((f2)i) = inf dom((f2)i+1) and for every natural number i such
that 1 ≤ i ≤ len f1 there exist curves c3, c4 of T with endpoints such that
c3 = (f1)i and c4 = (f2)i and c3, c4 are homotopic and dom c3 = dom c4.

Then c1, c2 are homotopic.

(45) Let c be a curve of T with endpoints and h be a finite sequence of
elements of R. Suppose lenh ≥ 2 and h(1) = inf dom c and h(lenh) =
sup dom c and h is increasing. Then there exists a finite sequence f of
elements of T -Curves such that len f = lenh − 1 and c =

∑
f and for

every natural number i such that 1 ≤ i ≤ len f holds fi = c�[hi, hi+1].

(46) If n ≥ 2, then Sn has trivial fundamental group.
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(47) Let n be a non empty natural number, r be a positive real number, and
x be a point of EnT. If n ≥ 3, then Tcircle(x, r) has trivial fundamental
group.
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