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Summary. Cayley-Dickson construction produces a sequence of normed
algebras over real numbers. Its consequent applications result in complex num-
bers, quaternions, octonions, etc. In this paper we formalize the construction and
prove its basic properties.

MML identifier: CAYLDICK, version: 8.0.01 5.3.1162

The notation and terminology used here have been introduced in the following
papers: [22], [12], [3], [1], [9], [8], [16], [13], [4], [5], [19], [15], [17], [14], [2], [6],
[23], [20], [18], [21], [10], [11], and [T7].

1. PRELIMINARIES

We use the following convention: u, v, x, y, 2, X, Y are sets and r, s are
real numbers.

One can prove the following proposition

(1) For all real numbers a, b, ¢, d holds (a + b)2 + (c + d)? < (Va2 +c2 +
Vo? + d2)2.

Let X be a non trivial real normed space and let  be a non zero element of
X. One can verify that ||z| is positive.

Let ¢ be a non zero complex number. Note that ¢2 is non zero.

!This work has been supported by the Polish Ministry of Science and Higher Education pro-
ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).

@ 2012 University of Bialystok

CC-BY-SA License ver. 3.0 or later
281 ISSN 1426-2630(p), 1898-9934(e)


http://fm.mizar.org/miz/cayldick.miz
http://ftp.mizar.org/

282 ARTUR KORNILOWICZ

Let z be a non empty set. Observe that (z) is non-empty.
Let us note that there exists a finite 0-sequence which is non-empty.
Let f, g be non-empty finite 0-sequences. Observe that f ™ ¢ is non-empty.
Let x, y be non empty sets. One can verify that (z,y) is non-empty.
The following propositions are true:
2) If (u) = (x), then u = x.
If (u,v) = (x,y), then u = x and v = y.
If z € X, then (z) € [[(X).
If z € [[(X), then there exists x such that z € X and z = (x).
If x € X and y € Y, then (z,y) € [[(X,Y).
If z € TI(X,Y), then there exist x, y such that z € X and y € Y and
z = (2, y).
Let D be a set. The functor binop D yielding a binary operation on D is
defined by:
(Def. 1) binopD = D x D —— the element of D.
Let D be a set. Observe that binop D is associative and commutative.

Let D be a set. One can verify that there exists a binary operation on D
which is associative and commutative.
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2. CONJUNCTIVE NORMED SPACES

We introduce conjunctive normed algebra structures which are extensions of
normed algebra structures and are systems

( a carrier, a multiplication, an addition, an external multiplication, a one,
a zero, a norm, a conjugate ),
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from R x the
carrier into the carrier, the one and the zero are elements of the carrier, the
norm is a function from the carrier into R, and the conjugate is a function from
the carrier into the carrier.

Let us observe that there exists a conjunctive normed algebra structure
which is non trivial and strict.

We use the following convention: N is a non empty conjunctive normed
algebra structure and a, a1, as, b, by, by are elements of V.

Let N be a non empty conjunctive normed algebra structure and let a be an
element of N. The functor @ yields an element of N and is defined as follows:

(Def. 2) @ = (the conjugate of N)(a).
Let N be a non empty conjunctive normed algebra structure and let a be
an element of N. We say that a is properly conjugated if and only if:
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(Def. 3)(i) @-a=|al/? 1y if a is non zero,

(ii) @ is zero, otherwise.

Let N be a non empty conjunctive normed algebra structure. We say that
N is properly conjugated if and only if:

(Def. 4) Every element of N is properly conjugated.
We say that N is additively conjugative if and only if:
(Def. 5) For all elements a, b of N holds a +b =@ + b.
We say that N is norm-wise conjugative if and only if:
(Def. 6) For every element a of N holds ||@| = ||«
We say that N is scalar-wise conjugative if and only if:
(Def. 7) For every real number r and for every element a of N holds r-a@ = 7 a.

Let D be a real-membered set, let a, m be binary operations on D, let
M be a function from R x D into D, let O, Z be elements of D, let n be a
function from D into R, and let ¢ be a function from D into D. Observe that
(D,m,a,M,0,Z, n,c) is real-membered.

Let D be a set, let a be an associative binary operation on D, let m be a
binary operation on D, let M be a function from R x D into D, let O, Z be
elements of D, let n be a function from D into R, and let ¢ be a function from
D into D. Observe that (D, m,a, M,O, Z,n,c) is add-associative.

Let D be a set, let a be a commutative binary operation on D, let m be a
binary operation on D, let M be a function from R x D into D, let O, Z be
elements of D, let n be a function from D into R, and let ¢ be a function from
D into D. Observe that (D, m,a, M,0, Z,n,c) is Abelian.

Let D be a set, let a be a binary operation on D, let m be an associative
binary operation on D, let M be a function from R x D into D, let O, Z be
elements of D, let n be a function from D into R, and let ¢ be a function from
D into D. One can verify that (D, m,a, M,0, Z,n,c) is associative.

Let D be a set, let a be a binary operation on D, let m be a commutative
binary operation on D, let M be a function from R x D into D, let O, Z be
elements of D, let n be a function from D into R, and let ¢ be a function from
D into D. One can check that (D, m,a, M,0,Z,n,c) is commutative.

The strict conjunctive normed algebra structure N-Real is defined by:

(Def 8) N-Real = (R, ‘R; TR, 'R, 1(6 R), O(E R), ||:||]R7 ldR)

Let us observe that N-Real is non degenerated, real-membered, add-associative,
Abelian, associative, and commutative. Let a, b be elements of N-Real and r, s
be real numbers. We identify r+ s with a+b where a = r and b = s. We identify
r-s with a - b where a = r and b = s.

One can check the following observations:

x every Abelian non empty additive magma which is right add-cancelable
is also left add-cancelable,
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* every Abelian non empty additive magma which is left add-cancelable is
also right add-cancelable,

x every Abelian non empty additive loop structure which is left comple-
mentable is also right complementable,

x every Abelian commutative non empty double loop structure which is
left distributive is also right distributive,

x every Abelian commutative non empty double loop structure which is
right distributive is also left distributive,

* every commutative non empty multiplicative loop with zero structure
which is almost left invertible is also almost right invertible,

% every commutative non empty multiplicative loop with zero structure
which is almost right invertible is also almost left invertible,

% every commutative non empty multiplicative loop with zero structure
which is almost right cancelable is also almost left cancelable,

% every commutative non empty multiplicative loop with zero structure
which is almost left cancelable is also almost right cancelable,

* every commutative non empty multiplicative magma which is right mult-
cancelable is also left mult-cancelable, and

* every commutative non empty multiplicative magma which is left mult-
cancelable is also right mult-cancelable.

One can verify that N-Real is right complementable and right add-cancelable.
We identify —r with —a where a = 7.

We identify r — s with @ — b where a = r and b = s.

We identify r - s with r - @ where a = s.

We identify |a| with [|a]|.

The following proposition is true

(8) For every element a of N-Real holds a - a = ||a||?.

Let us observe that @ reduces to a.

One can verify that N-Real is reflexive, discernible, well unital, real normed
space-like, right zeroed, right distributive, vector associative, vector distributi-
ve, scalar distributive, scalar associative, scalar unital, Banach Algebra-likel,
Banach Algebra-like2, Banach Algebra-like3, almost left invertible, almost left
cancelable, properly conjugated, additively conjugative, norm-wise conjugative,
and scalar-wise conjugative.

One can verify that there exists a non empty conjunctive normed algebra
structure which is strict, non degenerated, real-membered, reflexive, discernible,
zeroed, complementable, add-associative, Abelian, associative, commutative, di-
stributive, well unital, add-cancelable, vector associative, vector distributive,
scalar distributive, scalar associative, scalar unital, Banach Algebra-likel, Ba-
nach Algebra-like2, Banach Algebra-like3, properly conjugated, additively con-
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jugative, norm-wise conjugative, scalar-wise conjugative, almost left invertible,
almost left cancelable, and real normed space-like.

One can check that On-Rear is non left invertible and non right invertible.

We identify r—! with a~! where a = r.

Let X be a discernible non trivial conjunctive normed algebra structure and
let z be a non zero element of X. One can check that ||z|| is non zero.

Let us mention that every non zero element of N-Real is non empty.

Let us observe that every non zero element of N-Real is mult-cancelable.

Let N be a properly conjugated non empty conjunctive normed algebra
structure. Observe that every element of N is properly conjugated.

Let N be a properly conjugated non empty conjunctive normed algebra
structure and let a be a zero element of N. Observe that @ is zero.

Let us observe that Oy reduces to Oy.

Let N be a properly conjugated discernible add-associative right zeroed ri-
ght complementable left distributive scalar distributive scalar associative scalar
unital vector distributive non degenerated conjunctive normed algebra structure
and let a be a non zero element of N. Note that @ is non zero.

The following propositions are true:

(9) Suppose that N is add-associative, right zeroed, right complementable,
properly conjugated, reflexive, scalar distributive, scalar unital, vector di-
stributive, and left distributive. Let given a. Then @ - a = ||a||? - 1y.

Let N be left unital Banach Algebra-like2 almost right cancelable properly
conjugated scalar unital nonempty conjunctive normed algebra structure.
Let us observe that @ reduces to a.

Let N be right unital Banach Algebra-like2 almost right cancelable proper-
ly conjugated scalar unital nonempty conjunctive normed algebra struc-
ture. Let us observe that 1y reduces to 1y.

(10) Suppose that N is properly conjugated, reflexive, discernible, real nor-
med space-like, vector distributive, scalar distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, right complementa-
ble, associative, distributive, well unital, non degenerated, and almost left
invertible. Then —a = —@.

(11) Suppose that N is properly conjugated, reflexive, discernible, real nor-
med space-like, vector distributive, scalar distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, right complementable,
associative, distributive, well unital, non degenerated, almost left inverti-
ble, and additively conjugative. Then a — b = @ — b.
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3. CAYLEY-DICKSON CONSTRUCTION

Let N be a non empty conjunctive normed algebra structure. The func-
tor Cayley-Dickson N yielding a strict conjunctive normed algebra structure is
defined by the conditions (Def. 9).

(Def. 9)(i)  The carrier of Cayley-Dickson N = [[(the carrier of N, the carrier
of N),

(ii)  the zero of Cayley-Dickson N = (On,0n),

(iii)  the one of Cayley-Dickson N = (1x,0n),

(iv) for all elements aj, a2, by, ba of N holds (the addition of
Cayley-Dickson N)((a1, b1), (a2, b2)) = (a1 + ag2,b; + bs) and (the multi-
plication of Cayley-Dickson N)({a1, b1), (az,b2)) = {a1-as — by -by, by a3 +
by - az),

(v)  for every real number r and for all elements a, b of N holds (the external
multiplication of Cayley-Dickson N)(r, (a,b)) = (r - a,r - b), and

(vi)  for all elements a, b of N holds (the norm of Cayley-Dickson N)({(a, b)) =
Vlal]? + 1]b]|? and (the conjugate of Cayley-Dickson N)({a,b)) = (@, —b).

In the sequel ¢, ¢1, co are elements of Cayley-Dickson V.
Let N be a non empty conjunctive normed algebra structure. Note that
Cayley-Dickson N is non empty.
We now state two propositions:
(12) There exist elements a, b of N such that ¢ = (a,b).

(13) For every element ¢ of Cayley-Dickson Cayley-Dickson N there exist aj,
b1, ag, be such that ¢ = ({a1, b1), (ag, b2)).

Let us consider N, a, b. Then (a, b) is an element of Cayley-Dickson V.

Let us consider N and let a, b be zero elements of N. Observe that (a, b) is
Z€ero.

Let N be a non degenerated non empty conjunctive normed algebra struc-
ture, let a be a non zero element of NV, and let b be an element of V. One can
check that (a,b) is non zero.

Let N be a reflexive non empty conjunctive normed algebra structure. Note
that Cayley-Dickson NN is reflexive.

Let N be a discernible non empty conjunctive normed algebra structure.
Observe that Cayley-Dickson N is discernible.

We now state a number of propositions:

(14) If a is left complementable and b is left complementable, then (a,b) is
left complementable.

(15) If (a,b) is left complementable, then a is left complementable and b is
left complementable.

(16) If a is right complementable and b is right complementable, then (a, b)
is right complementable.
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(17) If (a,b) is right complementable, then a is right complementable and b
is right complementable.

(18) If a is complementable and b is complementable, then (a,b) is comple-
mentable.

(19) 1If (a,b) is complementable, then a is complementable and b is comple-
mentable.

(20) If @ is left add-cancelable and b is left add-cancelable, then (a,b) is left
add-cancelable.

(21) If (a,b) is left add-cancelable, then a is left add-cancelable and b is left
add-cancelable.

(22) 1If a is right add-cancelable and b is right add-cancelable, then (a,b) is
right add-cancelable.

(23) If (a,b) is right add-cancelable, then a is right add-cancelable and b is
right add-cancelable.

(24) If a is add-cancelable and b is add-cancelable, then (a,b) is add-

cancelable.

(25) If (a,b) is add-cancelable, then a is add-cancelable and b is add-
cancelable.

(26) If (a,b) is left complementable and right add-cancelable, then —(a, b) =
(—a,—b).

Let N be an add-associative non empty conjunctive normed algebra struc-
ture. Observe that Cayley-Dickson N is add-associative.

Let N be a right zeroed non empty conjunctive normed algebra structure.
Observe that Cayley-Dickson N is right zeroed.

Let N be a left zeroed non empty conjunctive normed algebra structure.
One can verify that Cayley-Dickson NN is left zeroed.

Let N be a right complementable non empty conjunctive normed algebra
structure. One can check that Cayley-Dickson N is right complementable.

Let N be a left complementable non empty conjunctive normed algebra
structure. One can check that Cayley-Dickson N is left complementable.

Let N be an Abelian non empty conjunctive normed algebra structure. Ob-
serve that Cayley-Dickson N is Abelian.

One can prove the following propositions:

(27) If N is add-associative, right zeroed, and right complementable, then
—(a,b) = (—a,—b).
(28) If N is add-associative, right zeroed, and right complementable, then
<a1,b1) — <a2,b2> = <a1 — ag,bl — bg>

Let N be a well unital add-associative right zeroed right complementable
distributive Banach Algebra-like2 properly conjugated scalar unital almost ri-
ght cancelable non empty conjunctive normed algebra structure. Observe that
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Cayley-Dickson N is well unital.

Let N be a non degenerated non empty conjunctive normed algebra struc-
ture. One can check that Cayley-Dickson N is non degenerated.

Let N be an additively conjugative add-associative right zeroed right com-
plementable Abelian non empty conjunctive normed algebra structure. One can
verify that Cayley-Dickson N is additively conjugative.

Let N be a norm-wise conjugative reflexive discernible real normed space-
like vector distributive scalar distributive scalar associative scalar unital Abe-
lian add-associative right zeroed right complementable non empty conjunctive
normed algebra structure. Observe that Cayley-Dickson N is norm-wise conju-
gative.

Let N be a scalar-wise conjugative add-associative right zeroed right com-
plementable Abelian scalar distributive scalar associative scalar unital vector
distributive non empty conjunctive normed algebra structure. One can check
that Cayley-Dickson NV is scalar-wise conjugative.

Let N be a distributive add-associative right zeroed right complementable
Abelian non empty conjunctive normed algebra structure.

Note that Cayley-Dickson NV is left distributive.

Let N be a distributive add-associative right zeroed right complementable
additively conjugative Abelian non empty conjunctive normed algebra structure.
Note that Cayley-Dickson N is right distributive.

Let N be a reflexive discernible real normed space-like vector distributive
scalar distributive scalar associative scalar unital Abelian add-associative right
zeroed right complementable non empty conjunctive normed algebra structure.
One can check that Cayley-Dickson NV is real normed space-like.

Let N be a vector distributive non empty conjunctive normed algebra struc-
ture. Observe that Cayley-Dickson NV is vector distributive.

Let N be a vector associative Banach Algebra-like3 add-associative right
zeroed right complementable Abelian scalar distributive scalar associative sca-
lar unital vector distributive non empty conjunctive normed algebra structure.
Observe that Cayley-Dickson IV is vector associative.

Let N be a scalar distributive non empty conjunctive normed algebra struc-
ture. One can verify that Cayley-Dickson N is scalar distributive.

Let NV be a scalar associative non empty conjunctive normed algebra struc-
ture. Note that Cayley-Dickson IV is scalar associative.

Let N be a scalar unital non empty conjunctive normed algebra structure.
One can check that Cayley-Dickson N is scalar unital.

Let N be a reflexive Banach Algebra-like2 non empty conjunctive normed
algebra structure. Observe that Cayley-Dickson IV is Banach Algebra-like2.

Let N be a Banach Algebra-like3 add-associative right zeroed right com-
plementable Abelian scalar distributive scalar associative scalar unital vector
distributive vector associative scalar-wise conjugative non empty conjunctive



CAYLEY-DICKSON CONSTRUCTION 289

normed algebra structure. Observe that Cayley-Dickson NV is Banach Algebra-
like3.
Next we state the proposition

(29) Let N be an almost left invertible associative add-associative right zeroed
right complementable well unital distributive Abelian scalar distributive
scalar associative scalar unital vector distributive vector associative refle-
xive discernible real normed space-like almost right cancelable properly
conjugated additively conjugative Banach Algebra-like2 Banach Algebra-
like3 non degenerated conjunctive normed algebra structure and a, b be
elements of N. Suppose a is non zero or b is non zero but (a, b) is right mult-
cancelable and left invertible. Then (a,b)~! = <Ha||2-1H\b||2 @, ||a||2-1-HbH2 -—b).

Let N be an add-associative right zeroed right complementable distributi-
ve scalar distributive scalar unital vector distributive discernible reflexive pro-
perly conjugated non empty conjunctive normed algebra structure. Note that
Cayley-Dickson N is properly conjugated.

Let us mention that Cayley-Dickson N-Real is associative and commutative.

The following propositions are true:

(30)  ({ON-Reals IN-Real), {ON-Reals ON-Real)) ( {ON-Real, ON-Real) » {1N-Real, ON-Real))
= ((ON-Real, ON-Real)» (ON-Reals IN-Real)) -
(31)  ((ON-Real; ON-Real) {1N-Real, ON-Real)) {(ON-Real; IN-Real) s (ON-Real> ON-Real))
= ((ON-Real, ON-Real) (ON-Real; —IN-Real))-
One can verify that Cayley-Dickson Cayley-Dickson N-Real is associative and
non commutative.
We now state four propositions:

(32) <<<0N—Reala 1N—Rea1> <ON—Reah 0N Real > 5 <<0N—Reala 0N—Real <0N—Real’ ON—Rea >>
<< ON—Reala 0N—Real> 1N—Reala 0N—Rea1>>a <0N—Reala 0N—Rea1>a N-Real) 0N—Real>> -
(((ON-Real> ON-Real) > (ON-Real, IN-Real))s ((ON-Real, ON-Real)» (ON-Real, ON-Real))

, ((ON-Real, ON-Real)» (ON-Real; ON-Real))

(ON-Real, ON-Real), (ON-Real; ON-Real)

)
(IN-Real, ON-Real)
N-Real, ON-Real))

) )
( ( (0
( { (0
(33)  ({{ON-Real; ON-Real); ) ), ).
(((ON-Real, IN-Real), (0 X ( =
(((ON-Real, ON-Real) > (ON-Real, —IN-Real))» ((ON-Real, ON-Real) > (ON-Real, ON-Real))) -
(34) )s 1) ), )
( ( (
(0 ( (
(© ( (—
) ) )

)
{ )
( )-
( )
( )
( )
(((ON-Real, IN-Real), (ON-Real, ON-Real)) s ((ON-Real, ON-Real) s {ON-Real; ON-Real)
(((ON-Real, ON-Real) s (IN-Real; ON-Real)) > ({ON-Real> ON-Real)» {ON-Real, ON-Real)) ) -
(((ON-Real, ON-Real) s (ON-Real; ON-Real)) > ({ON-Real; IN-Real)» {ON-Real; ON-Real)))
(((ON-Real, ON-Real); ) IN-Real, ON-Real)

( )

( )

( )

{ )-

N-Reals ON-Real)) s ((ON-Real, ON-Real) »

, )-
(35)  (((ON-Reals IN-Real)s (ON-Real, ON-Real)), ({ON-Real; ON-Real) s (ON-Real, ON-Real)) )"
(({(ON-Real; ON-Real) {1N-Real, ON-Real) ) {({ON-Real, ON-Real), (ON-Real, ON-Real)
(({ON-Reals ON-Real) > (ON-Real, ON-Real)) s ({ON-Reals IN-Real)s (ON-Real, ON-Real))

<< ON—Reab 0N—Real>7 <0N—Reala 0N—Real>>a <<ON—Reala ON—Real)a <1N—Reala 0N—Rea1>>

)
)
)
) =

One can check that Cayley-Dickson Cayley-Dickson Cayley-Dickson N-Real
is non associative and non commutative.
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