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Summary. Cayley-Dickson construction produces a sequence of normed
algebras over real numbers. Its consequent applications result in complex num-
bers, quaternions, octonions, etc. In this paper we formalize the construction and
prove its basic properties.

MML identifier: CAYLDICK, version: 8.0.01 5.3.1162

The notation and terminology used here have been introduced in the following
papers: [22], [12], [3], [1], [9], [8], [16], [13], [4], [5], [19], [15], [17], [14], [2], [6],
[23], [20], [18], [21], [10], [11], and [7].

1. Preliminaries

We use the following convention: u, v, x, y, z, X, Y are sets and r, s are
real numbers.

One can prove the following proposition

(1) For all real numbers a, b, c, d holds (a + b)2 + (c + d)2 ≤ (
√
a2 + c2 +√

b2 + d2)2.

Let X be a non trivial real normed space and let x be a non zero element of
X. One can verify that ‖x‖ is positive.

Let c be a non zero complex number. Note that c2 is non zero.

1This work has been supported by the Polish Ministry of Science and Higher Education pro-
ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).
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Let x be a non empty set. Observe that 〈x〉 is non-empty.
Let us note that there exists a finite 0-sequence which is non-empty.
Let f , g be non-empty finite 0-sequences. Observe that f a g is non-empty.
Let x, y be non empty sets. One can verify that 〈x, y〉 is non-empty.
The following propositions are true:

(2) If 〈u〉 = 〈x〉, then u = x.

(3) If 〈u, v〉 = 〈x, y〉, then u = x and v = y.

(4) If x ∈ X, then 〈x〉 ∈
∏
〈X〉.

(5) If z ∈
∏
〈X〉, then there exists x such that x ∈ X and z = 〈x〉.

(6) If x ∈ X and y ∈ Y, then 〈x, y〉 ∈
∏
〈X,Y 〉.

(7) If z ∈
∏
〈X,Y 〉, then there exist x, y such that x ∈ X and y ∈ Y and

z = 〈x, y〉.
Let D be a set. The functor binopD yielding a binary operation on D is

defined by:

(Def. 1) binopD = D ×D 7−→ the element of D.

Let D be a set. Observe that binopD is associative and commutative.
Let D be a set. One can verify that there exists a binary operation on D

which is associative and commutative.

2. Conjunctive Normed Spaces

We introduce conjunctive normed algebra structures which are extensions of
normed algebra structures and are systems
〈 a carrier, a multiplication, an addition, an external multiplication, a one,

a zero, a norm, a conjugate 〉,
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from R × the
carrier into the carrier, the one and the zero are elements of the carrier, the
norm is a function from the carrier into R, and the conjugate is a function from
the carrier into the carrier.

Let us observe that there exists a conjunctive normed algebra structure
which is non trivial and strict.

We use the following convention: N is a non empty conjunctive normed
algebra structure and a, a1, a2, b, b1, b2 are elements of N .

Let N be a non empty conjunctive normed algebra structure and let a be an
element of N . The functor a yields an element of N and is defined as follows:

(Def. 2) a = (the conjugate of N)(a).

Let N be a non empty conjunctive normed algebra structure and let a be
an element of N . We say that a is properly conjugated if and only if:
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(Def. 3)(i) a · a = ‖a‖2 · 1N if a is non zero,
(ii) a is zero, otherwise.

Let N be a non empty conjunctive normed algebra structure. We say that
N is properly conjugated if and only if:

(Def. 4) Every element of N is properly conjugated.

We say that N is additively conjugative if and only if:

(Def. 5) For all elements a, b of N holds a+ b = a + b.

We say that N is norm-wise conjugative if and only if:

(Def. 6) For every element a of N holds ‖a‖ = ‖a‖.
We say that N is scalar-wise conjugative if and only if:

(Def. 7) For every real number r and for every element a of N holds r · a = r · a.
Let D be a real-membered set, let a, m be binary operations on D, let

M be a function from R × D into D, let O, Z be elements of D, let n be a
function from D into R, and let c be a function from D into D. Observe that
〈〈D,m, a,M,O,Z, n, c〉〉 is real-membered.

Let D be a set, let a be an associative binary operation on D, let m be a
binary operation on D, let M be a function from R × D into D, let O, Z be
elements of D, let n be a function from D into R, and let c be a function from
D into D. Observe that 〈〈D,m, a,M,O,Z, n, c〉〉 is add-associative.

Let D be a set, let a be a commutative binary operation on D, let m be a
binary operation on D, let M be a function from R × D into D, let O, Z be
elements of D, let n be a function from D into R, and let c be a function from
D into D. Observe that 〈〈D,m, a,M,O,Z, n, c〉〉 is Abelian.

Let D be a set, let a be a binary operation on D, let m be an associative
binary operation on D, let M be a function from R × D into D, let O, Z be
elements of D, let n be a function from D into R, and let c be a function from
D into D. One can verify that 〈〈D,m, a,M,O,Z, n, c〉〉 is associative.

Let D be a set, let a be a binary operation on D, let m be a commutative
binary operation on D, let M be a function from R × D into D, let O, Z be
elements of D, let n be a function from D into R, and let c be a function from
D into D. One can check that 〈〈D,m, a,M,O,Z, n, c〉〉 is commutative.

The strict conjunctive normed algebra structure N-Real is defined by:

(Def. 8) N-Real = 〈〈R, ·R,+R, ·R, 1(∈ R), 0(∈ R), |�|R, idR〉〉.
Let us observe that N-Real is non degenerated, real-membered, add-associative,

Abelian, associative, and commutative. Let a, b be elements of N-Real and r, s
be real numbers. We identify r+s with a+b where a = r and b = s. We identify
r · s with a · b where a = r and b = s.

One can check the following observations:

∗ every Abelian non empty additive magma which is right add-cancelable
is also left add-cancelable,
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∗ every Abelian non empty additive magma which is left add-cancelable is
also right add-cancelable,

∗ every Abelian non empty additive loop structure which is left comple-
mentable is also right complementable,

∗ every Abelian commutative non empty double loop structure which is
left distributive is also right distributive,

∗ every Abelian commutative non empty double loop structure which is
right distributive is also left distributive,

∗ every commutative non empty multiplicative loop with zero structure
which is almost left invertible is also almost right invertible,

∗ every commutative non empty multiplicative loop with zero structure
which is almost right invertible is also almost left invertible,

∗ every commutative non empty multiplicative loop with zero structure
which is almost right cancelable is also almost left cancelable,

∗ every commutative non empty multiplicative loop with zero structure
which is almost left cancelable is also almost right cancelable,

∗ every commutative non empty multiplicative magma which is right mult-
cancelable is also left mult-cancelable, and

∗ every commutative non empty multiplicative magma which is left mult-
cancelable is also right mult-cancelable.

One can verify that N-Real is right complementable and right add-cancelable.
We identify −r with −a where a = r.
We identify r − s with a− b where a = r and b = s.
We identify r · s with r · a where a = s.
We identify |a| with ‖a‖.
The following proposition is true

(8) For every element a of N-Real holds a · a = ‖a‖2.
Let us observe that a reduces to a.
One can verify that N-Real is reflexive, discernible, well unital, real normed

space-like, right zeroed, right distributive, vector associative, vector distributi-
ve, scalar distributive, scalar associative, scalar unital, Banach Algebra-like1,
Banach Algebra-like2, Banach Algebra-like3, almost left invertible, almost left
cancelable, properly conjugated, additively conjugative, norm-wise conjugative,
and scalar-wise conjugative.

One can verify that there exists a non empty conjunctive normed algebra
structure which is strict, non degenerated, real-membered, reflexive, discernible,
zeroed, complementable, add-associative, Abelian, associative, commutative, di-
stributive, well unital, add-cancelable, vector associative, vector distributive,
scalar distributive, scalar associative, scalar unital, Banach Algebra-like1, Ba-
nach Algebra-like2, Banach Algebra-like3, properly conjugated, additively con-
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jugative, norm-wise conjugative, scalar-wise conjugative, almost left invertible,
almost left cancelable, and real normed space-like.

One can check that 0N-Real is non left invertible and non right invertible.
We identify r−1 with a−1 where a = r.
Let X be a discernible non trivial conjunctive normed algebra structure and

let x be a non zero element of X. One can check that ‖x‖ is non zero.
Let us mention that every non zero element of N-Real is non empty.
Let us observe that every non zero element of N-Real is mult-cancelable.
Let N be a properly conjugated non empty conjunctive normed algebra

structure. Observe that every element of N is properly conjugated.
Let N be a properly conjugated non empty conjunctive normed algebra

structure and let a be a zero element of N . Observe that a is zero.
Let us observe that 0N reduces to 0N .
Let N be a properly conjugated discernible add-associative right zeroed ri-

ght complementable left distributive scalar distributive scalar associative scalar
unital vector distributive non degenerated conjunctive normed algebra structure
and let a be a non zero element of N . Note that a is non zero.

The following propositions are true:

(9) Suppose that N is add-associative, right zeroed, right complementable,
properly conjugated, reflexive, scalar distributive, scalar unital, vector di-
stributive, and left distributive. Let given a. Then a · a = ‖a‖2 · 1N .
Let N be left unital Banach Algebra-like2 almost right cancelable properly
conjugated scalar unital nonempty conjunctive normed algebra structure.
Let us observe that a reduces to a.
Let N be right unital Banach Algebra-like2 almost right cancelable proper-
ly conjugated scalar unital nonempty conjunctive normed algebra struc-
ture. Let us observe that 1N reduces to 1N .

(10) Suppose that N is properly conjugated, reflexive, discernible, real nor-
med space-like, vector distributive, scalar distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, right complementa-
ble, associative, distributive, well unital, non degenerated, and almost left
invertible. Then −a = −a.

(11) Suppose that N is properly conjugated, reflexive, discernible, real nor-
med space-like, vector distributive, scalar distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, right complementable,
associative, distributive, well unital, non degenerated, almost left inverti-
ble, and additively conjugative. Then a− b = a − b.
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3. Cayley-Dickson Construction

Let N be a non empty conjunctive normed algebra structure. The func-
tor Cayley-DicksonN yielding a strict conjunctive normed algebra structure is
defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of Cayley-DicksonN =
∏
〈the carrier of N , the carrier

of N〉,
(ii) the zero of Cayley-DicksonN = 〈0N , 0N 〉,

(iii) the one of Cayley-DicksonN = 〈1N , 0N 〉,
(iv) for all elements a1, a2, b1, b2 of N holds (the addition of

Cayley-DicksonN)(〈a1, b1〉, 〈a2, b2〉) = 〈a1 + a2, b1 + b2〉 and (the multi-
plication of Cayley-DicksonN)(〈a1, b1〉, 〈a2, b2〉) = 〈a1 ·a2− b2 ·b1, b2 ·a1 +
b1 · a2 〉,

(v) for every real number r and for all elements a, b of N holds (the external
multiplication of Cayley-DicksonN)(r, 〈a, b〉) = 〈r · a, r · b〉, and

(vi) for all elements a, b ofN holds (the norm of Cayley-DicksonN)(〈a, b〉) =√
‖a‖2 + ‖b‖2 and (the conjugate of Cayley-DicksonN)(〈a, b〉) = 〈a,−b〉.

In the sequel c, c1, c2 are elements of Cayley-DicksonN.
Let N be a non empty conjunctive normed algebra structure. Note that

Cayley-DicksonN is non empty.
We now state two propositions:

(12) There exist elements a, b of N such that c = 〈a, b〉.
(13) For every element c of Cayley-Dickson Cayley-DicksonN there exist a1,

b1, a2, b2 such that c = 〈〈a1, b1〉, 〈a2, b2〉〉.
Let us consider N , a, b. Then 〈a, b〉 is an element of Cayley-DicksonN.
Let us consider N and let a, b be zero elements of N . Observe that 〈a, b〉 is

zero.
Let N be a non degenerated non empty conjunctive normed algebra struc-

ture, let a be a non zero element of N , and let b be an element of N . One can
check that 〈a, b〉 is non zero.

Let N be a reflexive non empty conjunctive normed algebra structure. Note
that Cayley-DicksonN is reflexive.

Let N be a discernible non empty conjunctive normed algebra structure.
Observe that Cayley-DicksonN is discernible.

We now state a number of propositions:

(14) If a is left complementable and b is left complementable, then 〈a, b〉 is
left complementable.

(15) If 〈a, b〉 is left complementable, then a is left complementable and b is
left complementable.

(16) If a is right complementable and b is right complementable, then 〈a, b〉
is right complementable.
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(17) If 〈a, b〉 is right complementable, then a is right complementable and b

is right complementable.

(18) If a is complementable and b is complementable, then 〈a, b〉 is comple-
mentable.

(19) If 〈a, b〉 is complementable, then a is complementable and b is comple-
mentable.

(20) If a is left add-cancelable and b is left add-cancelable, then 〈a, b〉 is left
add-cancelable.

(21) If 〈a, b〉 is left add-cancelable, then a is left add-cancelable and b is left
add-cancelable.

(22) If a is right add-cancelable and b is right add-cancelable, then 〈a, b〉 is
right add-cancelable.

(23) If 〈a, b〉 is right add-cancelable, then a is right add-cancelable and b is
right add-cancelable.

(24) If a is add-cancelable and b is add-cancelable, then 〈a, b〉 is add-
cancelable.

(25) If 〈a, b〉 is add-cancelable, then a is add-cancelable and b is add-
cancelable.

(26) If 〈a, b〉 is left complementable and right add-cancelable, then −〈a, b〉 =
〈−a,−b〉.

Let N be an add-associative non empty conjunctive normed algebra struc-
ture. Observe that Cayley-DicksonN is add-associative.

Let N be a right zeroed non empty conjunctive normed algebra structure.
Observe that Cayley-DicksonN is right zeroed.

Let N be a left zeroed non empty conjunctive normed algebra structure.
One can verify that Cayley-DicksonN is left zeroed.

Let N be a right complementable non empty conjunctive normed algebra
structure. One can check that Cayley-DicksonN is right complementable.

Let N be a left complementable non empty conjunctive normed algebra
structure. One can check that Cayley-DicksonN is left complementable.

Let N be an Abelian non empty conjunctive normed algebra structure. Ob-
serve that Cayley-DicksonN is Abelian.

One can prove the following propositions:

(27) If N is add-associative, right zeroed, and right complementable, then
−〈a, b〉 = 〈−a,−b〉.

(28) If N is add-associative, right zeroed, and right complementable, then
〈a1, b1〉 − 〈a2, b2〉 = 〈a1 − a2, b1 − b2〉.

Let N be a well unital add-associative right zeroed right complementable
distributive Banach Algebra-like2 properly conjugated scalar unital almost ri-
ght cancelable non empty conjunctive normed algebra structure. Observe that
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Cayley-DicksonN is well unital.
Let N be a non degenerated non empty conjunctive normed algebra struc-

ture. One can check that Cayley-DicksonN is non degenerated.
Let N be an additively conjugative add-associative right zeroed right com-

plementable Abelian non empty conjunctive normed algebra structure. One can
verify that Cayley-DicksonN is additively conjugative.

Let N be a norm-wise conjugative reflexive discernible real normed space-
like vector distributive scalar distributive scalar associative scalar unital Abe-
lian add-associative right zeroed right complementable non empty conjunctive
normed algebra structure. Observe that Cayley-DicksonN is norm-wise conju-
gative.

Let N be a scalar-wise conjugative add-associative right zeroed right com-
plementable Abelian scalar distributive scalar associative scalar unital vector
distributive non empty conjunctive normed algebra structure. One can check
that Cayley-DicksonN is scalar-wise conjugative.

Let N be a distributive add-associative right zeroed right complementable
Abelian non empty conjunctive normed algebra structure.

Note that Cayley-DicksonN is left distributive.
Let N be a distributive add-associative right zeroed right complementable

additively conjugative Abelian non empty conjunctive normed algebra structure.
Note that Cayley-DicksonN is right distributive.

Let N be a reflexive discernible real normed space-like vector distributive
scalar distributive scalar associative scalar unital Abelian add-associative right
zeroed right complementable non empty conjunctive normed algebra structure.
One can check that Cayley-DicksonN is real normed space-like.

Let N be a vector distributive non empty conjunctive normed algebra struc-
ture. Observe that Cayley-DicksonN is vector distributive.

Let N be a vector associative Banach Algebra-like3 add-associative right
zeroed right complementable Abelian scalar distributive scalar associative sca-
lar unital vector distributive non empty conjunctive normed algebra structure.
Observe that Cayley-DicksonN is vector associative.

Let N be a scalar distributive non empty conjunctive normed algebra struc-
ture. One can verify that Cayley-DicksonN is scalar distributive.

Let N be a scalar associative non empty conjunctive normed algebra struc-
ture. Note that Cayley-DicksonN is scalar associative.

Let N be a scalar unital non empty conjunctive normed algebra structure.
One can check that Cayley-DicksonN is scalar unital.

Let N be a reflexive Banach Algebra-like2 non empty conjunctive normed
algebra structure. Observe that Cayley-DicksonN is Banach Algebra-like2.

Let N be a Banach Algebra-like3 add-associative right zeroed right com-
plementable Abelian scalar distributive scalar associative scalar unital vector
distributive vector associative scalar-wise conjugative non empty conjunctive
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normed algebra structure. Observe that Cayley-DicksonN is Banach Algebra-
like3.

Next we state the proposition

(29) LetN be an almost left invertible associative add-associative right zeroed
right complementable well unital distributive Abelian scalar distributive
scalar associative scalar unital vector distributive vector associative refle-
xive discernible real normed space-like almost right cancelable properly
conjugated additively conjugative Banach Algebra-like2 Banach Algebra-
like3 non degenerated conjunctive normed algebra structure and a, b be
elements ofN . Suppose a is non zero or b is non zero but 〈a, b〉 is right mult-
cancelable and left invertible. Then 〈a, b〉−1 = 〈 1

‖a‖2+‖b‖2 ·a,
1

‖a‖2+‖b‖2 ·−b〉.
Let N be an add-associative right zeroed right complementable distributi-

ve scalar distributive scalar unital vector distributive discernible reflexive pro-
perly conjugated non empty conjunctive normed algebra structure. Note that
Cayley-DicksonN is properly conjugated.

Let us mention that Cayley-Dickson N-Real is associative and commutative.
The following propositions are true:

(30) 〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉·〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉
= 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 1N-Real〉〉.

(31) 〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉·〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉
= 〈〈0N-Real, 0N-Real〉, 〈0N-Real,−1N-Real〉〉.

One can verify that Cayley-Dickson Cayley-Dickson N-Real is associative and
non commutative.

We now state four propositions:

(32) 〈〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉 =
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 1N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉.

(33) 〈〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉 =
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real,−1N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉.

(34) 〈〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉〉 =
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈−1N-Real, 0N-Real〉〉〉.

(35) 〈〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
(〈〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉〉) =
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉〉.

One can check that Cayley-Dickson Cayley-Dickson Cayley-Dickson N-Real
is non associative and non commutative.
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