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Summary. In this paper we defined the reduced residue system and pro-
ved its fundamental properties. Then we proved the basic properties of the order
function. Finally, we defined the primitive root and proved its fundamental pro-
perties. Our work is based on [12], [8], and [11].
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The notation and terminology used here have been introduced in the following
papers: [1], [18], [9], [4], [7], [5], [20], [16], [17], [19], [14], [2], [15], [3], [10], [13],
[22], [23], [21], and [6].

For simplicity, we adopt the following convention: i, s, t, m, n, k are natural
numbers, d, e are elements of N, f1 is a finite sequence of elements of N, and x

is an integer.
Let m be a natural number. The functor RelPrimesm yields a set and is

defined by:

(Def. 1) RelPrimesm = {k ∈ N: m and k are relative prime ∧ 1 ≤ k ∧ k ≤ m}.
We now state the proposition

(1) RelPrimesm ⊆ Segm.

Let m be a natural number. Then RelPrimesm is a subset of N.
Let m be a natural number. Observe that RelPrimesm is finite.
Next we state several propositions:

(2) If 1 ≤ m, then RelPrimesm 6= ∅.
1Authors thank Andrzej Trybulec and Yatsuka Nakamura for the help during writing this

article.
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(3) For every subset X of Z and for every integer a holds x ∈ a ◦X iff there
exists an integer y such that y ∈ X and x = a · y.

(4) There exists a natural number r such that (1 + s)t = 1+t·s+
(t
2

)
·s2+r·s3.

(5) If n > 1 and i and n are relative prime, then i 6= 0.

(6) For all integers a, b and for every natural number m such that a · b mod
m = 1 and a mod m = 1 holds b mod m = 1.

(7) For every odd integer x and for every natural number k such that k ≥ 3

holds x2k−
′2

mod 2k = 1.

In the sequel p is a prime number.
We now state a number of propositions:

(8) If m ≥ 1, then Euler pm = pm − pm−′1.
(9) If n > 1 and i and n are relative prime, then order(i, n) | Eulern.

(10) For all i, n such that n > 1 and i and n are relative prime holds is ≡
it (modn) iff s ≡ t (mod order(i, n)).

(11) For all i, n such that n > 1 and i and n are relative prime holds is ≡
1 (modn) iff order(i, n) | s.

(12) Suppose n > 1 and i and n are relative prime and len f1 = order(i, n)
and for every d such that d ∈ dom f1 holds f1(d) = id−

′1. Let given d, e.
If d, e ∈ dom f1 and d 6= e, then f1(d) 6≡ f1(e) (modn).

(13) Suppose n > 1 and i and n are relative prime and len f1 = order(i, n)
and for every d such that d ∈ dom f1 holds f1(d) = id−

′1. Let given d. If
d ∈ dom f1, then f1(d)order(i,n) mod n = 1.

(14) If n > 1 and i and n are relative prime, then order(is, n) =
order(i, n) div(order(i, n) gcd s).

(15) Let given i, n. Suppose n > 1 and i and n are relative prime. Then
order(i, n) and s are relative prime if and only if order(is, n) = order(i, n).

(16) If n > 1 and i and n are relative prime and order(i, n) = s · t, then
order(is, n) = t.

(17) Suppose that
(i) n > 1,

(ii) s and n are relative prime,
(iii) t and n are relative prime, and
(iv) order(s, n) and order(t, n) are relative prime.

Then order(s · t, n) = order(s, n) · order(t, n).

In the sequel f2, f3 are finite sequences of elements of N.
We now state four propositions:

(18) Suppose n > 1 and s and n are relative prime and t and n are relative
prime and order(s · t, n) = order(s, n) · order(t, n). Then order(s, n) and
order(t, n) are relative prime.
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(19) If n > 1 and s and n are relative prime and s · t mod n = 1, then
order(s, n) = order(t, n).

(20) If n > 1 and m > 1 and i and n are relative prime and m | n, then
order(i,m) | order(i, n).

(21) If n > 1 and m > 1 and m and n are relative prime and i and m · n are
relative prime, then order(i,m · n) = lcm(order(i,m), order(i, n)).

Let X be a set and let m be a natural number. We say that X is primitive
root of m if and only if the condition (Def. 2) is satisfied.

(Def. 2) There exists a finite sequence f2 of elements of Z such that len f2 =
len Sgm RelPrimesm and for every d such that d ∈ dom f2 holds f2(d) ∈
[(Sgm RelPrimesm)(d)]Congm and X = rng f2.

We now state several propositions:

(22) RelPrimesm is primitive root of m.

(23) If d, e ∈ dom Sgm RelPrimesm and d 6= e, then (Sgm RelPrimesm)(d) 6≡
(Sgm RelPrimesm)(e) (modm).

(24) Let X be a finite set. Suppose X is primitive root of m. Then

(i) X = Eulerm,
(ii) for all integers x, y such that x, y ∈ X and x 6= y holds x 6≡ y (modm),

and
(iii) for every integer x such that x ∈ X holds x and m are relative prime.

(25) ∅ is primitive root of m iff m = 0.

(26) Let X be a finite subset of Z. Suppose that
(i) 1 < m,

(ii) X = Eulerm,
(iii) for all integers x, y such that x, y ∈ X and x 6= y holds x 6≡ y (modm),

and
(iv) for every integer x such that x ∈ X holds x and m are relative prime.

Then X is primitive root of m.

(27) Let X be a finite subset of Z and a be an integer. Suppose m > 1 and
a and m are relative prime and X is primitive root of m. Then a ◦ X is
primitive root of m.

Let us consider i, n. We say that i is RRS of n if and only if:

(Def. 3) order(i, n) = Eulern.

Next we state several propositions:

(28) Suppose n > 1 and i and n are relative prime. Then i is RRS of n if
and only if for every f1 such that len f1 = Eulern and for every natural
number d such that d ∈ dom f1 holds f1(d) = id holds rng f1 is primitive
root of n.
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(29) Suppose p > 2 and i and p are relative prime and i is RRS of p. Let k
be a natural number. Then i2·k+1 is not quadratic residue mod p.

(30) Let k be a natural number. Suppose k ≥ 3. Let given m. If m and 2k are
relative prime, then m is not RRS of 2k.

(31) If p > 2 and k ≥ 2 and i and p are relative prime and i is RRS of p and

ip−
′1 mod p2 6= 1, then iEuler pk−

′1
mod pk 6= 1.

(32) Suppose n > 1 and len f2 ≥ 2 and for every d such that d ∈ dom f2 holds
f2(d) and n are relative prime. Let given f3. Suppose that

(i) len f3 = len f2,

(ii) for every d such that d ∈ dom f3 holds f3(d) = order(f2(d), n), and
(iii) for all d, e such that d, e ∈ dom f3 and d 6= e holds f3(d) and f3(e) are

relative prime.
Then order(

∏
f2, n) =

∏
f3.
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