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Summary. In this article we formalize a free Z-module and its rank. We
formally prove that for a free finite rank Z-module V , the number of elements in
its basis, that is a rank of the Z-module, is constant regardless of the selection of
its basis. Z-module is necessary for lattice problems, LLL(Lenstra, Lenstra and
Lovász) base reduction algorithm and cryptographic systems with lattice [15].
Some theorems in this article are described by translating theorems in [21] and
[8] into theorems of Z-module.
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The papers [17], [1], [3], [9], [4], [5], [23], [20], [14], [18], [16], [19], [2], [6], [12],
[27], [28], [25], [26], [13], [24], [22], [7], [10], and [11] provide the terminology and
notation for this paper.

1. Free Z-module

In this paper V is a Z-module, v is a vector of V , and W is a submodule of V .
Let us note that there exists a Z-module which is non trivial.
Let V be a Z-module. One can verify that there exists a finite subset of V

which is linearly independent.
Let K be a field, let V be a non empty vector space structure over K, let

L be a linear combination of V , and let v be a vector of V . Then L(v) is an
element of K.

Next we state two propositions:

(1) Let u be a vector of V . Then there exists a z linear combination l of
V such that l(u) = 1 and for every vector v of V such that v 6= u holds
l(v) = 0.
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(2) Let G be a Z-module, i be an element of Z, w be an element of Z, and
v be an element of G. Suppose G = 〈〈the carrier of (ZR), the zero of (ZR),
the addition of (ZR), the left integer multiplication of (ZR)〉〉 and v = w.

Then i · v = i · w.
Let I1 be a Z-module. We say that I1 is free if and only if:

(Def. 1) There exists a subset A of I1 such that A is linearly independent and
Lin(A) = the Z-module structure of I1.

Let us consider V . One can check that 0V is free.
One can verify that there exists a Z-module which is strict and free.
Let V be a Z-module. One can verify that there exists a submodule of V

which is strict and free.
Let V be a free Z-module. A subset of V is called a basis of V if:

(Def. 2) It is linearly independent and Lin(it) = the Z-module structure of V .

One can verify that every free Z-module inherits cancelable on multiplica-
tion.

Let us observe that there exists a non trivial Z-module which is free.
In the sequel K1, K2 denote z linear combinations of V and X denotes a

subset of V .
We now state a number of propositions:

(3) If X is linearly independent and the support of K1 ⊆ X and the support
of K2 ⊆ X and

∑
K1 =

∑
K2, then K1 = K2.

(4) Let V be a free Z-module and A be a subset of V . Suppose A is linearly
independent. Then there exists a subset B of V such that A ⊆ B and B

is linearly independent and for every vector v of V there exists an integer
a such that a · v ∈ Lin(B).

(5) Let L be a z linear combination of V , F , G be finite sequences of elements
of V , and P be a permutation of domF. If G = F · P, then

∑
(L · F ) =∑

(L ·G).

(6) Let L be a z linear combination of V and F be a finite sequence of
elements of V . If the support of L misses rngF, then

∑
(L · F ) = 0V .

(7) Let F be a finite sequence of elements of V . Suppose F is one-to-one.
Let L be a z linear combination of V . If the support of L ⊆ rngF, then∑

(L · F ) =
∑
L.

(8) Let L be a z linear combination of V and F be a finite sequence of
elements of V . Then there exists a z linear combination K of V such that
the support of K = rngF ∩ (the support of L) and L · F = K · F.

(9) Let L be a z linear combination of V , A be a subset of V , and F be a
finite sequence of elements of V . Suppose rngF ⊆ the carrier of Lin(A).
Then there exists a z linear combination K of A such that

∑
(L·F ) =

∑
K.
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(10) Let L be a z linear combination of V and A be a subset of V . Suppose
the support of L ⊆ the carrier of Lin(A). Then there exists a z linear
combination K of A such that

∑
L =

∑
K.

(11) Let L be a z linear combination of V . Suppose the support of L ⊆ the
carrier of W . Let K be a z linear combination of W . Suppose K = L�the
carrier of W . Then the support of L = the support of K and

∑
L =

∑
K.

(12) Let K be a z linear combination of W . Then there exists a z linear
combination L of V such that the support of K = the support of L and∑
K =

∑
L.

(13) Let L be a z linear combination of V . Suppose the support of L ⊆ the
carrier of W . Then there exists a z linear combination K of W such that
the support of K = the support of L and

∑
K =

∑
L.

(14) For every free Z-module V and for every basis I of V and for every vector
v of V holds v ∈ Lin(I).

(15) For every subset A of W such that A is linearly independent holds A is
a linearly independent subset of V .

(16) Let A be a subset of V . Suppose A is linearly independent and A ⊆ the
carrier of W . Then A is a linearly independent subset of W .

(17) Let V be a Z-module and A be a subset of V . Suppose A is linearly
independent. Let v be a vector of V . If v ∈ A, then for every subset B of
V such that B = A \ {v} holds v /∈ Lin(B).

(18) Let V be a free Z-module, I be a basis of V , and A be a non empty
subset of V . Suppose A misses I. Let B be a subset of V . If B = I ∪ A,
then B is linearly dependent.

(19) For every subset A of V such that A ⊆ the carrier of W holds Lin(A) is
a submodule of W .

(20) For every subset A of V and for every subset B of W such that A = B

holds Lin(A) = Lin(B).

Let V be a Z-module and let A be a linearly independent subset of V . One
can check that Lin(A) is free.

Let V be a free Z-module. Observe that ΩV is strict and free.

2. Finite Rank Free Z-module

Let I1 be a free Z-module. We say that I1 is finite-rank if and only if:

(Def. 3) There exists a finite subset of I1 which is a basis of I1.

Let us consider V . Note that 0V is finite-rank.
Let us note that there exists a free Z-module which is strict and finite-rank.
Let V be a Z-module. Note that there exists a free submodule of V which

is strict and finite-rank.
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Let V be a Z-module and let A be a finite linearly independent subset of V .
One can check that Lin(A) is finite-rank.

Let V be a Z-module. We say that V is finitely-generated if and only if:

(Def. 4) There exists a finite subset A of V such that Lin(A) = the Z-module
structure of V .

Let us consider V . One can verify that 0V is finitely-generated.
Let us mention that there exists a Z-module which is strict, finitely-generated,

and free.
Let V be a finite-rank free Z-module. Observe that every basis of V is finite.

3. Rank of a Finite Rank Free Z-module

The following propositions are true:

(21) Let p be a prime number, V be a free Z-module, I be a basis of V , and u1,
u2 be vectors of V . If u1 6= u2 and u1, u2 ∈ I, then ZMtoMQV(V, p, u1) 6=
ZMtoMQV(V, p, u2).

(22) Let p be a prime number, V be a Z-module, Z1 be a vector space over
GF(p), and v1 be a vector of Z1. If Z1 = ZMQVectSp(V, p), then there
exists a vector v of V such that v1 = ZMtoMQV(V, p, v).

(23) Let p be a prime number, V be a Z-module, I be a subset of V , and l1
be a linear combination of ZMQVectSp(V, p). Then there exists a z linear
combination l of I such that for every vector v of V if v ∈ I, then there
exists a vector w of V such that w ∈ I and w ∈ ZMtoMQV(V, p, v) and
l(w) = l1(ZMtoMQV(V, p, v)).

(24) Let p be a prime number, V be a free Z-module, I be a basis of V ,
and l1 be a linear combination of ZMQVectSp(V, p). Then there exists a z
linear combination l of I such that for every vector v of V if v ∈ I, then
l(v) = l1(ZMtoMQV(V, p, v)).

(25) Let p be a prime number, V be a free Z-module, I be a basis of
V , and X be a non empty subset of ZMQVectSp(V, p). Suppose X =
{ZMtoMQV(V, p, u);u ranges over vectors of V : u ∈ I}. Then there exists
a function F from X into the carrier of V such that for every vector u of
V such that u ∈ I holds F (ZMtoMQV(V, p, u)) = u and F is one-to-one
and domF = X and rngF = I.

(26) Let p be a prime number, V be a free Z-module, and I be a basis of V .

Then {ZMtoMQV(V, p, u);u ranges over vectors of V : u ∈ I} = I .

(27) For every prime number p and for every free Z-module V holds
ZMtoMQV(V, p, 0V ) = 0ZMQVectSp(V,p).

(28) Let p be a prime number, V be a free Z-module, and s, t be elements of
V . Then ZMtoMQV(V, p, s)+ZMtoMQV(V, p, t) = ZMtoMQV(V, p, s+t).
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(29) Let p be a prime number, V be a free Z-module, s be a finite sequence of
elements of V , and t be a finite sequence of elements of ZMQVectSp(V, p).
Suppose len s = len t and for every element i of N such that i ∈ dom s there
exists a vector s1 of V such that s1 = s(i) and t(i) = ZMtoMQV(V, p, s1).
Then

∑
t = ZMtoMQV(V, p,

∑
s).

(30) Let p be a prime number, V be a free Z-module, s be an element of
V , a be an integer, and b be an element of GF(p). If a = b, then b ·
ZMtoMQV(V, p, s) = ZMtoMQV(V, p, a · s).

(31) Let p be a prime number, V be a free Z-module, I be a basis of V , l be a
z linear combination of I, I2 be a subset of ZMQVectSp(V, p), and l1 be a
linear combination of I2. Suppose I2 = {ZMtoMQV(V, p, u);u ranges over
vectors of V : u ∈ I} and for every vector v of V such that v ∈ I holds
l(v) = l1(ZMtoMQV(V, p, v)). Then

∑
l1 = ZMtoMQV(V, p,

∑
l).

(32) Let p be a prime number, V be a free Z-module, I be a basis of V , and
I2 be a subset of ZMQVectSp(V, p). If I2 = {ZMtoMQV(V, p, u);u ranges
over vectors of V : u ∈ I}, then I2 is linearly independent.

(33) Let p be a prime number, V be a free Z-module, I be a subset of V , and
I2 be a subset of ZMQVectSp(V, p). Suppose I2 = {ZMtoMQV(V, p, u);u
ranges over vectors of V : u ∈ I}. Let s be a finite sequence of elements of
V . Suppose that for every element i of N such that i ∈ dom s there exists
a vector s1 of V such that s1 = s(i) and ZMtoMQV(V, p, s1) ∈ Lin(I2).
Then ZMtoMQV(V, p,

∑
s) ∈ Lin(I2).

(34) Let p be a prime number, V be a free Z-module, I be a basis of V ,
I2 be a subset of ZMQVectSp(V, p), and l be a z linear combination of
I. If I2 = {ZMtoMQV(V, p, u);u ranges over vectors of V : u ∈ I}, then
ZMtoMQV(V, p,

∑
l) ∈ Lin(I2).

(35) Let p be a prime number, V be a free Z-module, I be a basis of V , and
I2 be a subset of ZMQVectSp(V, p). If I2 = {ZMtoMQV(V, p, u);u ranges
over vectors of V : u ∈ I}, then I2 is a basis of ZMQVectSp(V, p).

Let p be a prime number and let V be a finite-rank free Z-module. Observe
that ZMQVectSp(V, p) is finite dimensional.

Next we state the proposition

(36) For every finite-rank free Z-module V and for all bases A, B of V holds
A = B.

Let V be a finite-rank free Z-module. The functor rankV yields a natural
number and is defined as follows:

(Def. 5) For every basis I of V holds rankV = I .

The following proposition is true

(37) For every prime number p and for every finite-rank free Z-module V

holds rankV = dim(ZMQVectSp(V, p)).
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