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Summary.We analyse three algorithms: exponentiation by squaring, cal-
culation of maximum, and sorting by exchanging in terms of program algebra
over an algebra.
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1. Exponentiation by Squaring Revisited

Now we state the propositions:

(1) (i) 1 mod 2 = 1, and

(ii) 2 mod 2 = 0.

(2) Let us consider a non empty non void many sorted signature Σ, an
algebra A over Σ, a subalgebra B of A, a sort symbol s of Σ, and a set a.
Suppose a ∈ (the sorts of B)(s). Then a ∈ (the sorts of A)(s).

(3) Let us consider a non empty set I, sets a, b, c, and an element i of I.
Then c ∈ (i -singleton a)(b) if and only if b = i and c = a.

(4) Let us consider a non empty set I, sets a, b, c, d, and elements i, j of I.
Then c ∈ (i -singleton a ∪ j -singleton d)(b) if and only if b = i and c = a

or b = j and c = d. The theorem is a consequence of (3).
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Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and A be a non-empty algebra
over Σ. We say that A is integer if and only if

(Def. 1) There exists an image C of A such that C is a boolean correct algebra
over Σ with integers with connectives from 4 and the sort at 1.

Now we state the propositions:

(5) Let us consider a non empty non void many sorted signature Σ and a
non-empty algebra A over Σ. Then Im idα = the algebra of A, where α is
the sorts of A.

(6) Let us consider a non empty non void many sorted signature Σ. Then
every non-empty algebra over Σ is an image of A. The theorem is a con-
sequence of (5). Proof: A is A-image. �

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1. One can verify that there
exists a non-empty algebra over Σ which is integer.

Let A be an integer non-empty algebra over Σ. Note that there exists an
image of A which is boolean correct.

Let us note that there exists a boolean correct image of A which has integers
with connectives from 4 and the sort at 1.

Now we state the proposition:

(7) Let us consider a non empty non void many sorted signature Σ, a non-
empty algebra A over Σ, an operation symbol o of Σ, a set a, and a sort
symbol r of Σ. Suppose o is of type a → r. Then

(i) Den(o,A) is a function from (the sorts of A)#(a) into (the sorts of
A)(r), and

(ii) Args(o,A) = (the sorts of A)#(a), and

(iii) Result(o,A) = (the sorts of A)(r).

Let Σ be a boolean correct non empty non void boolean signature and A

be a boolean correct non-empty algebra over Σ. Observe that every non-empty
subalgebra of A is boolean correct.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and A be a boolean correct
non-empty algebra over Σ with integers with connectives from 4 and the sort
at 1. Note that every non-empty subalgebra of A has integers with connectives
from 4 and the sort at 1.

Let X be a non-empty many sorted set indexed by the carrier of Σ. Let us
observe that FΣ(X) is integer as a non-empty algebra over Σ.

Now we state the proposition:

(8) Let us consider a non empty non void many sorted signature Σ, algebras
A1, A2, B1 over Σ, and a non-empty algebra B2 over Σ. Suppose
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(i) the algebra of A1 = the algebra of A2, and

(ii) the algebra of B1 = the algebra of B2.

Let us consider a many sorted function h1 from A1 into B1 and a many
sorted function h2 from A2 into B2. Suppose

(iii) h1 = h2, and

(iv) h1 is an epimorphism of A1 onto B1.

Then h2 is an epimorphism of A2 onto B2.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and X be a non-empty many
sorted set indexed by the carrier of Σ. Let us note that there exists an including
Σ-terms over X non-empty free variable algebra over Σ which is vf-free and
integer.

Let Σ be a non empty non void many sorted signature. Let T be an inclu-
ding Σ-terms over X non-empty algebra over Σ. The functor FreeGenerator(T)
yielding a non-empty generator set of T is defined by the term

(Def. 2) FreeGenerator(X).

Let X0 be a countable non-empty many sorted set indexed by the carrier
of Σ and T be an including Σ-terms over X0 non-empty algebra over Σ. Let us
observe that FreeGenerator(T) is Equations(Σ,T)-free and non-empty.

Let X be a non-empty many sorted set indexed by the carrier of Σ, T be an
including Σ-terms over X algebra over Σ, and G be a generator set of T. We
say that G is basic if and only if

(Def. 3) FreeGenerator(T) ⊆ G.

Let s be a sort symbol of Σ and x be an element of G(s). We say that x is pure
if and only if

(Def. 4) x ∈ (FreeGenerator(T))(s).

Observe that FreeGenerator(T) is basic.
Note that there exists a non-empty generator set of T which is basic.
Let G be a basic generator set of T and s be a sort symbol of Σ. One can

check that there exists an element of G(s) which is pure.
Now we state the proposition:

(9) Let us consider a non empty non void many sorted signature Σ, a non-
empty many sorted set X indexed by the carrier of Σ, an including Σ-
terms over X algebra T over Σ, a basic generator set G of T, a sort
symbol s of Σ, and a set a. Then a is a pure element of G(s) if and only
if a ∈ (FreeGenerator(T))(s).

Let Σ be a non empty non void many sorted signature, X be a non-empty
many sorted set indexed by the carrier of Σ, T be an including Σ-terms over X
algebra over Σ, and G be a generator system over Σ, X, and T. We say that G
is basic if and only if



4 grzegorz bancerek

(Def. 5) The generators of G are basic.

Observe that there exists a generator system over Σ, X, and T which is
basic.

Let G be a basic generator system over Σ, X, and T. Note that the generators
of G are basic.

In this paper Σ denotes a boolean correct non empty non void boolean
signature with integers with connectives from 4 and the sort at 1, X denotes
a non-empty many sorted set indexed by the carrier of Σ, T denotes a vf-free
including Σ-terms over X integer non-empty free variable algebra over Σ, C

denotes a boolean correct non-empty image of T with integers with connectives
from 4 and the sort at 1, G denotes a basic generator system over Σ, X, and
T, A denotes a if-while algebra over the generators of G, I denotes an integer
sort symbol of Σ, x, y, z, m denote pure elements of (the generators of G)(I),
b denotes a pure element of (the generators of G)((the boolean sort of Σ)), τ ,
τ1, τ2 denote elements of T from I, P denotes an algorithm of A, and s, s1, s2

denote elements of C -States(the generators of G).
Let Σ be a boolean correct non empty non void boolean signature and A be

a non-empty algebra over Σ. The functor falseA yielding an element of A from
the boolean sort of Σ is defined by the term

(Def. 6) ¬ trueA.

In this paper f denotes an execution function of A over
C -States(the generators of G) and Statesb 6→falseC

(the generators of G).
Now we state the proposition:

(10) falseC = false.

Let Σ be a boolean correct non empty non void boolean signature, X be
a non-empty many sorted set indexed by the carrier of Σ, T be an including
Σ-terms over X algebra over Σ, G be a generator system over Σ, X, and T,
b be an element of (the generators of G)((the boolean sort of Σ)), C be an
image of T, A be a pre-if-while algebra, f be an execution function of A over
C -States(the generators of G) and Statesb6→falseC

(the generators of G), s be an
element of C -States(the generators of G), and P be an algorithm of A. Note
that the functor f(s, P ) yields an element of C -States(the generators of G). Let
Σ be a non empty non void many sorted signature, T be a non-empty algebra
over Σ, G be a non-empty generator set of T, s be a sort symbol of Σ, and x be
an element of G(s). The functor @x yielding an element of T from s is defined
by the term

(Def. 7) x.

Let us consider Σ, X, T, G, A, b, I, τ1, and τ2. The functors b leq(τ1, τ2,A)
and b gt(τ1, τ2,A) yielding algorithms of A are defined by the terms, respectively.

(Def. 8) b:=A(leq(τ1, τ2)).
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(Def. 9) b:=A(¬ leq(τ1, τ2)).

The functor 2IT yielding an element of T from I is defined by the term

(Def. 10) 1IT + 1IT.

Let us considerG, A, and b. Let us consider τ . The functors τ is odd(b,A) and
τ is even(b,A) yielding algorithms of A are defined by the terms, respectively.

(Def. 11) b gt(τ mod 2IT, 0
I
T,A).

(Def. 12) b leq(τ mod 2IT, 0
I
T,A).

Let us consider C. Let us consider s. Let x be an element of (the generators
of G)(I). Let us note that s(I)(x) is integer.

Let us consider τ . Let us note that τ value at(C, s) is integer.
In the sequel u denotes a many sorted function from FreeGenerator(T) into

the sorts of C.
Let us consider Σ, X, T, C, I, u, and τ . One can verify that τ value at(C, u)

is integer.
Let us consider G. Let us consider s. Let τ be an element of T from the

boolean sort of Σ. One can verify that τ value at(C, s) is boolean.
Let us consider u. One can check that τ value at(C, u) is boolean.
Let us consider an operation symbol o of Σ. Now we state the propositions:

(11) Suppose o = (the connectives of Σ)(1)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(1), and

(ii) Arity(o) = ∅, and

(iii) the result sort of o = the boolean sort of Σ.

(12) Suppose o = (the connectives of Σ)(2)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(2), and

(ii) Arity(o) = 〈the boolean sort of Σ〉, and

(iii) the result sort of o = the boolean sort of Σ.

(13) Suppose o = (the connectives of Σ)(3)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(3), and

(ii) Arity(o) = 〈the boolean sort of Σ, the boolean sort of Σ〉, and

(iii) the result sort of o = the boolean sort of Σ.

(14) Suppose o = (the connectives of Σ)(4)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = ∅, and

(ii) the result sort of o = I.

(15) Suppose o = (the connectives of Σ)(5)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = ∅, and

(ii) the result sort of o = I.
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(16) Suppose o = (the connectives of Σ)(6)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I〉, and

(ii) the result sort of o = I.

(17) Suppose o = (the connectives of Σ)(7)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(18) Suppose o = (the connectives of Σ)(8)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(19) Suppose o = (the connectives of Σ)(9)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(20) Suppose o = (the connectives of Σ)(10)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = the boolean sort of Σ.

(21) Let us consider a non empty non void many sorted signature Σ and an
operation symbol o of Σ. Suppose Arity(o) = ∅. Let us consider an algebra
A over Σ. Then Args(o,A) = {∅}.

(22) Let us consider a non empty non void many sorted signature Σ, a sort
symbol a of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a〉.
Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts of

A)(a)〉.
(23) Let us consider a non empty non void many sorted signature Σ, sort

symbols a, b of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a,
b〉. Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts

of A)(a), (the sorts of A)(b)〉.
(24) Let us consider a non empty non void many sorted signature Σ, sort sym-

bols a, b, c of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a, b,
c〉. Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts

of A)(a), (the sorts of A)(b), (the sorts of A)(c)〉.
(25) Let us consider a non empty non void many sorted signature Σ, non-

empty algebras A, B over Σ, a sort symbol s of Σ, an element a of A from
s, a many sorted function h from A into B, and an operation symbol o of
Σ. Suppose Arity(o) = 〈s〉. Let us consider an element p of Args(o,A). If
p = 〈a〉, then h#p = 〈h(s)(a)〉.
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(26) Let us consider a non empty non void many sorted signature Σ, non-
empty algebras A, B over Σ, sort symbols s1, s2 of Σ, an element a of
A from s1, an element b of A from s2, a many sorted function h from
A into B, and an operation symbol o of Σ. Suppose Arity(o) = 〈s1, s2〉.
Let us consider an element p of Args(o,A). Suppose p = 〈a, b〉. Then
h#p = 〈h(s1)(a), h(s2)(b)〉.

(27) Let us consider a non empty non void many sorted signature Σ, non-
empty algebras A, B over Σ, sort symbols s1, s2, s3 of Σ, an element a of
A from s1, an element b of A from s2, an element c of A from s3, a many
sorted function h from A into B, and an operation symbol o of Σ. Suppose
Arity(o) = 〈s1, s2, s3〉. Let us consider an element p of Args(o,A). Suppose
p = 〈a, b, c〉. Then h#p = 〈h(s1)(a), h(s2)(b), h(s3)(c)〉.

Let us consider a many sorted function h from T into C, a sort symbol a of
Σ, and an element τ of T from a. Now we state the propositions:

(28) If h is a homomorphism of T into C,
then τ value at(C, h � FreeGenerator(T)) = h(a)(τ).

(29) Suppose h is a homomorphism of T into C and s = h � the generators
of G. Then τ value at(C, s) = h(a)(τ).

(30) trueT value at(C, s) = true. The theorem is a consequence of (11) and
(21).

(31) Let us consider an element τ of T from the boolean sort of Σ. Then
¬τ value at(C, s) = ¬(τ value at(C, s)). The theorem is a consequence of
(29), (12), (22), and (25).

(32) Let us consider a boolean set a and an element τ of T from the boolean
sort of Σ. Then ¬τ value at(C, s) = ¬a if and only if τ value at(C, s) = a.
The theorem is a consequence of (31).

(33) Let us consider an element a of C from the boolean sort of Σ and a
boolean set x. Then ¬a = ¬x if and only if a = x.

(34) falseT value at(C, s) = false. The theorem is a consequence of (31) and
(30).

(35) Let us consider elements τ1, τ2 of T from the boolean sort of Σ. Then (τ1∧
τ2) value at(C, s) = (τ1 value at(C, s)) ∧ (τ2 value at(C, s)). The theorem is
a consequence of (29), (13), (23), and (26).

(36) 0IT value at(C, s) = 0. The theorem is a consequence of (14) and (21).

(37) 1IT value at(C, s) = 1. The theorem is a consequence of (15) and (21).

(38) (−τ) value at(C, s) = −τ value at(C, s). The theorem is a consequence of
(16), (22), and (25).

(39) (τ1+τ2) value at(C, s) = τ1 value at(C, s)+τ2 value at(C, s). The theorem
is a consequence of (17), (23), and (26).

(40) 2IT value at(C, s) = 2. The theorem is a consequence of (37) and (39).
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(41) (τ1−τ2) value at(C, s) = τ1 value at(C, s)−τ2 value at(C, s). The theorem
is a consequence of (39) and (38).

(42) (τ1 · τ2) value at(C, s) = (τ1 value at(C, s)) · (τ2 value at(C, s)). The the-
orem is a consequence of (29), (18), (23), and (26).

(43) (τ1 div τ2) value at(C, s) = τ1 value at(C, s) div τ2 value at(C, s). The the-
orem is a consequence of (19), (23), and (26).

(44) (τ1 mod τ2) value at(C, s) = τ1 value at(C, s) mod τ2 value at(C, s). The
theorem is a consequence of (41), (42), and (43).

(45) leq(τ1, τ2) value at(C, s) = leq(τ1 value at(C, s), τ2 value at(C, s)). The the-
orem is a consequence of (20), (23), and (26).

(46) trueT value at(C, u) = true. The theorem is a consequence of (11) and
(21).

(47) Let us consider an element τ of T from the boolean sort of Σ. Then
¬τ value at(C, u) = ¬(τ value at(C, u)). The theorem is a consequence of
(28), (12), (22), and (25).

(48) Let us consider a boolean set a and an element τ of T from the boolean
sort of Σ. Then ¬τ value at(C, u) = ¬a if and only if τ value at(C, u) = a.
The theorem is a consequence of (47).

(49) falseT value at(C, u) = false. The theorem is a consequence of (47) and
(46).

(50) Let us consider elements τ1, τ2 of T from the boolean sort of Σ. Then (τ1∧
τ2) value at(C, u) = (τ1 value at(C, u))∧ (τ2 value at(C, u)). The theorem is
a consequence of (28), (13), (23), and (26).

(51) 0IT value at(C, u) = 0. The theorem is a consequence of (14) and (21).

(52) 1IT value at(C, u) = 1. The theorem is a consequence of (15) and (21).

(53) (−τ) value at(C, u) = −τ value at(C, u). The theorem is a consequence
of (16), (22), and (25).

(54) (τ1 + τ2) value at(C, u) = τ1 value at(C, u) + τ2 value at(C, u). The the-
orem is a consequence of (17), (23), and (26).

(55) 2IT value at(C, u) = 2. The theorem is a consequence of (52) and (54).

(56) (τ1 − τ2) value at(C, u) = τ1 value at(C, u) − τ2 value at(C, u). The the-
orem is a consequence of (54) and (53).

(57) (τ1 · τ2) value at(C, u) = (τ1 value at(C, u)) · (τ2 value at(C, u)). The the-
orem is a consequence of (28), (18), (23), and (26).

(58) (τ1 div τ2) value at(C, u) = τ1 value at(C, u) div τ2 value at(C, u). The the-
orem is a consequence of (19), (23), and (26).

(59) (τ1 mod τ2) value at(C, u) = τ1 value at(C, u) mod τ2 value at(C, u). The
theorem is a consequence of (56), (57), and (58).
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(60) leq(τ1, τ2) value at(C, u) = leq(τ1 value at(C, u), τ2 value at(C, u)).
The theorem is a consequence of (20), (23), and (26).

(61) Let us consider a sort symbol a of Σ and an element x of (the generators
of G)(a). Then @x value at(C, s) = s(a)(x). The theorem is a consequence
of (29).

(62) Let us consider a sort symbol a of Σ, a pure element x of (the generators
of G)(a), and a many sorted function u from FreeGenerator(T) into the
sorts of C. Then @x value at(C, u) = u(a)(x).

Let us consider integers i, j and elements a, b of C from I. Now we state the
propositions:

(63) If a = i and b = j, then a− b = i− j.
(64) If a = i and b = j and j 6= 0, then a mod b = i mod j.

(65) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then let us

consider a sort symbol a of Σ, a pure element x of (the generators of
G)(a), and an element τ of T from a. Then

(i) f(s, x:=Aτ)(a)(x) = τ value at(C, s), and

(ii) for every pure element z of (the generators of G)(a) such that z 6= x

holds f(s, x:=Aτ)(a)(z) = s(a)(z), and

(iii) for every sort symbol b of Σ such that a 6= b for every pure element
z of (the generators of G)(b), f(s, x:=Aτ)(b)(z) = s(b)(z).

(66) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then

(i) τ1 value at(C, s) < τ2 value at(C, s) iff
f(s, b gt(τ2, τ1,A)) ∈ Statesb 6→falseC

(the generators of G), and

(ii) τ1 value at(C, s) ¬ τ2 value at(C, s) iff
f(s, b leq(τ1, τ2,A)) ∈ Statesb6→falseC

(the generators of G), and

(iii) for every x, f(s, b gt(τ1, τ2,A))(I)(x) = s(I)(x) and
f(s, b leq(τ1, τ2,A))(I)(x) = s(I)(x), and

(iv) for every pure element c of (the generators of G)((the boolean sort
of Σ)) such that c 6= b holds f(s, b gt(τ1, τ2,A))((the boolean sort of
Σ))(c) = s((the boolean sort of Σ))(c) and f(s, b leq(τ1, τ2,A))
((the boolean sort of Σ))(c) = s((the boolean sort of Σ))(c).

The theorem is a consequence of (31), (45), and (33).

Let i, j be real numbers and a, b be boolean sets. One can verify that
(i > j → a, b) is boolean.

Now we state the proposition:

(67) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then

(i) f(s, τ is odd(b,A))((the boolean sort of Σ))(b) = τ value at(C, s) mod
2, and



10 grzegorz bancerek

(ii) f(s, τ is even(b,A))((the boolean sort of Σ))(b) = (τ value at(C, s) +
1) mod 2, and

(iii) for every z, f(s, τ is odd(b,A))(I)(z) = s(I)(z) and
f(s, τ is even(b,A))(I)(z) = s(I)(z).

The theorem is a consequence of (36), (40), (64), (31), (45), (44), and (1).

Let us consider Σ, X, T, G, and A. We say that A is elementary if and only
if

(Def. 13) rng the assignments of A ⊆ ElementaryInstructionsA.

Now we state the proposition:

(68) Suppose A is elementary. Then let us consider a sort symbol a of Σ, an
element x of (the generators of G)(a), and an element τ of T from a. Then
x:=Aτ ∈ ElementaryInstructionsA.

Let us consider Σ, X, T, and G. One can verify that there exists a strict
if-while algebra over the generators of G which is elementary.

Let A be an elementary if-while algebra over the generators of G, a be a sort
symbol of Σ, x be an element of (the generators of G)(a), and τ be an element
of T from a. Let us observe that x:=Aτ is absolutely-terminating.

Now let Γ denotes the program

y:=A1IT;
while b gt(@m, 0IT,A) do
if @m is odd(b,A) then
y:=A@y · @x
fi;
m:=A@mdiv 2IT;
x:=A@x · @x
done

Then we state the propositions:

(69) Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) G is C-supported, and

(ii) f ∈ C -Executionb6→falseC
(A), and

(iii) there exists a function d such that d(x) = 1 and d(y) = 2 and
d(m) = 3.

Then Γ is terminating w.r.t. f and {s : s(I)(m) ­ 0}. The theorem is a
consequence of (66), (36), (61), (65), (40), and (43). Proof: Set ST =
C -States(the generators of G). Set TV = Statesb 6→falseC

(the generators
of G). Set P = {s : s(I)(m) ­ 0}. Set W = b gt(@m, 0IT,A). Define
F(element of ST ) = $1(I)(m)(∈ N). DefineR[element of ST ] ≡ $1(I)(m) >
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0. Set K = if @m is odd(b,A) then(y:=A(@y · @x)).
Set J = (K;m:=A(@m div 2IT));x:=A(@x · @x). P is invariant w.r.t. W and
f . For every element s of ST such that s ∈ P and f(f(s, J),W ) ∈ TV
holds f(s, J) ∈ P . P is invariant w.r.t. y:=A(1IT) and f . For every s such
that f(s,W ) ∈ P holds iteration of f started in J ;W terminates w.r.t.
f(s,W ). �

(70) Suppose G is C-supported and there exists a function d such that
d(b) = 0 and d(x) = 1 and d(y) = 2 and d(m) = 3. Then let us consider
an element s of C -States(the generators of G) and a natural number n.
Suppose n = s(I)(m). If f ∈ C -Executionb 6→falseC

(A), then f(s,Γ)(I)(y) =
s(I)(x)n. The theorem is a consequence of (65), (66), (36), (61), (37),
(40), (43), (67), (10), and (42). Proof: Set Σ = C -States(the generators
of G). Set W = T. Set g = f . Set T = Statesb 6→falseC

(the generators of
G). Set s0 = f(s, y:=A(1IW )). Define R[element of Σ] ≡ $1(I)(m) > 0.
Set C = b gt(@m, 0IW ,A). Define P[element of Σ] ≡ s(I)(x)n = $1(I)(y) ·
$1(I)(x)$1(I)(m) and $1(I)(m) ­ 0. Define F(element of Σ) = $1(I)(m)(∈
N). Set I = if @m is odd(b,A) then(y:=A(@y · @x)).
Set J = (I;m:=A(@mdiv 2YW ));x:=A(@x · @x). For every element s of Σ
such that P[s] holds P[(g(s,C) qua element of Σ)] and g(s,C) ∈ T iff
R[(g(s,C) qua element of Σ)]. Set s1 = g(s0,C). For every element s of Σ
such that R[s] holds R[(g(s, J ; C) qua element of Σ)] iff g(s, J ; C) ∈ T and
F((g(s, J ; C) qua element of Σ)) < F(s). Set q = s. For every element s
of Σ such that P[s] and s ∈ T and R[s] holds P[(g(s, J) qua element of
Σ)]. �

2. Calculation of Maximum

Let X be a non empty set, f be a finite sequence of elements of Xω, and x

be a natural number. Let us observe that f(x) is transfinite sequence-like finite
function-like and relation-like.

Let us note that every finite sequence of elements of Xω is function yielding.
Let i be a natural number, f be an i-based finite array, and a, x be sets.

Note that f +· (a, x) is i-based finite and segmental.
Let X be a non empty set, f be an X-valued function, a be a set, and x be

an element of X. Let us observe that f +· (a, x) is X-valued.
The scheme Sch1 deals with a non empty set X and a natural number j and

a set B and a ternary functor F yielding a set and a unary functor A yielding
a set and states that

(Sch. 1) There exists a finite sequence f of elements of X ω such that len f = j

and f(1) = B or j = 0 and for every natural number i such that 1 ¬ i < j

holds f(i+ 1) = F(f(i), i,A(i))
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provided

• for every 0-based finite array a of X and for every natural number i such
that 1 ¬ i < j for every element x of X , F(a, i, x) is a 0-based finite array
of X and

• B is a 0-based finite array of X and

• for every natural number i such that i < j holds A(i) ∈ X .

Now we state the propositions:

(71) Let us consider a non empty non void boolean signature Σ with arrays
of type 1 with connectives from 11 and integers at 1, sets J , L, and a sort
symbol K of Σ. Suppose (the connectives of Σ)(11) is of type 〈J, L〉 → K.
Then

(i) J = the array sort of Σ, and

(ii) for every integer sort symbol I of Σ, the array sort of Σ 6= I.

(72) Let us consider a 1-1-connectives 11-array correct boolean correct non
empty non void boolean signature Σ with integers with connectives from
4 and the sort at 1 and arrays of type 1 with connectives from 11 and
integers at 1, an integer sort symbol I of Σ, a boolean correct non-empty
algebra A over Σ with integers with connectives from 4 and the sort at
1 and arrays of type 1 with connectives from 11 and integers at 1, and
elements a, b of A from I. If a = 0, then init.array(a, b) = ∅.

(73) Let us consider an 11-array correct boolean correct non empty non void
boolean signature Σ with arrays of type 1 with connectives from 11 and
integers at 1 and an integer sort symbol I of Σ. Then

(i) the array sort of Σ 6= I, and

(ii) (the connectives of Σ)(11) is of type 〈the array sort of Σ, I〉 → I, and

(iii) (the connectives of Σ)(11 + 1) is of type 〈the array sort of Σ, I, I〉 →
the array sort of Σ, and

(iv) (the connectives of Σ)(11 + 2) is of type 〈the array sort of Σ〉 → I,
and

(v) (the connectives of Σ)(11 + 3) is of type 〈I, I〉 → the array sort of Σ.

(74) Let us consider a 1-1-connectives 11-array correct boolean correct non
empty non void boolean signature Σ with arrays of type 1 with connectives
from 11 and integers at 1 and integers with connectives from 4 and the
sort at 1, an integer sort symbol I of Σ, and a boolean correct non-empty
algebra A over Σ with arrays of type 1 with connectives from 11 and
integers at 1 and integers with connectives from 4 and the sort at 1. Then

(i) (the sorts of A)(the array sort of Σ) = Zω, and
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(ii) for every elements i, j of A from I such that i is a non negative
integer holds init.array(i, j) = i 7−→ j, and

(iii) for every element a of (the sorts of A)(the array sort of Σ), lengthI a =
a and for every element i of A from I and for every function f such
that f = a and i ∈ dom f holds a(i) = f(i) and for every element x
of A from I, ai←x = f +· (i, x).

The theorem is a consequence of (71).

Let a be a 0-based finite array. Observe that length a is finite.
Let Σ be a 1-1-connectives 11-array correct boolean correct non empty non

void boolean signature with integers with connectives from 4 and the sort at
1 and arrays of type 1 with connectives from 11 and integers at 1 and A be a
boolean correct non-empty algebra over Σ with arrays of type 1 with connectives
from 11 and integers at 1 and integers with connectives from 4 and the sort at
1. Observe that every non-empty subalgebra of A has arrays of type 1 with
connectives from 11 and integers at 1.

Let A be a non-empty algebra over Σ. We say that A is integer array if and
only if

(Def. 14) There exists an image C of A such that C is a boolean correct algebra
over Σ with integers with connectives from 4 and the sort at 1 and arrays
of type 1 with connectives from 11 and integers at 1.

Let X be a non-empty many sorted set indexed by the carrier of Σ. One can
verify that FΣ(X) is integer array as a non-empty algebra over Σ.

Note that every non-empty algebra over Σ which is integer array is also
integer.

One can check that there exists an including Σ-terms over X non-empty
strict free variable algebra over Σ which is vf-free and integer array.

One can check that there exists a non-empty algebra over Σ which is integer
array.

Let A be an integer array non-empty algebra over Σ. Observe that there
exists a boolean correct image of A which has integers with connectives from 4
and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1.

In this paper Σ denotes a 1-1-connectives 11-array correct boolean correct
non empty non void boolean signature with integers with connectives from 4 and
the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1, X
denotes a non-empty many sorted set indexed by the carrier of Σ, T denotes a
vf-free including Σ-terms over X integer array non-empty free variable algebra
over Σ, C denotes a boolean correct non-empty image of T with arrays of type
1 with connectives from 11 and integers at 1 and integers with connectives from
4 and the sort at 1, G denotes a basic generator system over Σ, X, and T, A

denotes a if-while algebra over the generators of G, I denotes an integer sort
symbol of Σ, x, y, m, i denote pure elements of (the generators of G)(I), M , N
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denote pure elements of (the generators of G)(the array sort of Σ), b denotes a
pure element of (the generators of G)((the boolean sort of Σ)), and s, s1 denote
elements of C -States(the generators of G).

Let us consider Σ. Let A be a boolean correct non-empty algebra over Σ with
arrays of type 1 with connectives from 11 and integers at 1. Observe that every
element of (the sorts of A)(the array sort of Σ) is relation-like and function-like.

Note that every element of (the sorts of A)(the array sort of Σ) is finite and
transfinite sequence-like.

Let us consider an operation symbol o of Σ. Now we state the propositions:

(75) Suppose o = (the connectives of Σ)(11)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ, I〉, and

(ii) the result sort of o = I.

(76) Suppose o = (the connectives of Σ)(12)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ, I, I〉, and

(ii) the result sort of o = the array sort of Σ.

(77) Suppose o = (the connectives of Σ)(13)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ〉, and

(ii) the result sort of o = I.

(78) Suppose o = (the connectives of Σ)(14)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = the array sort of Σ.

(79) Let us consider an element τ of T from the array sort of Σ and an ele-
ment τ1 of T from I.
Then τ(τ1) value at(C, s) = (τ value at(C, s))(τ1 value at(C, s)). The the-
orem is a consequence of (29), (75), (23), and (26).

(80) Let us consider an element τ of T from the array sort of Σ and elements
τ1, τ2 of T from I. Then ττ1←τ2 value at(C, s) =
(τ value at(C, s))τ1 value at(C,s)←τ2 value at(C,s). The theorem is a consequence
of (29), (76), (24), and (27).

(81) Let us consider an element τ of T from the array sort of Σ. Then
lengthI τ value at(C, s) = lengthI(τ value at(C, s)). The theorem is a con-
sequence of (29), (77), (22), and (25).

(82) Let us consider elements τ1, τ2 of T from I. Then init.array(τ1, τ2)
value at(C, s) = init.array(τ1 value at(C, s), τ2 value at(C, s)). The theorem
is a consequence of (29), (78), (23), and (26).

In the sequel u denotes a many sorted function from FreeGenerator(T) into
the sorts of C.

Now we state the propositions:
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(83) Let us consider an element τ of T from the array sort of Σ and an ele-
ment τ1 of T from I.
Then τ(τ1) value at(C, u) = (τ value at(C, u))(τ1 value at(C, u)). The the-
orem is a consequence of (28), (75), (23), and (26).

(84) Let us consider an element τ of T from the array sort of Σ and elements
τ1, τ2 of T from I.
Then ττ1←τ2 value at(C, u) = (τ value at(C, u))τ1 value at(C,u)←τ2 value at(C,u).
The theorem is a consequence of (28), (76), (24), and (27).

(85) Let us consider an element τ of T from the array sort of Σ. Then
lengthI τ value at(C, u) = lengthI(τ value at(C, u)). The theorem is a con-
sequence of (28), (77), (22), and (25).

(86) Let us consider elements τ1, τ2 of T from I. Then init.array(τ1, τ2)
value at(C, u) = init.array(τ1 value at(C, u), τ2 value at(C, u)). The theorem
is a consequence of (28), (78), (23), and (26).

Let us consider Σ, X, T, and I. Let i be an integer. The functor iIT yielding
an element of T from I is defined by

(Def. 15) There exists a function f from Z into (the sorts of T)(I) such that

(i) it = f(i), and

(ii) f(0) = 0IT, and

(iii) for every natural number j and for every element τ of T from I such
that f(j) = τ holds f(j + 1) = τ + 1IT and f(−(j + 1)) = −(τ + 1IT).

Now we state the propositions:

(87) 0IT = 0IT.

(88) Let us consider a natural number n. Then

(i) (n+ 1)IT = nIT + 1IT, and

(ii) −(n+ 1)IT = −(n+ 1)IT.

(89) 1IT = 0IT + 1IT. The theorem is a consequence of (88) and (87).

(90) Let us consider an integer i. Then iIT value at(C, s) = i. The theorem is
a consequence of (87), (36), (37), (88), (39), and (38).

Let us consider Σ, X, T, G, I, and M . Let i be an integer. The functor
M(i, I) yielding an element of T from I is defined by the term

(Def. 16) (@M)(iIT).

Let us consider C and s. Note that s(the array sort of Σ)(M) is function-like
and relation-like.

Note that s(the array sort of Σ)(M) is finite transfinite sequence-like and
Z-valued.

Observe that rng(s(the array sort of Σ)(M)) is finite and integer-membered.
Let us consider an integer j. Now we state the propositions:
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(91) Suppose j ∈ dom(s(the array sort of Σ)(M)) and
M(j, I) ∈ (the generators of G)(I). Then s(the array sort of Σ)(M)(j) =
s(I)(M(j, I)).

(92) Suppose j ∈ dom(s(the array sort of Σ)(M)) and
(@M)(@i) ∈ (the generators of G)(I) and j = @i value at(C, s).
Then (s(the array sort of Σ)(M))(@i value at(C, s)) = s(I)(((@M)(@i))).

Let X be a non empty set. One can verify that Xω is infinite.
Now we state the propositions:

(93) Now let Γ denotes the program

m:=A0IT;
for i:=A1IT until b gt(lengthI

@M,@i,A) step i:=A@i+ 1IT
do
if b gt((@M)(@i), (@M)(@m),A) then
m:=A@i

fi
done

Let us consider an execution function f of A over C -States(the generators
of G) and Statesb 6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb6→falseC
(A), and

(ii) G is C-supported, and

(iii) i 6= m, and

(iv) s(the array sort of Σ)(M) 6= ∅.
Let us consider a natural number n. Suppose f(s,Γ)(I)(m) = n. Let
us consider a non empty finite integer-membered set X. Suppose X =
rng(s(the array sort of Σ)(M)). Then M(n, I) value at(C, s) = maxX.
The theorem is a consequence of (65), (36), (37), (74), (71), (66), (81),
(61), (39), (79), and (90). Proof: Set ST = C -States(the generators of
G). Define R[element of ST ] ≡ s(the array sort of Σ)(M) = $1(the array
sort of Σ)(M). Reconsider sm = s as a many sorted function from the
generators of G into the sorts of C. Reconsider z = sm(the array sort of
Σ)(M) as a 0-based finite array of Z. Define P[element of ST ] ≡ R[$1]
and $1(I)(i), $1(I)(m) ∈ N and $1(I)(i) ¬ len z and $1(I)(m) < $1(I)(i)
and $1(I)(m) < len z and for every integer mx such that mx = $1(I)(m)
for every natural number j such that j < $1(I)(i) holds z(j) ¬ z(mx). De-
fine Q[element of ST ] ≡ R[$1] and $1(I)(i) < lengthI

@M value at(C, s).
Set s0 = s. Set s1 = f(s,m:=A(0IT)). Set s2 = f(s1, i:=A(1IT)). Con-
sider J1, K1, L1 being elements of Σ such that L1 = 1 and K1 = 1
and J1 6= L1 and J1 6= K1 and (the connectives of Σ)(11) is of type
〈J1,K1〉 → L1 and (the connectives of Σ)(11 + 1) is of type 〈J1,K1,
L1〉 → J1 and (the connectives of Σ)(11 + 2) is of type 〈J1〉 → K1 and
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(the connectives of Σ)(11 + 3) is of type 〈K1, L1〉 → J1. P[s2]. Define
F(element of ST ) = (len(s0(the array sort of Σ)(M)) − $1(I)(i))(∈ N).
f(s2,W ) ∈ TV iff Q[f(s2,W )]. Now let Γ denotes the program
J ;
K;
W

For every element s of ST such that Q[s] holds Q[f(s,Γ)] iff f(s,Γ) ∈ TV
and F(f(s,Γ)) < F(s). For every element s of ST such that P[s] and s ∈
TV and Q[s] holds P[f(s, J ;K)]. For every element s of ST such that P[s]
holds P[f(s,W )] and f(s,W ) ∈ TV iff Q[f(s,W )]. M(n, I) value at(C, s)
is a upper bound of X. For every upper bound x of X, M(n, I)
value at(C, s) ¬ x. �

(94) Now let Γ denotes the program
J ;
i:=A@i+ 1IT

Now let ∆ denotes the program

for i:=Aτ0 until b gt(τ1,
@i,A) step i:=A@i+ 1IT do

J

done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb 6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb 6→falseC
(A), and

(ii) G is C-supported.

Let us consider elements τ0, τ1 of T from I, an algorithm J of A, and a
set P . Suppose

(iii) P is invariant w.r.t. i:=Aτ0 and f , invariant w.r.t. b gt(τ1,
@i,A) and

f , invariant w.r.t. i:=A(@i+ 1IT) and f , and invariant w.r.t. J and f ,
and

(iv) J is terminating w.r.t. f and P , and

(v) for every s, f(s, J)(I)(i) = s(I)(i) and f(s, b gt(τ1,
@i,A))(I)(i) =

s(I)(i) and τ1 value at(C, f(s, b gt(τ1,
@i,A))) = τ1 value at(C, s) and

τ1 value at(C, f(s,Γ)) = τ1 value at(C, s).

Then ∆ is terminating w.r.t. f and P . The theorem is a consequence
of (61), (66), (65), (39), and (37). Proof: Set W = b gt(τ1,

@i,A). Set
L = i:=A(@i+ 1IT). Set K = i:=Aτ0. Set ST = C -States(the generators of
G). Set TV = Statesb 6→falseC

(the generators of G). Now let Γ denotes the
program
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J ;
L;
W

For every s such that f(s,W ) ∈ P holds iteration of f started in Γ
terminates w.r.t. f(s,W ). �

(95) Now let Γ denotes the program

m:=A0IT;
for i:=A1IT until b gt(lengthI

@M,@i,A) step i:=A@i+ 1IT
do
if b gt((@M)(@i), (@M)(@m),A) then
m:=A@i

fi
done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb6→falseC
(A), and

(ii) G is C-supported, and

(iii) i 6= m.

Then Γ is terminating w.r.t. f and {s : s(the array sort of Σ)(M) 6= ∅}. The
theorem is a consequence of (74), (73), (65), (61), (81), and (94). Proof:
Set J = m:=A(0IT). Set K = i:=A(1IT). Set W = b gt(lengthI

@M,@i,A).
Set L = i:=A(@i + 1IT). Set N = b gt((@M)(@i), (@M)(@m),A). Set O =
m:=A(@i). Set a = the array sort of Σ. Set P = {s : s(a)(M) 6= ∅}. P is
invariant w.r.t. J and f . P is invariant w.r.t. K and f . P is invariant w.r.t.
W and f . P is invariant w.r.t. L and f . P is invariant w.r.t. N and f . P
is invariant w.r.t. O and f . Set ST = C -States(the generators of G). Set
TV = Statesb 6→falseC

(the generators of G). P is invariant w.r.t. if N thenO
and f . Now let Γ denotes the program
if N then
O

fi;
L

For every s, f(s, if N thenO)(I)(i) = s(I)(i) and f(s,W )(I)(i) = s(I)(i)
and lengthI

@M value at(C, f(s,W )) = lengthI
@M value at(C, s) and

lengthI
@M value at(C, f(s,Γ)) = lengthI

@M value at(C, s). �
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3. Sorting by Exchanging

In this paper i1, i2 denote pure elements of (the generators of G)(I).
Let us consider Σ, X, T, and G. We say that G is integer array if and only

if

(Def. 17) (i) {(@M)(τ) where τ is an element of T from I : not contradiction} ⊆
(the generators of G)(I), and

(ii) for every M and for every element τ of T from I and for every element
g of G from I such that g = (@M)(τ) there exists x such that x 6∈
(vf τ)(I) and supp-var g = x and (supp-term g)(the array sort of
Σ)(M) = (@M)τ←@x and for every sort symbol s of Σ and for every
y such that y ∈ (vf g)(s) and if s = the array sort of Σ, then y 6= M

holds (supp-term g)(s)(y) = y.

Now we state the proposition:

(96) If G is integer array, then for every element τ of T from I, (@M)(τ) ∈
(the generators of G)(I).

The functor 〈〈Z,¬ 〉〉 yielding a strict real non empty poset is defined by the
term

(Def. 18) RealPoset Z.

Let us consider Σ, X, T, and G. Let A be an elementary if-while algebra
over the generators of G, a be a sort symbol of Σ, and τ1, τ2 be elements of T

from a. Assume τ1 ∈ (the generators of G)(a). The functor τ1:=Aτ2 yielding an
absolutely-terminating algorithm of A is defined by the term

(Def. 19) (The assignments of A)(〈〈τ1, τ2〉〉).
Now we state the proposition:

(97) Let us consider a countable non-empty many sorted set X indexed by the
carrier of Σ, a vf-free including Σ-terms over X integer array non-empty
free variable algebra T over Σ, a basic generator system G over Σ, X, and
T, a pure element M of (the generators of G)(the array sort of Σ), and
pure elements i, x of (the generators of G)(I). Then (@M)(@i) 6= x. The
theorem is a consequence of (73), (79), (61), and (74).

Let Σ be a non empty non void many sorted signature and A be a disjoint
valued algebra over Σ. Note that the sorts of A is disjoint valued.

Let us consider Σ and X. Let T be an including Σ-terms over X algebra
over Σ. We say that T is array degenerated if and only if

(Def. 20) There exists I and there exists an element M of
(FreeGenerator(T))(the array sort of Σ) and there exists an element τ of T

from I such that (@M)(τ) 6= Sym((the connectives of Σ)(11)(∈ (the carrier’
of Σ)), X)-tree(〈M, τ〉).
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Observe that FΣ(X) is non array degenerated.
Observe that there exists an including Σ-terms over X algebra over Σ which

is non array degenerated.
Now we state the propositions:

(98) Suppose T is non array degenerated. Then vf((@M)(@i)) = I -singleton i∪
(the array sort of Σ) -singletonM . The theorem is a consequence of (73).
Proof: Set τ = (@M)(@i). Reconsider N = M as an element of
(FreeGenerator(T))(the array sort of Σ). Consider m being a set such that
m ∈ X(the array sort of Σ) and M = the root tree of 〈〈m, the array sort
of Σ〉〉. Consider j being a set such that j ∈ X(I) and i = the root tree
of 〈〈j, I〉〉. {M} = (vf τ)(the array sort of Σ). {i} = (vf τ)(I). For every
sort symbol s of Σ such that s 6= the array sort of Σ and s 6= I holds
∅ = (vf τ)(s). �

(99) Let us consider an elementary if-while algebra A over the generators of
G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) G is integer array and C-supported, and

(ii) f ∈ C -Executionb6→falseC
(A), and

(iii) X is countable, and

(iv) T is non array degenerated.

Let us consider an element τ of T from I. Then f(s, (@M)(@i):=Aτ) =
f(s,M :=A((@M)@i←τ )). The theorem is a consequence of (96), (98), (97),
(4), (3), (62), (73), (61), (84), (65), and (80). Proof: Reconsider H =
FreeGenerator(T) as a many sorted subset of the generators of G. Set
v = τ value at(C, s). Reconsider p = (@M)(@i) as an element of G from I.
Reconsider g = s as a many sorted function from the generators of G into
the sorts of C. Reconsider g1 = f(s, (@M)(@i):=Aτ),
g2 = f(s,M :=A((@M)@i←τ )) as a many sorted function from the genera-
tors of G into the sorts of C. Reconsider Mi = (@M)(@i) as an element of
(the generators of G)(I). Reconsider m = M as an element of G from the
array sort of Σ. Consider x such that x 6∈ (vf @i)(I) and supp-var p = x

and (supp-term p)(the array sort of Σ)(M) = (@M)@i←@x and for every sort
symbol s of Σ and for every y such that y ∈ (vf p)(s) and if s = the array
sort of Σ, then y 6= M holds (supp-term p)(s)(y) = y. g1 = g2. �

Let us consider Σ, X, T, G, C, s, and b. Let us observe that s((the boolean
sort of Σ))(b) is boolean.

Now we state the proposition:

(100) Now let Γ denotes the program
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while J do
y:=A(@M)(@i1);
(@M)(@i1):=A(@M)(@i2);
(@M)(@i2):=A@y

done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb 6→falseC

(the generators of G). Suppose

(i) G is integer array and C-supported, and

(ii) f ∈ C -Executionb 6→falseC
(A), and

(iii) T is non array degenerated, and

(iv) X is countable.

Let us consider an algorithm J of A. Suppose

(v) f(s, J)(the array sort of Σ)(M) = s(the array sort of Σ)(M), and

(vi) for every array D of 〈〈Z,¬ 〉〉 such that D = s(the array sort of Σ)(M)
holds if D 6= ∅, then f(s, J)(I)(i1), f(s, J)(I)(i2) ∈ domD and if
inversionsD 6= ∅, then 〈〈f(s, J)(I)(i1), f(s, J)(I)(i2)〉〉 ∈ inversionsD
and f(s, J)((the boolean sort of Σ))(b) = true iff inversionsD 6= ∅.

Let us consider a 0-based finite array D of 〈〈Z,¬ 〉〉. Suppose

(vii) D = s(the array sort of Σ)(M), and

(viii) y 6= i1, and

(ix) y 6= i2.

Then

(x) f(s,Γ)(the array sort of Σ)(M) is an ascending permutation of D,
and

(xi) if J is absolutely-terminating, then Γ is terminating w.r.t. f and {s1

: s1(the array sort of Σ)(M) 6= ∅}.

The theorem is a consequence of (73), (10), (61), (65), (99), (80), (74), and
(79).Proof: Define F(natural number, element of C -States(the generators
of G)) = f($2, ((J ; y:=A((@M)(@i1))); (@M)(@i1):=A((@M)(@i2)));
(@M)(@i2):=A(@y)). Set ST = C -States(the generators of G). Consider g
being a function from N into ST such that g(0) = s and for every natural
number i, g(i+ 1) = F(i, (g(i) qua element of ST )). Define G(element) =
g($1(∈ N))(the array sort of Σ)(M). Consider h being a function from N
into Zω such that for every element i such that i ∈ N holds h(i) = G(i).
For every ordinal number a such that a ∈ dom g holds h(a) is an ar-
ray of 〈〈Z,¬ 〉〉. Set TV = Statesb6→falseC

(the generators of G). Consider
s1 such that s = s1 and s1(the array sort of Σ)(M) 6= ∅. Reconsider
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D = s(the array sort of Σ)(M) as a 0-based finite non empty array of
〈〈Z,¬ 〉〉. Consider g being a function from N into ST such that g(0) = s

and for every natural number i, g(i + 1) = F(i, (g(i) qua element of
ST )). Define G(element) = g($1(∈ N))(the array sort of Σ)(M). Consider
h being a function from N into Zω such that for every element i such that
i ∈ N holds h(i) = G(i). For every ordinal number a such that a ∈ dom g

holds h(a) is an array of 〈〈Z,¬ 〉〉. Define T[natural number] ≡ h($1) 6= ∅.
For every natural number i such that T[i] holds T[i+1]. For every natural
number a and for every array R of 〈〈Z,¬ 〉〉 such that R = h(a) for every s
such that g(a) = s there exist sets x, y such that x = f(s, J)(I)(i1) and
y = f(s, J)(I)(i2) and x, y ∈ domR and h(a + 1) = Swap(R, x, y). Defi-
ne Q[natural number] ≡ h($1) is a permutation of D. Define P[natural
number] ≡ g($1)(the array sort of Σ)(M) is an ascending permutation
of D. There exists a natural number i such that P[i]. Consider B being
a natural number such that P[B] and for every natural number i such
that P[i] holds B ¬ i. Reconsider c = h� succ B as an array of Zω. Set
TV = Statesb 6→falseC

(the generators of G). Define H(natural number) =
f(g($1− 1), J). Consider r being a finite sequence such that len r = B + 1
and for every natural number i such that i ∈ dom r holds r(i) = H(i).
rng r ⊆ ST . Reconsider R = g(B)(the array sort of Σ)(M) as an ascen-
ding permutation of D. Now let Γ denotes the program

y:=A(@M)(@i1);
(@M)(@i1):=A(@M)(@i2);
(@M)(@i2):=A@y;
J

For every natural number i such that 1 ¬ i < len r holds r(i) ∈ TV and
r(i+ 1) = f(r(i),Γ). �
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Summary. In this article, we formalize continuous differentiability of real-
valued functions on n-dimensional real normed linear spaces. Next, we give a
definition of the Ck space according to [23].
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The notation and terminology used in this paper have been introduced in the
following articles: [1], [4], [10], [3], [5], [11], [17], [6], [7], [19], [18], [2], [8], [14],
[12], [15], [13], [21], [22], [16], [20], and [9].

1. Definition of Continuously Differentiable Functions and Some
Properties

Let m be a non zero element of N, f be a partial function from Rm to R, k
be an element of N, and Z be a set. We say that f is continuously differentiable
up to order of k and Z if and only if

(Def. 1) (i) Z ⊆ dom f , and

(ii) f is partial differentiable up to order k and Z, and

(iii) for every non empty finite sequence I of elements of N such that
len I ¬ k and rng I ⊆ Segm holds f�IZ is continuous on Z.

Now we state the propositions:

(1) Let us consider a non zero element m of N, a set Z, a non empty finite
sequence I of elements of N, and a partial function f from Rm to R.
Suppose f is partially differentiable on Z w.r.t. I. Then dom(f�IZ) = Z.
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(2) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, and a partial function f from Rm to R. Suppose

(i) X is open, and

(ii) X ⊆ dom f .

Then f is continuously differentiable up to order of 1 and X if and only
if f is differentiable on X and for every element x0 of Rm and for every
real number r such that x0 ∈ X and 0 < r there exists a real number s
such that 0 < s and for every element x1 of Rm such that x1 ∈ X and
|x1 − x0| < s for every element v of Rm, |f ′(x1)(v)− f ′(x0)(v)| ¬ r · |v|.

(3) Let us consider a non zero element m of N, a non empty subset X of
Rm, and a partial function f from Rm to R. Suppose

(i) X is open, and

(ii) X ⊆ dom f , and

(iii) f is continuously differentiable up to order of 1 and X.

Then f is continuous on X. The theorem is a consequence of (2).

(4) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, and partial functions f , g from Rm to R. Suppose

(i) f is continuously differentiable up to order of k and X, and

(ii) g is continuously differentiable up to order of k and X, and

(iii) X is open.

Then f + g is continuously differentiable up to order of k and X. The the-
orem is a consequence of (1). Proof: For every non empty finite sequence
I of elements of N such that len I ¬ k and rng I ⊆ Segm holds (f +g)�IX
is continuous on X. �

(5) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, a real number r, and a partial function f from
Rm to R. Suppose

(i) f is continuously differentiable up to order of k and X, and

(ii) X is open.

Then r · f is continuously differentiable up to order of k and X. The the-
orem is a consequence of (1). Proof: For every non empty finite sequence
I of elements of N such that len I ¬ k and rng I ⊆ Segm holds r · f�IX is
continuous on X. �

(6) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, and partial functions f , g from Rm to R. Suppose

(i) f is continuously differentiable up to order of k and X, and

(ii) g is continuously differentiable up to order of k and X, and
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(iii) X is open.

Then f − g is continuously differentiable up to order of k and X. The the-
orem is a consequence of (1). Proof: For every non empty finite sequence
I of elements of N such that len I ¬ k and rng I ⊆ Segm holds (f −g)�IX
is continuous on X. �

Let us consider a non zero element m of N, a non empty subset Z of Rm,
a partial function f from Rm to R, and non empty finite sequences I, G of
elements of N. Now we state the propositions:

(7) f�G
aIZ = (f�GZ)�IZ.

(8) f�G
aIZ is continuous on Z if and only if (f�GZ)�IZ is continuous on Z.

Now we state the propositions:

(9) Let us consider a non zero element m of N, a non empty subset Z of Rm,
a partial function f from Rm to R, elements i, j of N, and a non empty
finite sequence I of elements of N. Suppose

(i) f is continuously differentiable up to order of i+ j and Z, and

(ii) rng I ⊆ Segm, and

(iii) len I = j.

Then f�IZ is continuously differentiable up to order of i and Z. The
theorem is a consequence of (1) and (7).

(10) Let us consider a non zero element m of N, a non empty subset Z of
Rm, a partial function f from Rm to R, and elements i, j of N. Suppose

(i) f is continuously differentiable up to order of i and Z, and

(ii) j ¬ i.
Then f is continuously differentiable up to order of j and Z.

(11) Let us consider a non zero element m of N and a non empty subset Z
of Rm. Suppose Z is open. Let us consider an element k of N and partial
functions f , g from Rm to R. Suppose

(i) f is continuously differentiable up to order of k and Z, and

(ii) g is continuously differentiable up to order of k and Z.

Then f · g is continuously differentiable up to order of k and Z. The
theorem is a consequence of (10), (1), (3), (9), and (7). Proof: Define
P[element of N] ≡ for every partial functions f , g from Rm to R such that
f is continuously differentiable up to order of $1 and Z and g is conti-
nuously differentiable up to order of $1 and Z holds f · g is continuously
differentiable up to order of $1 and Z. Set Z0 = (0 qua natural number).
P[0]. For every element k of N such that P[k] holds P[k + 1]. �

(12) Let us consider a non zero element m of N, a partial function f from
Rm to R, a non empty subset X of Rm, and a real number d. Suppose
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(i) X is open, and

(ii) f = X 7−→ d.

Let us consider an element x of Rm. If x ∈ X, then f is differentiable in
x and f ′(x) = Rm 7−→ 0.

(13) Let us consider a non zero element m of N, a partial function f from
Rm to R, a non empty subset X of Rm, and a real number d. Suppose

(i) X is open, and

(ii) f = X 7−→ d.

Let us consider an element x0 of Rm and a real number r. Suppose

(iii) x0 ∈ X, and

(iv) 0 < r.

Then there exists a real number s such that

(v) 0 < s, and

(vi) for every element x1 of Rm such that x1 ∈ X and |x1 − x0| < s for
every element v of Rm, |f ′(x1)(v)− f ′(x0)(v)| ¬ r · |v|.

The theorem is a consequence of (12).

(14) Let us consider a non zero element m of N, a partial function f from
Rm to R, a non empty subset X of Rm, and a real number d. Suppose

(i) X is open, and

(ii) f = X 7−→ d.

Then

(iii) f is differentiable on X, and

(iv) dom f ′�X = X, and

(v) for every element x of Rm such that x ∈ X holds (f ′�X)x = Rm 7−→ 0.

The theorem is a consequence of (12).

(15) Let us consider a non zero element m of N, a partial function f from
Rm to R, a non empty subset X of Rm, a real number d, and an element
i of N. Suppose

(i) X is open, and

(ii) f = X 7−→ d, and

(iii) 1 ¬ i ¬ m.

Then

(iv) f is partially differentiable on X w.r.t. i, and

(v) f�iX is continuous on X.

The theorem is a consequence of (14) and (13).
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(16) Let us consider a non zero element m of N, an element i of N, a partial
function f from Rm to R, a non empty subset X of Rm, and a real number
d. Suppose

(i) X is open, and

(ii) f = X 7−→ d, and

(iii) 1 ¬ i ¬ m.

Then f�iX = X 7−→ 0. The theorem is a consequence of (15) and (12).

Let us consider a non zero element m of N, a non empty finite sequence I of
elements of N, a non empty subset X of Rm, a partial function f from Rm to
R, and a real number d. Now we state the propositions:

(17) Suppose X is open and f = X 7−→ d and rng I ⊆ Segm. Then

(i) (PartDiffSeq(f,X, I))(0) = X 7−→ d, and

(ii) for every element i of N such that 1 ¬ i ¬ len I holds
(PartDiffSeq(f,X, I))(i) = X 7−→ 0.

(18) Suppose X is open and f = X 7−→ d and rng I ⊆ Segm. Then

(i) f is partially differentiable on X w.r.t. I, and

(ii) f�IX is continuous on X.

Now we state the proposition:

(19) Let us consider a non zero element m of N, an element k of N, a non
empty subset X of Rm, a partial function f from Rm to R, and a real
number d. Suppose

(i) X is open, and

(ii) f = X 7−→ d.

Then f is continuously differentiable up to order of k and X. The theorem
is a consequence of (18).

Let m be a non zero element of N. Observe that there exists a non empty
subset of Rm which is open.

2. Definition of the Ck Space

Let m be a non zero element of N, k be an element of N, and X be a non
empty open subset of Rm. The functor the Ck functions of k and X yielding a
non empty subset of RAlgebraX is defined by the term

(Def. 2) {f where f is a partial function from Rm to R : f is continuously diffe-
rentiable up to order of k and X and dom f = X}.
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Let us note that the Ck functions of k and X is additively linearly closed
and multiplicatively closed.

The functor the R algebra of Ck functions of k and X yielding a subalgebra
of RAlgebraX is defined by the term

(Def. 3) 〈the Ck functions of k and X,mult(the Ck functions of k and X,

RAlgebraX),Add(the Ck functions of k andX,RAlgebraX),Mult(the Ck

functions of k and X,RAlgebraX),One(the Ck functions of k and
X,RAlgebraX),Zero(the Ck functions of k and X,RAlgebraX)〉.

Let us note that the R algebra of Ck functions of k and X is Abelian add-
associative right zeroed right complementable vector distributive scalar distri-
butive scalar associative scalar unital commutative associative right unital right
distributive and vector associative.

Now we state the propositions:

(20) Let us consider a non zero element m of N, an element k of N, a non
empty open subset X of Rm, vectors F , G, H of the R algebra of Ck

functions of k and X, and partial functions f , g, h from Rm to R. Suppose

(i) f = F , and

(ii) g = G, and

(iii) h = H.

Then H = F+G if and only if for every element x of X, h(x) = f(x)+g(x).

(21) Let us consider a non zero element m of N, an element k of N, a non
empty open subset X of Rm, vectors F , G, H of the R algebra of Ck

functions of k and X, partial functions f , g, h from Rm to R, and a real
number a. Suppose

(i) f = F , and

(ii) g = G.

Then G = a · F if and only if for every element x of X, g(x) = a · f(x).

(22) Let us consider a non zero element m of N, an element k of N, a non
empty open subset X of Rm, vectors F , G, H of the R algebra of Ck

functions of k and X, and partial functions f , g, h from Rm to R. Suppose

(i) f = F , and

(ii) g = G, and

(iii) h = H.

Then H = F ·G if and only if for every element x of X, h(x) = f(x) ·g(x).

Let us consider a non zero element m of N, an element k of N, and a non
empty open subset X of Rm. Now we state the propositions:

(23) 0α = X 7−→ 0, where α is the R algebra of Ck functions of k and X.

(24) 1α = X 7−→ 1, where α is the R algebra of Ck functions of k and X.
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Random Variables and Product of
Probability Spaces1
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Summary. We have been working on the formalization of the probability
and the randomness. In [15] and [16], we formalized some theorems concerning
the real-valued random variables and the product of two probability spaces. In
this article, we present the generalized formalization of [15] and [16]. First, we
formalize the random variables of arbitrary set and prove the equivalence between
random variable on Σ, Borel sets and a real-valued random variable on Σ. Next,
we formalize the product of countably infinite probability spaces.

MML identifier: RANDOM 3, version: 8.1.01 5.7.1169

The notation and terminology used in this paper have been introduced in the
following articles: [1], [14], [12], [4], [11], [18], [7], [8], [5], [2], [3], [9], [13], [22],
[15], [16], [20], [21], [17], [19], [6], and [10].

1. Random Variables

In this paper Ω, Ω1, Ω2 denote non empty sets, Σ denotes a σ-field of subsets
of Ω, S1 denotes a σ-field of subsets of Ω1, and S2 denotes a σ-field of subsets
of Ω2.

Now we state the proposition:

(1) Let us consider a non empty set B and a function f . Then f−1(
⋃
B) =⋃

{f−1(Y ) where Y is an element of B : not contradiction}.
Let us consider a function f from Ω1 into Ω2, a sequence B of subsets of Ω2,

and a sequence D of subsets of Ω1. Now we state the propositions:
1The 1st author was supported by JSPS KAKENHI 21240001, and the 2nd author was

supported by JSPS KAKENHI 22300285.
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(2) If for every element n of N, D(n) = f−1(B(n)), then f−1(
⋃
B) =

⋃
D.

(3) If for every element n of N,D(n) = f−1(B(n)), then f−1(IntersectionB) =
IntersectionD.

Now we state the propositions:

(4) Let us consider a function F from Ω into R and a real number r. Suppose
F is a real-valued random variable on Σ. Then F−1(]−∞, r[) ∈ Σ. Proof:
Consider X being an element of Σ such that X = Ω and F is measurable
on X. For every element z, z ∈ F−1(]−∞, r[) iff z ∈ ΩΣ ∩ LE-dom(F, r).
�

(5) Let us consider a function F from Ω into R. Suppose F is a real-valued
random variable on Σ. Then {x where x is an element of the Borel sets
: F−1(x) is element of Σ} is a σ-field of subsets of R. The theorem is a
consequence of (4) and (3). Proof: Set S = {x where x is an element of
the Borel sets : F−1(x) is an element of Σ}. For every element x such that
x ∈ S holds x ∈ the Borel sets. Set r0 = the element of R. Reconsider
y0 = halfline(r0) as an element of the Borel sets. For every subset A of R
such that A ∈ S holds Ac ∈ S. For every sequence A1 of subsets of R such
that rngA1 ⊆ S holds IntersectionA1 ∈ S. �

Let us consider a function f from Ω into R. Now we state the propositions:

(6) Suppose f is a real-valued random variable on Σ. Then {x where x is
an element of the Borel sets : f−1(x) is an element of Σ} = the Borel sets.

(7) f is random variable on Σ and the Borel sets if and only if f is a real-
valued random variable on Σ.

(8) The set of random variables on Σ and the Borel sets = the real-valued
random variables set on Σ.

Let us consider Ω1, Ω2, S1, and S2. Let F be a function from Ω1 into Ω2.
We say that F is (S1, S2)-random variable-like if and only if

(Def. 1) F is random variable on S1 and S2.

Observe that there exists a function from Ω1 into Ω2 which is (S1, S2)-
random variable-like.

A random variable of S1 and S2 is an (S1, S2)-random variable-like function
from Ω1 into Ω2. Now we state the proposition:

(9) Let us consider a function f from Ω into R. Then f is a random variable
of Σ and the Borel sets if and only if f is a real-valued random variable
on Σ.

Let F be a function. We say that F is random variable family-like if and
only if

(Def. 2) Let us consider a set x. Suppose x ∈ domF . Then there exist non empty
sets Ω1, Ω2 and there exists a σ-field S1 of subsets of Ω1 and there exists
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a σ-field S2 of subsets of Ω2 and there exists a random variable f of S1

and S2 such that F (x) = f .

One can verify that there exists a function which is random variable family-
like.

A random variable family is a random variable family-like function. In this
paper F denotes a random variable of S1 and S2.

Let Y be a non empty set, S be a σ-field of subsets of Y , and F be a function.
We say that F is S-measure valued if and only if

(Def. 3) Let us consider a set x. If x ∈ domF , then there exists a σ-measure M
on S such that F (x) = M .

Note that there exists a function which is S-measure valued.
Let F be a function. We say that F is S-probability valued if and only if

(Def. 4) Let us consider a set x. If x ∈ domF , then there exists a probability P
on S such that F (x) = P .

Let us note that there exists a function which is S-probability valued.
LetX, Y be non empty sets. One can verify that there exists an S-probability

valued function which is X-defined.
One can verify that there exists an X-defined S-probability valued function

which is total.
Let Y be a non empty set. Let us note that every function which is S-

probability valued is also S-measure valued.
Let F be a function. We say that F is S-random variable family if and only

if

(Def. 5) Let us consider a set x. Suppose x ∈ domF . Then there exists a real-
valued random variable Z on S such that F (x) = Z.

Observe that there exists a function which is S-random variable family.
Now we state the propositions:

(10) Let us consider an element y of S2. Suppose y 6= ∅. Then {z where
z is an element of Ω1 : F (z) is an element of y} = F−1(y). Proof: Set
D = {z where z is an element of Ω1 : F (z) is an element of y}. For every
element x, x ∈ D iff x ∈ F−1(y). �

(11) Let us consider a random variable F of S1 and S2. Then

(i) {x where x is a subset of Ω1 : there exists an element y of S2 such
that x = F−1(y)} ⊆ S1, and

(ii) {x where x is a subset of Ω1 : there exists an element y of S2 such
that x = F−1(y)} is a σ-field of subsets of Ω1.

The theorem is a consequence of (3). Proof: Set S = {x where x is
a subset of Ω1 : there exists an element y of S2 such that x = F−1(y)}.
For every element x such that x ∈ S holds x ∈ S1. For every subset A of
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Ω1 such that A ∈ S holds Ac ∈ S. For every sequence A1 of subsets of Ω1

such that rngA1 ⊆ S holds IntersectionA1 ∈ S. �

Let us consider Ω1, Ω2, S1, and S2. Let M be a measure on S1 and F be
a random variable of S1 and S2. The functor the image measure of F and M

yielding a measure on S2 is defined by

(Def. 6) Let us consider an element y of S2. Then it(y) = M(F−1(y)).

Let M be a σ-measure on S1. Note that the image measure of F and M is
σ-additive.

Now we state the proposition:

(12) Let us consider a probability P on S1 and a random variable F of S1

and S2. Then (the image measure of F and P2MP )(Ω2) = 1.

Let us consider Ω1, Ω2, S1, and S2. Let P be a probability on S1 and F

be a random variable of S1 and S2. The functor probability(F, P ) yielding a
probability on S2 is defined by the term

(Def. 7) M2P the image measure of F and P2MP .

Now we state the propositions:

(13) Let us consider a probability P on S1 and a random variable F of S1

and S2. Then probability(F, P ) = the image measure of F and P2MP .
The theorem is a consequence of (12).

(14) Let us consider a probability P on S1, a random variable F of S1 and
S2, and a set y. If y ∈ S2, then (probability(F, P ))(y) = P (F−1(y)). The
theorem is a consequence of (13).

(15) Every function from Ω1 into Ω2 is a random variable of the trivial σ-field
of Ω1 and the trivial σ-field of Ω2.

(16) Let us consider a non empty set S. Then every non empty finite sequence
of elements of S is a random variable of the trivial σ-field of Seg lenF and
the trivial σ-field of S. The theorem is a consequence of (15).

(17) Let us consider finite non empty sets V , S, a random variable G of
the trivial σ-field of V and the trivial σ-field of S, and a set y. Suppose
y ∈ the trivial σ-field of S. Then (probability(G, the trivial probability of

V ))(y) = G−1(y)

V
. The theorem is a consequence of (14).

(18) Let us consider a finite non empty set S, a non empty finite sequence s
of elements of S, and a set x. Suppose x ∈ S. Then there exists a random
variable G of the trivial σ-field of Seg len s and the trivial σ-field of S such
that

(i) G = s, and

(ii) (probability(G, the trivial probability of Seg len s))({x}) = ProbD(x, s).

The theorem is a consequence of (16) and (17).
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2. Product of Probability Spaces

Let D be a non-empty many sorted set indexed by N and n be a natural
number. One can check that D(n) is non empty.

Let S, F be many sorted sets indexed by N. We say that F is σ-field S-
sequence-like if and only if

(Def. 8) Let us consider a natural number n. Then F (n) is a σ-field of subsets of
S(n).

Let S be a many sorted set indexed by N. Let us observe that there exists a
many sorted set indexed by N which is σ-field S-sequence-like.

Let D be a many sorted set indexed by N. A σ-field sequence of D is a σ-field
D-sequence-like many sorted set indexed by N. Let S be a σ-field sequence of
D and n be a natural number. Note that the functor S(n) yields a σ-field of
subsets of D(n). Let D be a non-empty many sorted set indexed by N. Let M be
a many sorted set indexed by N. We say that M is S-probability sequence-like
if and only if

(Def. 9) Let us consider a natural number n. Then M(n) is a probability on S(n).

Observe that there exists a many sorted set indexed by N which is S-
probability sequence-like.

A probability sequence of S is an S-probability sequence-like many sorted set
indexed by N. Let P be a probability sequence of S and n be a natural number.
One can verify that the functor P (n) yields a probability on S(n). Let D be a
many sorted set indexed by N. The functor the product domain D yielding a
many sorted set indexed by N is defined by

(Def. 10) (i) it(0) = D(0), and

(ii) for every natural number i, it(i+ 1) = it(i)×D(i+ 1).

Now we state the proposition:

(19) Let us consider a many sorted set D indexed by N. Then

(i) (the product domain D)(0) = D(0), and

(ii) (the product domain D)(1) = D(0)×D(1), and

(iii) (the product domain D)(2) = D(0)×D(1)×D(2), and

(iv) (the product domain D)(3) = D(0)×D(1)×D(2)×D(3).

Let D be a non-empty many sorted set indexed by N. Let us note that the
product domain D is non-empty.

Let D be a finite-yielding many sorted set indexed by N. One can check that
the product domain D is finite-yielding.

Let us consider Ω and Σ. Let P be a set. Assume P is a probability on Σ.
The functor modetrans(P,Σ) yielding a probability on Σ is defined by the term

(Def. 11) P .
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Let D be a finite-yielding non-empty many sorted set indexed by N. The
functor the trivial σ-field sequence D yielding a σ-field sequence of D is defined
by

(Def. 12) Let us consider a natural number n. Then it(n) = the trivial σ-field of
D(n).

Let P be a probability sequence of the trivial σ-field sequence D and n be a
natural number. One can check that the functor P (n) yields a probability on the
trivial σ-field of D(n). The functor ProductProbability(P,D) yielding a many
sorted set indexed by N is defined by

(Def. 13) (i) it(0) = P (0), and

(ii) for every natural number i, it(i+ 1) =
Product-Probability((the product domain D)(i), D(i+1),modetrans
(it(i), the trivial σ-field of (the product domain D)(i)), P (i+ 1)).

Let us consider a finite-yielding non-empty many sorted set D indexed by N,
a probability sequence P of the trivial σ-field sequence D, and a natural number
n. Now we state the propositions:

(20) (ProductProbability(P,D))(n) is a probability on the trivial σ-field of
(the product domain D)(n).

(21) There exists a probability P4 on the trivial σ-field of (the product
domain D)(n) such that

(i) P4 = (ProductProbability(P,D))(n), and

(ii) (ProductProbability(P,D))(n+1) = Product-Probability((the product
domain D)(n), D(n+ 1), P4, P (n+ 1)).

Now we state the proposition:

(22) Let us consider a finite-yielding non-empty many sorted set D indexed
by N and a probability sequence P of the trivial σ-field sequence D. Then

(i) (ProductProbability(P,D))(0) = P (0), and

(ii) (ProductProbability(P,D))(1) =
Product-Probability(D(0), D(1), P (0), P (1)), and

(iii) there exists a probability P1 on the trivial σ-field of D(0)×D(1) such
that P1 = (ProductProbability(P,D))(1) and (ProductProbability(P,
D))(2) = Product-Probability(D(0)×D(1), D(2), P1, P (2)), and

(iv) there exists a probability P2 on the trivial σ-field of D(0) ×D(1) ×
D(2) such that P2 = (ProductProbability(P,D))(2) and
(ProductProbability(P,D))(3) = Product-Probability(D(0)×D(1)×
D(2), D(3), P2, P (3)), and

(v) there exists a probability P3 on the trivial σ-field of D(0) ×D(1) ×
D(2)×D(3) such that P3 = (ProductProbability(P,D))(3) and
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(ProductProbability(P,D))(4) = Product-Probability(D(0)×D(1)×
D(2)×D(3), D(4), P3, P (4)).

The theorem is a consequence of (19) and (21).
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Summary. Semantics of order directives of MML Query is presented. The
formalization is done according to [1].
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [7], [13], [9], [10], [8], [3], [4], [5], [11], [17], [19], [18], [6],
[15], [16], [14], and [12].

1. Preliminaries

In this paper X denotes a set, R, R1, R2 denote binary relations, x, y, z
denote sets, and n, m, k denote natural numbers.

Let us consider a binary relation R on X. Now we state the propositions:

(1) fieldR ⊆ X.

(2) If x, y ∈ R, then x, y ∈ X.

Now we state the propositions:

(3) Let us consider sets X, Y . Then (idX)◦Y = X ∩ Y .

(4) 〈〈x, y〉〉 ∈ R |2 X if and only if x, y ∈ X and 〈〈x, y〉〉 ∈ R.

(5) dom(X�R) ⊆ domR.

(6) Let us consider a total reflexive binary relation R on X and a subset S
of X. Then R |2 S is a total reflexive binary relation on S. The theorem is
a consequence of (4). Proof: Set Q = R |2 S. domQ = S. �

(7) Let us consider transfinite sequences f , g. Then rng(fag) = rng f∪rng g.

Let us consider R. Let us note that R is transitive if and only if the condition
(Def. 1) is satisfied.
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(Def. 1) If x, y ∈ R and y, z ∈ R, then x, z ∈ R.

One can verify that R is antisymmetric if and only if the condition (Def. 2) is
satisfied.

(Def. 2) If x, y ∈ R and y, x ∈ R, then x = y.

Now we state the proposition:

(8) Let us consider a non empty set X, a total connected binary relation R
on X, and elements x, y of X. If x 6= y, then x, y ∈ R or y, x ∈ R.

2. Composition of Orders

Let R1, R2 be binary relations. The functor R1, R2 yielding a binary relation
is defined by the term

(Def. 3) R1 ∪ (R2 \R1
`).

Now we state the propositions:

(9) x, y ∈ R1, R2 if and only if x, y ∈ R1 or y, x 6∈ R1 and x, y ∈ R2.

(10) field(R1, R2) = fieldR1 ∪ fieldR2. The theorem is a consequence of (9).

(11) R1, R2 ⊆ R1 ∪R2. The theorem is a consequence of (9).

Let X be a set and R1, R2 be binary relations on X. Note that the functor
R1, R2 yields a binary relation on X. Let R1, R2 be reflexive binary relations.
One can verify that R1, R2 is reflexive.

Let R1, R2 be antisymmetric binary relations. Note that R1, R2 is antisym-
metric.

Let X be a set and R be a binary relation on X. We say that R is β-transitive
if and only if

(Def. 4) Let us consider elements x, y of X. If x, y 6∈ R, then for every element z
of X such that x, z ∈ R holds y, z ∈ R.

Observe that every binary relation on X which is connected total and trans-
itive is also β-transitive.

Let us observe that there exists an order in X which is connected.
Let R1 be a β-transitive transitive binary relation on X and R2 be a trans-

itive binary relation on X. Observe that R1, R2 is transitive.
Let R1 be a binary relation on X and R2 be a total reflexive binary relation

on X. Let us note that R1, R2 is total and reflexive as a binary relation on X.
Let R2 be a total connected reflexive binary relation on X. One can verify

that R1, R2 is connected.
Now we state the propositions:

(12) (R, R1), R2 = R, (R1, R2). The theorem is a consequence of (9).

(13) Let us consider a connected reflexive total binary relation R on X and a
binary relation R2 on X. Then R, R2 = R. The theorem is a consequence
of (9) and (2).
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3. number of Ordering

Let X be a set and f be a function from X into N. The functor number of f
yielding a binary relation on X is defined by

(Def. 5) x, y ∈ it if and only if x, y ∈ X and f(x) < f(y).

Let us note that number of f is antisymmetric transitive and β-transitive.
Let X be a finite set and O be an operation of X. The functor value ofO

yielding a function from X into N is defined by

(Def. 6) Let us consider an element x of X. Then it(x) = x(O).

Now we state the proposition:

(14) Let us consider a finite set X, an operation O of X, and elements x, y

of X. Then x, y ∈ number of value ofO if and only if x(O) < y(O).

Let us consider X. Let O be an operation of X. The functor firstO yielding
a binary relation on X is defined by

(Def. 7) Let us consider elements x, y of X. Then x, y ∈ it if and only if x(O) 6= ∅
and y(O) = ∅.

Let us observe that firstO is antisymmetric transitive and β-transitive.

4. Ordering by Resources

Let A be a finite sequence and x be an element. The functor A← x yielding
a set is defined by the term

(Def. 8)
⋂

(A−1({x})).
Let us consider x. Note that A← x is natural.
Let us consider a finite sequence A. Now we state the propositions:

(15) If x 6∈ rngA, then A← x = 0.

(16) If x ∈ rngA, then A← x ∈ domA and x = A(A← x).

(17) If A← x = 0, then x 6∈ rngA.

Let us consider X. Let A be a finite sequence and f be a function. The
functor resource(X,A, f) yielding a binary relation on X is defined by

(Def. 9) x, y ∈ it if and only if x, y ∈ X and A← (f(x)) 6= 0 and A← (f(x)) <
A← (f(y)) or A← (f(y)) = 0.

Let us observe that resource(X,A, f) is antisymmetric transitive and β-
transitive.
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5. Ordering by Number of Iteration

Let us consider X. Let R be a binary relation on X and n be a natural
number. One can check that the functor Rn yields a binary relation on X. Now
we state the propositions:

(18) If (Rn)◦X = ∅ and m ­ n, then (Rm)◦X = ∅.
(19) If for every n, (Rn)◦X 6= ∅ and X is finite, then there exists x such that

x ∈ X and for every n, (Rn)◦x 6= ∅. The theorem is a consequence of (18).
Proof: Define P[element, element] ≡ there exists n such that $2 = n and
(Rn)◦$1 = ∅. For every element x such that x ∈ X there exists an element
y such that y ∈ N and P[x, y]. Consider f being a function such that
dom f = X and rng f ⊆ N and for every element x such that x ∈ X holds
P[x, f(x)]. Consider n such that rng f ⊆ Zn. {{x} where x is an element
of X : x ∈ X} ⊆ 2X . Reconsider Y = {{x} where x is an element of
X : x ∈ X} as a family of subsets of X. X =

⋃
Y . {(Rn)◦y where y is

a subset of X : y ∈ Y } ⊆ {∅}. �

(20) IfR is reversely well founded and irreflexive andX is finite andR is finite,
then there exists n such that (Rn)◦X = ∅. The theorem is a consequence
of (19). Proof: DefineQ[element] ≡ for every n, (Rn)◦$1 6= ∅. Consider x0
being a set such that x0 ∈ X andQ[x0]. Define P[element, element, element]
≡ if Q[$2], then $3 ∈ R◦$2 and Q[$3]. For every natural number n and
for every set x, there exists a set y such that P[n, x, y]. Consider f being
a function such that dom f = N and f(0) = x0 and for every natural
number n, P[n, f(n), f(n + 1)]. Define R[natural number] ≡ Q[f($1)].
rng f ⊆ fieldR. Consider z being an element such that z ∈ rng f and for
every element x such that x ∈ rng f and z 6= x holds 〈〈z, x〉〉 6∈ R. Consider
y being an element such that y ∈ N and z = f(y). �

Let us consider X. Let O be an operation of X. Assume O is reversely well
founded, irreflexive, and finite. The functor iteration ofO yielding a binary
relation on X is defined by

(Def. 10) There exists a function f from X into N such that

(i) it = number of f , and

(ii) for every element x of X such that x ∈ X there exists n such that
f(x) = n and x(On) 6= ∅ or n = 0 and x(On) = ∅ and x(On+1) = ∅.

Let us note that every binary relation which is empty is also irreflexive and
reversely well founded.

Let us consider X. Let us note that there exists an operation of X which is
empty.

Let O be a reversely well founded irreflexive finite operation of X. One can
check that iteration ofO is antisymmetric transitive and β-transitive.
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6. value of Ordering

Let X be a finite set. Let us observe that every order in X is well founded.
Note that every connected order in X is well-ordering.
Let us consider X. Let R be a connected order in X and S be a finite subset

of X. The functor order(S,R) yielding a finite 0-sequence of X is defined by

(Def. 11) (i) rng it = S, and

(ii) it is one-to-one, and

(iii) for every natural numbers i, j such that i, j ∈ dom it holds i ¬ j iff
it(i), it(j) ∈ R.

Now we state the proposition:

(21) Let us consider finite subsets S1, S2 of X and a connected order R in
X. Then order(S1 ∪ S2, R) = order(S1, R) a order(S2, R) if and only if for
every x and y such that x ∈ S1 and y ∈ S2 holds x 6= y and x, y ∈ R.
The theorem is a consequence of (7). Proof: Set o1 = order(S1, R). Set
o2 = order(S2, R). order(S1, R) a order(S2, R) is one-to-one. �

Let X be a finite set, O be an operation of X, and R be a connected order
in X. The functor value of(O,R) yielding a binary relation on X is defined by

(Def. 12) Let us consider elements x, y of X. Then x, y ∈ it if and only if x(O) 6= ∅
and y(O) = ∅ or y(O) 6= ∅ and (order(x(O), R))0, (order(y(O), R))0 ∈ R
and (order(x(O), R))0 6= (order(y(O), R))0.

Let R1 be a connected order in X. One can check that value of(O,R1) is
antisymmetric transitive and β-transitive.
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Summary. A complex polynomial is called a Hurwitz polynomial, if all
its roots have a real part smaller than zero. This kind of polynomial plays an
all-dominant role in stability checks of electrical (analog or digital) networks.
In this article we prove that a polynomial p can be shown to be Hurwitz by
checking whether the rational function e(p)/o(p) can be realized as a reactance of
one port, that is as an electrical impedance or admittance consisting of inductors
and capacitors. Here e(p) and o(p) denote the even and the odd part of p [25].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider complex numbers x, y. If =(x) = 0 and <(y) = 0, then
<(xy ) = 0.

(2) Let us consider a complex number a. Then a · a = |a|2.
One can check that there exists a polynomial of CF which is Hurwitz and 0

is even.
Now we state the propositions:
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(3) Let us consider an add-associative right zeroed right complementable as-
sociative distributive non empty double loop structure L, an even element
k of N, and an element x of L. Then powerL(−x, k) = powerL(x, k).

(4) Let us consider an add-associative right zeroed right complementable
associative distributive non empty double loop structure L, an odd element
k of N, and an element x of L. Then powerL(−x, k) = −powerL(x, k). The
theorem is a consequence of (3).

(5) Let us consider an even element k of N and an element x of CF. If
<(x) = 0, then =(powerCF(x, k)) = 0.

(6) Let us consider an odd element k of N and an element x of CF. If <(x) =
0, then <(powerCF(x, k)) = 0.

2. Even and Odd Part of Polynomials

Let L be a non empty zero structure and p be a sequence of L. The functors
the even part of p and the odd part of p yielding sequences of L are defined by
the conditions, respectively.

(Def. 1) Let us consider an even natural number i. Then

(i) (the even part of p)(i) = p(i), and

(ii) for every odd natural number i, (the even part of p)(i) = 0L.

(Def. 2) Let us consider an even natural number i. Then

(i) (the odd part of p)(i) = 0L, and

(ii) for every odd natural number i, (the odd part of p)(i) = p(i).

Let p be a polynomial of L. Observe that the even part of p is finite-Support
and the odd part of p is finite-Support. Now we state the propositions:

(7) Let us consider a non empty zero structure L. Then

(i) the even part of 0. L = 0. L, and

(ii) the odd part of 0. L = 0. L.

(8) Let us consider a non empty multiplicative loop with zero structure L.
Then

(i) the even part of 1. L = 1. L, and

(ii) the odd part of 1. L = 0. L.

Let us consider a left zeroed right zeroed non empty additive loop structure
L and a polynomial p of L. Now we state the propositions:

(9) (The even part of p) + (the odd part of p) = p.

(10) (The odd part of p) + (the even part of p) = p.
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Let us consider an add-associative right zeroed right complementable non
empty additive loop structure L and a polynomial p of L. Now we state the
propositions:

(11) p− the odd part of p = the even part of p.

(12) p− the even part of p = the odd part of p.

Let us consider an add-associative right zeroed right complementable Abe-
lian non empty additive loop structure L and a polynomial p of L. Now we state
the propositions:

(13) (The even part of p)− p = −the odd part of p.

(14) (The odd part of p)− p = −the even part of p.

Let us consider an add-associative right zeroed right complementable Abe-
lian non empty additive loop structure L and polynomials p, q of L. Now we
state the propositions:

(15) The even part of p+ q = (the even part of p) + (the even part of q).

(16) The odd part of p+ q = (the odd part of p) + (the odd part of q).

Let us consider a well unital non empty double loop structure L and a
polynomial p of L. Now we state the propositions:

(17) Suppose deg p is even. Then the even part of Leading-Monomial p =
Leading-Monomial p.

(18) If deg p is odd, then the even part of Leading-Monomial p = 0. L.

(19) If deg p is even, then the odd part of Leading-Monomial p = 0. L.

(20) Suppose deg p is odd. Then the odd part of Leading-Monomial p =
Leading-Monomial p.

Now we state the proposition:

(21) Let us consider a well unital add-associative right zeroed right com-
plementable Abelian associative distributive non degenerated double loop
structure L and a non zero polynomial p of L. Then deg the even part of
p 6= deg the odd part of p. The theorem is a consequence of (9).

Let us consider a well unital add-associative right zeroed right complemen-
table associative Abelian distributive non degenerated double loop structure L
and a polynomial p of L. Now we state the propositions:

(22) (i) deg the even part of p ¬ deg p, and

(ii) deg the odd part of p ¬ deg p.

(23) deg p = max(deg the even part of p,deg the odd part of p).

3. Even and Odd Polynomials and Rational Functions

Let L be a non empty additive loop structure and f be a function from L

into L. We say that f is even if and only if
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(Def. 3) Let us consider an element x of L. Then f(−x) = f(x).

We say that f is odd if and only if

(Def. 4) Let us consider an element x of L. Then f(−x) = −f(x).

Let L be a well unital non empty double loop structure and p be a polynomial
of L. We say that p is even if and only if

(Def. 5) Polynomial-Function(L, p) is even.

We say that p is odd if and only if

(Def. 6) Polynomial-Function(L, p) is odd.

Let Z be a rational function of L. We say that Z is odd if and only if

(Def. 7) (i) Z1 is even and Z2 is odd, or

(ii) Z1 is odd and Z2 is even.

We introduce Z is even as an antonym for Z is odd.
Observe that there exists a polynomial of L which is even.
Let L be an add-associative right zeroed right complementable well unital

non empty double loop structure. Let us note that there exists a polynomial of
L which is odd.

Let L be a well unital add-associative right zeroed right complementable
associative non degenerated double loop structure. Observe that there exists a
polynomial of L which is non zero and even.

Let L be an add-associative right zeroed right complementable Abelian well
unital non degenerated double loop structure. One can verify that there exists
a polynomial of L which is non zero and odd.

Now we state the propositions:

(24) Let us consider a well unital non empty double loop structure L, an even
polynomial p of L, and an element x of L. Then eval(p,−x) = eval(p, x).

(25) Let us consider an add-associative right zeroed right complementable
Abelian well unital non degenerated double loop structure L, an odd po-
lynomial p of L, and an element x of L. Then eval(p,−x) = −eval(p, x).

Let L be a well unital non empty double loop structure. One can verify that
0. L is even.

Let L be an add-associative right zeroed right complementable well unital
non empty double loop structure. One can verify that 0. L is odd.

Let L be a well unital add-associative right zeroed right complementable
associative non degenerated double loop structure. Note that 1. L is even.

Let L be an Abelian add-associative right zeroed right complementable well
unital left distributive non empty double loop structure and p, q be even poly-
nomials of L. Let us note that p+ q is even.

Let p, q be odd polynomials of L. Let us note that p+ q is odd.
Let L be an Abelian add-associative right zeroed right complementable as-

sociative well unital distributive non degenerated double loop structure and p
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be a polynomial of L. One can check that the even part of p is even and the odd
part of p is odd.

Now we state the propositions:

(26) Let us consider an Abelian add-associative right zeroed right comple-
mentable well unital distributive non degenerated double loop structure
L, an even polynomial p of L, an odd polynomial q of L, and an element
x of L. If x is a common root of p and q, then −x is a root of p+ q. The
theorem is a consequence of (24) and (25).

(27) Let us consider a Hurwitz polynomial p of CF. Then the even part of p
and the odd part of p have no common roots. The theorem is a consequence
of (9) and (26).

4. Real Positive Polynomials and Rational Functions

Let p be a polynomial of CF. We say that p is real if and only if

(Def. 8) Let us consider a natural number i. Then p(i) is a real number.

We say that p is positive if and only if

(Def. 9) Let us consider an element x of CF. If <(x) > 0, then <(eval(p, x)) > 0.

Let us note that 0.CF is real and non positive and 1.CF is real and positive
and there exists a polynomial of CF which is non zero, real, and positive and
every polynomial of CF which is real is also real-valued.

Let p be a real polynomial of CF. One can verify that the even part of p is
real and the odd part of p is real.

Let L be a non empty additive loop structure and p be a polynomial of L.
We say that p has all coefficients if and only if

(Def. 10) Let us consider a natural number i. If i ¬ deg p, then p(i) 6= 0.

Let p be a real polynomial of CF. We say that p has positive coefficients if
and only if

(Def. 11) Let us consider a natural number i. If i ¬ deg p, then p(i) > 0.

We say that p is negative coefficients if and only if

(Def. 12) Let us consider a natural number i. If i ¬ deg p, then p(i) < 0.

One can check that every real polynomial of CF which has positive coeffi-
cients has also all coefficients and every real polynomial of CF which is negative
coefficients has also all coefficients and there exists a real polynomial of CF

which is non constant and has positive coefficients.
Let p be a non zero real polynomial of CF with all coefficients. Let us note

that the even part of p is non zero. Note that the odd part of p is non zero.
Let Z be a rational function of CF. We say that Z is real if and only if

(Def. 13) Let us consider a natural number i. Then
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(i) Z1(i) is a real number, and

(ii) Z2(i) is a real number.

We say that Z is positive if and only if

(Def. 14) Let us consider an element x of CF. Suppose

(i) <(x) > 0, and

(ii) eval(Z2, x) 6= 0.

Then <(eval(Z, x)) > 0.

One can check that there exists a rational function of CF which is non zero,
odd, real, and positive.

Let p1 be a real polynomial of CF and p2 be a non zero real polynomial of
CF. Let us note that 〈〈p1, p2〉〉 is real as a rational function of CF.

5. The Routh-Schur Stability Criterion

A one port function is a real positive rational function of CF. A reactance
one port function is an odd real positive rational function of CF.

Let us consider a real polynomial p of CF and an element x of CF. Now we
state the propositions:

(28) If <(x) = 0, then =(eval(the even part of p, x)) = 0.

(29) If <(x) = 0, then <(eval(the odd part of p, x)) = 0.

Now we state the proposition:

(30) Let us consider a non constant real polynomial p of CF with positive
coefficients. Suppose

(i) 〈〈the even part of p, the odd part of p〉〉 is positive, and

(ii) the even part of p and the odd part of p have no common roots.

Then

(iii) for every element x of CF such that <(x) = 0 and eval(the odd
part of p, x) 6= 0 holds <(eval(〈〈the even part of p, the odd part of
p〉〉, x)) ­ 0, and

(iv) (the even part of p) + (the odd part of p) is Hurwitz.

The theorem is a consequence of (28), (29), and (1).

Now we state the proposition:

(31) Routh-Schur stability criterion (for a single-input, single-
output (SISO), linear time invariant (LTI) control system):
Let us consider a non constant real polynomial p of CF with positive
coefficients. Suppose

(i) 〈〈the even part of p, the odd part of p〉〉 is a one port function, and
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(ii) degree(〈〈the even part of p, the odd part of p〉〉) = degree(p).

Then p is Hurwitz. The theorem is a consequence of (23), (30), and (9).
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Summary. The notion of a rough set, developed by Pawlak [10], is an
important tool to describe situation of incomplete or partially unknown infor-
mation. In this article, which is essentially the continuation of [6], we try to
give the characterization of approximation operators in terms of ordinary pro-
perties of underlying relations (some of them, as serial and mediate relations,
were not available in the Mizar Mathematical Library). Here we drop the classi-
cal equivalence- and tolerance-based models of rough sets [12] trying to formalize
some parts of [19] following also [18] in some sense (Propositions 1–8, Corr. 1
and 2; the complete description is available in the Mizar script). Our main pro-
blem was that informally, there is a direct correspondence between relations and
underlying properties, in our approach however [7], which uses relational struc-
tures rather than relations, we had to switch between classical (based on pure
set theory) and abstract (using the notion of a structure) parts of the Mizar
Mathematical Library. Our next step will be translation of these properties into
the pure language of Mizar attributes.

MML identifier: ROUGHS 2, version: 8.1.01 5.8.1171

The notation and terminology used in this paper have been introduced in the
following articles: [13], [11], [5], [1], [2], [14], [3], [9], [16], [6], [15], [17], [8], and
[4].

1. Preliminaries

One can verify that there exists a relational structure which is non empty
and void.

Now we state the propositions:
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(1) Let us consider a total non empty relational structure R and an element
x of R. Then x ∈ field the internal relation of R.

(2) Let us consider a non empty 1-sorted structure R and a subset X of
R. Then {x where x is an element of R : ∅ ⊆ X} = ΩR. Proof: y ∈
{x where x is an element of R : ∅ ⊆ X}. �

(3) Let us consider a 1-sorted structure R and a subset X of R. Then
{x where x is an element of R : ∅ meets X} = ∅R.

2. Missing Ordinary Properties of Binary Relations

Let R be a binary relation and X be a set. We say that R is serial in X if
and only if

(Def. 1) Let us consider an element x. Suppose x ∈ X. Then there exists an
element y such that

(i) y ∈ X, and

(ii) 〈〈x, y〉〉 ∈ R.

We say that R is serial if and only if

(Def. 2) R is serial in fieldR.

Let R be a relational structure. We say that R is serial if and only if

(Def. 3) the internal relation of R is serial in the carrier of R.

One can check that every relational structure which is reflexive is also serial.
Let R be a non empty relational structure. One can verify that R is serial if

and only if the condition (Def. 4) is satisfied.

(Def. 4) Let us consider an element x of R. Then there exists an element y of R
such that x ¬ y.

Let us observe that every relational structure which is total is also serial and
every relational structure which is serial is also total.

Let R be a non empty serial relational structure and x be an element of R.
Let us note that [x]the internal relation of R is non empty.

Now we state the proposition:

(4) Let us consider a non empty reflexive relational structure R and an
element x of R. Then x ∈ [x]α, where α is the internal relation of R. The
theorem is a consequence of (1).

Let R be a non empty reflexive relational structure and x be an element of
R. Note that [x]the internal relation of R is non empty.

Let R be a binary relation and X be a set. We say that R is mediate in X

if and only if

(Def. 5) Let us consider elements x, y. Suppose x, y ∈ X. If 〈〈x, y〉〉 ∈ R, then
there exists an element z such that z ∈ X and 〈〈x, z〉〉, 〈〈z, y〉〉 ∈ R.
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We say that R is mediate if and only if

(Def. 6) R is mediate in fieldR.

Let R be a relational structure. We say that R is mediate if and only if

(Def. 7) the internal relation of R is mediate in the carrier of R.

Let us note that every relational structure which is reflexive is also mediate.

3. Approximations Revisited

Now we state the proposition:

(5) Let us consider a non empty relational structure R and elements a, b of
R. Suppose a ∈ UAp({b}). Then 〈〈a, b〉〉 ∈ the internal relation of R.

Let R be a non empty relational structure and X be a subset of R. The
functor UapX yielding a subset of R is defined by the term

(Def. 8) (LAp(Xc))c.

The functor LapX yielding a subset of R is defined by the term

(Def. 9) (UAp(Xc))c.

Now we state the propositions:

(6) Let us consider a non empty relational structure R, a subset X of R,
and an element x. If x ∈ LAp(X), then [x]α ⊆ X, where α is the internal
relation of R.

(7) Let us consider a non empty relational structure R, a subset X of R,
and a set x. If x ∈ UAp(X), then [x]α meets X, where α is the internal
relation of R.

Let us consider a non empty relational structure R and a subset X of R.
Now we state the propositions:

(8) UapX = UAp(X).

(9) LapX = LAp(X).

Let us consider a non empty void relational structure R and a subset X of
R. Now we state the propositions:

(10) LAp(X) = ΩR.

(11) UAp(X) = ∅R.

4. General Properties of Approximations

Let R be a non empty relational structure. Observe that LAp(ΩR) reduces
to ΩR.

LetR be a non empty serial relational structure. One can check that UAp(ΩR)
reduces to ΩR.
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One can check that LAp(∅R) reduces to ∅R.
Let R be a non empty relational structure. Note that UAp(∅R) reduces to

∅R.
Let us consider a non empty relational structure R and subsets X, Y of R.

Now we state the propositions:

(12) LAp(X ∩ Y ) = LAp(X) ∩ LAp(Y ).

(13) UAp(X ∪ Y ) = UAp(X) ∪UAp(Y ).

(14) If X ⊆ Y , then LAp(X) ⊆ LAp(Y ).

(15) If X ⊆ Y , then UAp(X) ⊆ UAp(Y ).

Now we state the propositions:

(16) Let us consider a non empty relational structure R and a subset X of
R. Then LAp(Xc) = (UAp(X))c.

(17) Let us consider a non empty serial relational structure R and a subset
X of R. Then LAp(X) ⊆ UAp(X).

5. Auxiliary Operations on Approximation Operators

LetR be a non empty relational structure. The functors LAp(R) and UAp(R)
yielding functions from 2the carrier of R into 2the carrier of R are defined by the con-
ditions, respectively.

(Def. 10) Let us consider a subset X of R. Then (LAp(R))(X) = LAp(X).

(Def. 11) Let us consider a subset X of R. Then (UAp(R))(X) = UAp(X).

Let A be a non empty set and U be a function from 2A into 2A. We say that
U preserves empty set if and only if

(Def. 12) U(∅) = ∅.
We say that U preserves universe if and only if

(Def. 13) U(A) = A.

Observe that id2A preserves empty set and universe as a function from 2A

into 2A.
One can verify that there exists a function from 2A into 2A which preserves

empty set and universe.
Let X be a set and f be a function from 2X into 2X . The functor Flip f

yielding a function from 2X into 2X is defined by

(Def. 14) Let us consider a subset x of X. Then it(x) = f(xc)c.

Let us consider a set X and a function f from 2X into 2X . Now we state the
propositions:

(18) If f(∅) = ∅, then (Flip f)(X) = X.

(19) If f(X) = X, then (Flip f)(∅) = ∅.
(20) If f = id2X , then Flip f = f .
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Let us consider a set X, a function f from 2X into 2X , and subsets A, B of
X. Now we state the propositions:

(21) If for every subsets A, B of X, f(A∪B) = f(A)∪f(B), then (Flip f)(A∩
B) = (Flip f)(A) ∩ (Flip f)(B).

(22) If for every subsets A, B of X, f(A∩B) = f(A)∩f(B), then (Flip f)(A∪
B) = (Flip f)(A) ∪ (Flip f)(B).

Now we state the proposition:

(23) Let us consider a setX and a function f from 2X into 2X . Then Flip Flip f
= f . Proof: Set g = Flip Flip f . For every subset x of X, g(x) = f(x). �

Let A be a non empty set and f be a function from 2A into 2A. Observe
that Flip f preserves empty set.

Let f be a function from 2A into 2A. One can verify that Flip f preserves
universe.

Now we state the proposition:

(24) Let us consider a non empty set A and functions L, U from 2A into 2A.
Suppose

(i) U = FlipL, and

(ii) for every subset X of A, L(L(X)) ⊆ L(X).

Let us consider a subset X of A. Then U(X) ⊆ U(U(X)).

6. Towards Topological Models of Rough Sets

Let T be a topological space. The functors ClMapT and IntMapT yielding
functions from 2the carrier of T into 2the carrier of T are defined by the conditions,
respectively.

(Def. 15) Let us consider a subset X of T . Then (ClMapT )(X) = X.

(Def. 16) Let us consider a subset X of T . Then (IntMapT )(X) = IntX.

Let f be a function from 2the carrier of T into 2the carrier of T . We say that f is
closed-valued if and only if

(Def. 17) Let us consider a subset X of T . Then f(X) is closed.

We say that f is open-valued if and only if

(Def. 18) Let us consider a subset X of T . Then f(X) is open.

Note that ClMapT is closed-valued and IntMapT is open-valued.
Let us observe that there exists a function

from 2the carrier of T into 2the carrier of T which is closed-valued and there exists a
function from 2the carrier of T into 2the carrier of T which is open-valued.

Let us consider a topological space T . Now we state the propositions:

(25) Flip ClMapT = IntMapT .
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(26) Flip IntMapT = ClMapT .

Let T be a non empty topological space. One can verify that ClMapT pre-
serves empty set and universe and IntMapT preserves empty set and universe.

7. Formalization of Zhu’s Paper [19]

Let us consider a non empty relational structure R. Now we state the pro-
positions:

(27) Flip UAp(R) = LAp(R).

(28) Flip LAp(R) = UAp(R).

Now we state the proposition:

(29) Let us consider a non empty finite set A and a function U from 2A into
2A. Suppose

(i) U(∅) = ∅, and

(ii) for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ).

Then there exists a non empty finite relational structure R such that

(iii) the carrier of R = A, and

(iv) U = UAp(R).

The theorem is a consequence of (13). Proof: Define P[set, set] ≡ $1 ∈
L({$2}). Consider R being a binary relation on A such that for every
elements x, y of A, 〈〈x, y〉〉 ∈ R iff P[x, y]. Reconsider RR = 〈A,R〉 as a
non empty finite relational structure. For every element y of RR and for
every subset Y of RR such that Y = {y} holds UAp(Y ) = L(Y ). For every
element x such that x ∈ dom UAp(RR) holds (UAp(RR))(x) = L(x). �

Let us consider a non empty finite set A and a function L from 2A into 2A.
Now we state the propositions:

(30) Suppose L(A) = A and for every subsets X, Y of A, L(X ∩ Y ) =
L(X) ∩L(Y ). Then there exists a non empty finite relational structure R
such that

(i) the carrier of R = A, and

(ii) L = LAp(R).

(31) Suppose L(A) = A and L(∅) = ∅ and for every subsets X, Y of A,
L(X ∩Y ) = L(X)∩L(Y ). Then there exists a non empty serial relational
structure R such that

(i) the carrier of R = A, and

(ii) L = LAp(R).

Now we state the propositions:
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(32) Let us consider a non empty finite set A and a function U from 2A into
2A. Suppose

(i) U(A) = A, and

(ii) U(∅) = ∅, and

(iii) for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ).

Then there exists a non empty finite serial relational structure R such that

(iv) the carrier of R = A, and

(v) U = UAp(R).

The theorem is a consequence of (29). Proof: Consider R being a non
empty finite relational structure such that the carrier of R = A and U =
UAp(R). For every element x such that x ∈ the carrier of R there exists
an element y such that y ∈ the carrier of R and 〈〈x, y〉〉 ∈ the internal
relation of R. �

(33) Let us consider a non empty finite set A and a function L from 2A into
2A. Suppose

(i) L(A) = A, and

(ii) for every subset X of A, L(X) ⊆ L(Xc)c, and

(iii) for every subsets X, Y of A, L(X ∩ Y ) = L(X) ∩ L(Y ).

Then there exists a non empty finite serial relational structure R such that

(iv) the carrier of R = A, and

(v) L = LAp(R).

The theorem is a consequence of (30). Proof: Consider R being a non
empty finite relational structure such that the carrier of R = A and L =
LAp(R). For every element x such that x ∈ the carrier of R there exists
an element y such that y ∈ the carrier of R and 〈〈x, y〉〉 ∈ the internal
relation of R. �

(34) Let us consider a non empty finite set A and a function U from 2A into
2A. Suppose

(i) U(∅) = ∅, and

(ii) for every subset X of A, U(Xc)c ⊆ U(X), and

(iii) for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ).

Then there exists a non empty serial relational structure R such that

(iv) the carrier of R = A, and

(v) U = UAp(R).
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The theorem is a consequence of (29), (19), and (27). Proof: Consider
R being a non empty finite relational structure such that the carrier of
R = A and U = UAp(R). For every element x such that x ∈ the carrier
of R there exists an element y such that y ∈ the carrier of R and 〈〈x,
y〉〉 ∈ the internal relation of R. �

Let us consider a non empty reflexive relational structure R and a subset X
of R. Now we state the propositions:

(35) LAp(X) ⊆ X.

(36) X ⊆ UAp(X).

Now we state the propositions:

(37) Let us consider a non empty finite set A and a function U from 2A into
2A. Suppose

(i) U(∅) = ∅, and

(ii) for every subset X of A, X ⊆ U(X), and

(iii) for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ).

Then there exists a non empty finite reflexive relational structure R such
that

(iv) the carrier of R = A, and

(v) U = UAp(R).

The theorem is a consequence of (32). Proof: Consider R being a non
empty finite serial relational structure such that the carrier of R = A and
U = UAp(R). For every element x such that x ∈ the carrier of R holds
〈〈x, x〉〉 ∈ the internal relation of R. �

(38) Let us consider a non empty finite set A and a function L from 2A into
2A. Suppose

(i) L(A) = A, and

(ii) for every subset X of A, L(X) ⊆ X, and

(iii) for every subsets X, Y of A, L(X ∩ Y ) = L(X) ∩ L(Y ).

Then there exists a non empty finite reflexive relational structure R such
that

(iv) the carrier of R = A, and

(v) L = LAp(R).

The theorem is a consequence of (19), (22), (37), (23), and (27). Proof:
Set U = FlipL. For every subset X of A, X ⊆ U(X). Consider R being
a non empty finite reflexive relational structure such that the carrier of
R = A and U = UAp(R). �
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Let us consider a non empty mediate relational structure R and a subset X
of R. Now we state the propositions:

(39) UAp(X) ⊆ UAp(UAp(X)).

(40) LAp(LAp(X)) ⊆ LAp(X).

Now we state the proposition:

(41) Let us consider a non empty finite set A and a function U from 2A into
2A. Suppose

(i) U(∅) = ∅, and

(ii) for every subset X of A, U(X) ⊆ U(U(X)), and

(iii) for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ).

Then there exists a non empty mediate finite relational structure R such
that

(iv) the carrier of R = A, and

(v) U = UAp(R).

The theorem is a consequence of (29) and (5). Proof: Consider R being
a non empty finite relational structure such that the carrier of R = A and
U = UAp(R). For every elements x, y such that x, y ∈ the carrier of R
holds if 〈〈x, y〉〉 ∈ the internal relation of R, then there exists an element z
such that z ∈ the carrier of R and 〈〈x, z〉〉, 〈〈z, y〉〉 ∈ the internal relation of
R. �

Let us consider a non empty finite set A and a function L from 2A into 2A.
Now we state the propositions:

(42) Suppose L(A) = A and for every subset X of A, L(L(X)) ⊆ L(X) and
for every subsets X, Y of A, L(X ∩ Y ) = L(X)∩L(Y ). Then there exists
a non empty mediate finite relational structure R such that

(i) the carrier of R = A, and

(ii) L = LAp(R).

(43) Suppose L(A) = A and for every subsets X, Y of A, L(X ∩ Y ) =
L(X) ∩ L(Y ). Then for every subset X of A, L(X) ⊆ L(Xc)c if and only
if L(∅) = ∅.

Now we state the proposition:

(44) Let us consider a non empty finite set A and a function U from 2A into
2A. Suppose

(i) U(∅) = ∅, and

(ii) for every subsets X, Y of A, U(X ∪ Y ) = U(X) ∪ U(Y ).

Then for every subset X of A, U(Xc)c ⊆ U(X) if and only if U(A) = A.
The theorem is a consequence of (34), (32), (27), and (17).
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1. Preliminaries

Now we state the propositions:

(1) Let us consider sets A, B, A1, B1. Suppose

(i) A misses B, and

(ii) A1 ⊆ A, and

(iii) B1 ⊆ B, and

(iv) A1 ∪B1 = A ∪B.

Then
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(v) A1 = A, and

(vi) B1 = B.

Proof: A ⊆ A1. B ⊆ B1. �

(2) Let us consider non empty finite sets H, K. Then
∏
〈H,K〉 = H · K .

Let us consider bags p2, p1, f of Prime and a natural number q. Now we
state the propositions:

(3) If support p2 misses support p1 and f = p2 + p1 and q ∈ support p2, then
p2(q) = f(q).

(4) If support p2 misses support p1 and f = p2 + p1 and q ∈ support p1, then
p1(q) = f(q).

Now we state the propositions:

(5) Let us consider a non zero natural number h and a prime number q. If
q and h are not relatively prime, then q | h.

(6) Let us consider non zero natural numbers h, s. Suppose a prime num-
ber q. Suppose q ∈ support PrimeFactorization(s). Then q and h are not
relatively prime. Then support PrimeFactorization(s) ⊆
support PrimeFactorization(h). The theorem is a consequence of (5).

(7) Let us consider non zero natural numbers h, k, s, t. Suppose

(i) h and k are relatively prime, and

(ii) s · t = h · k, and

(iii) for every prime number q such that q ∈ support PrimeFactorization(s)
holds q and h are not relatively prime, and

(iv) for every prime number q such that q ∈ support PrimeFactorization(t)
holds q and k are not relatively prime.

Then

(v) s = h, and

(vi) t = k.

The theorem is a consequence of (6), (1), (3), and (4). Proof: Set p2 =
PrimeFactorization(s). Set p1 = PrimeFactorization(t). For every natural
number p such that p ∈ support PFExp(h) holds p2(p) = pp -count(h). For
every natural number p such that p ∈ support PFExp(k) holds p1(p) =
pp -count(k). �

Let G be a non empty multiplicative magma, I be a finite set, and b be a
(the carrier of G)-valued total I-defined function. The functor

∏
b yielding an

element of G is defined by

(Def. 1) There exists a finite sequence f of elements of G such that

(i) it =
∏
f , and
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(ii) f = b · CFS(I).

Now we state the propositions:

(8) Let us consider a commutative group G, non empty finite sets A, B, a
(the carrier of G)-valued total A-defined function F3, a (the carrier of G)-
valued total B-defined function F2, and a (the carrier of G)-valued total
A ∪B-defined function F1. Suppose

(i) A misses B, and

(ii) F1 = F3+·F2.

Then
∏
F1 =

∏
F3 ·
∏
F2.

(9) Let us consider a non empty multiplicative magma G, a set q, an element
z of G, and a (the carrier of G)-valued total {q}-defined function f . If
f = q 7−→. z, then

∏
f = z.

2. Direct Product of Finite Commutative Groups

Now we state the propositions:

(10) Let us consider non empty multiplicative magmasX, Y . Then the carrier
of
∏
〈X,Y 〉 =

∏
〈the carrier of X, the carrier of Y 〉. Proof: Set CarrX =

the carrier of X. Set CarrY = the carrier of Y . For every element a such
that a ∈ dom the support of 〈X,Y 〉 holds (the support of 〈X,Y 〉)(a) =
〈the carrier of X, the carrier of Y 〉(a). �

(11) Let us consider a group G and normal subgroups A, B of G. Suppose
(the carrier of A)∩ (the carrier of B) = {1G}. Let us consider elements a,
b of G. If a ∈ A and b ∈ B, then a · b = b · a.

(12) Let us consider a group G and normal subgroups A, B of G. Suppose

(i) for every element x of G, there exist elements a, b of G such that
a ∈ A and b ∈ B and x = a · b, and

(ii) (the carrier of A) ∩ (the carrier of B) = {1G}.
Then there exists a homomorphism h from

∏
〈A,B〉 to G such that

(iii) h is bijective, and

(iv) for every elements a, b of G such that a ∈ A and b ∈ B holds h(〈a,
b〉) = a · b.

The theorem is a consequence of (11). Proof: Define P[set, set] ≡ there
exists an element x of G and there exists an element y of G such that x ∈ A
and y ∈ B and $1 = 〈x, y〉 and $2 = x · y. For every element z of

∏
〈A,

B〉, there exists an element w of G such that P[z, w]. Consider h being a
function from

∏
〈A,B〉 into G such that for every element z of

∏
〈A,B〉,

P[z, h(z)]. For every elements a, b of G such that a ∈ A and b ∈ B holds
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h(〈a, b〉) = a · b. For every elements z, w of
∏
〈A,B〉, h(z ·w) = h(z) ·h(w).

�

Let us consider a finite commutative group G, a natural number m, and a
subset A of G. Now we state the propositions:

(13) Suppose A = {x where x is an element of G : xm = 1G}. Then

(i) A 6= ∅, and

(ii) for every elements g1, g2 of G such that g1, g2 ∈ A holds g1 · g2 ∈ A,
and

(iii) for every element g of G such that g ∈ A holds g−1 ∈ A.

(14) Suppose A = {x where x is an element of G : xm = 1G}. Then there
exists a strict finite subgroup H of G such that

(i) the carrier of H = A, and

(ii) H is commutative and normal.

Now we state the propositions:

(15) Let us consider a finite commutative group G, a natural number m,
and a finite subgroup H of G. Suppose the carrier of H = {x where x is
an element of G : xm = 1G}. Let us consider a prime number q. Suppo-
se q ∈ support PrimeFactorization(H ). Then q and m are not relatively
prime.

(16) Let us consider a finite commutative group G and natural numbers h,
k. Suppose

(i) G = h · k, and

(ii) h and k are relatively prime.

Then there exist strict finite subgroups H, K of G such that

(iii) the carrier of H = {x where x is an element of G : xh = 1G}, and

(iv) the carrier of K = {x where x is an element of G : xk = 1G}, and

(v) H is normal, and

(vi) K is normal, and

(vii) for every element x of G, there exist elements a, b of G such that
a ∈ H and b ∈ K and x = a · b, and

(viii) (the carrier of H) ∩ (the carrier of K) = {1G}.
The theorem is a consequence of (14). Proof: Set A = {x where x is
an element of G : xh = 1G}. Set B = {x where x is an element of G :
xk = 1G}. A ⊆ the carrier of G. B ⊆ the carrier of G. Consider H being
a strict finite subgroup of G such that the carrier of H = A and H is
commutative and H is normal. Consider K being a strict finite subgroup
of G such that the carrier of K = B and K is commutative and K is
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normal. Consider a, b being integers such that a ·h+b ·k = 1. (The carrier
of H) ∩ (the carrier of K) ⊆ {1G}. For every element x of G, there exist
elements s, t of G such that s ∈ H and t ∈ K and x = s · t. �

(17) Let us consider finite groups H, K. Then
∏
〈H,K〉 = H · K . The

theorem is a consequence of (10) and (2).

(18) Let us consider a finite commutative group G and non zero natural
numbers h, k. Suppose

(i) G = h · k, and

(ii) h and k are relatively prime.

Then there exist strict finite subgroups H, K of G such that

(iii) H = h, and

(iv) K = k, and

(v) (the carrier of H) ∩ (the carrier of K) = {1G}, and

(vi) there exists a homomorphism F from
∏
〈H,K〉 to G such that F is

bijective and for every elements a, b of G such that a ∈ H and b ∈ K
holds F (〈a, b〉) = a · b.

The theorem is a consequence of (16), (12), (17), (15), and (7).

3. Finite Direct Products of Finite Commutative Groups

Let us consider a group G, a set q, an associative group-like multiplicative
magma family F of {q}, and a function f from G into

∏
F . Now we state the

propositions:

(19) If F = q 7−→. G and for every element x of G, f(x) = q 7−→. x, then f is a
homomorphism from G to

∏
F .

(20) If F = q 7−→. G and for every element x of G, f(x) = q 7−→. x, then f is
bijective.

Now we state the propositions:

(21) Let us consider a set q, an associative group-like multiplicative magma
family F of {q}, and a group G. Suppose F = q 7−→. G. Then there exists a
homomorphism I from G to

∏
F such that

(i) I is bijective, and

(ii) for every element x of G, I(x) = q 7−→. x.

The theorem is a consequence of (19) and (20). Proof: Define P[set, set] ≡
$2 = q 7−→. $1. For every element z of G, there exists an element w of

∏
F

such that P[z, w]. Consider I being a function from G into
∏
F such that

for every element x of G, P[x, I(x)]. �
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(22) Let us consider non empty finite sets I0, I, an associative group-like mul-
tiplicative magma family F0 of I0, an associative group-like multiplicative
magma family F of I, groups H, K, an element q of I, an element k of
K, and a function g. Suppose

(i) g ∈ the carrier of
∏
F0, and

(ii) q /∈ I0, and

(iii) I = I0 ∪ {q}, and

(iv) F = F0+·(q 7−→. K).

Then g+·(q 7−→. k) ∈ the carrier of
∏
F . Proof: Set HK = 〈H,K〉. Set

w = g+·(q 7−→. k). For every element x such that x ∈ dom the support of
F holds w(x) ∈ (the support of F )(x). �

Let us consider non empty finite sets I0, I, an associative group-like multi-
plicative magma family F0 of I0, an associative group-like multiplicative magma
family F of I, groups H, K, an element q of I, a function G0 from H into

∏
F0,

and a function G from
∏
〈H,K〉 into

∏
F . Now we state the propositions:

(23) Suppose G0 is a homomorphism from H to
∏
F0 and G0 is bijective and

q /∈ I0 and I = I0 ∪ {q} and F = F0+·(q 7−→. K). Then suppose for every
element h of H and for every element k of K, there exists a function g such
that g = G0(h) and G(〈h, k〉) = g+·(q 7−→. k). Then G is a homomorphism
from

∏
〈H,K〉 to

∏
F .

(24) Suppose G0 is a homomorphism from H to
∏
F0 and G0 is bijective and

q /∈ I0 and I = I0 ∪ {q} and F = F0+·(q 7−→. K). Then suppose for every
element h of H and for every element k of K, there exists a function g

such that g = G0(h) and G(〈h, k〉) = g+·(q 7−→. k). Then G is bijective.

Now we state the propositions:

(25) Let us consider a set q, a multiplicative magma family F of {q}, and a
non empty multiplicative magma G. Suppose F = q 7−→. G. Let us consider
a (the carrier of G)-valued total {q}-defined function y. Then

(i) y ∈ the carrier of
∏
F , and

(ii) y(q) ∈ the carrier of G, and

(iii) y = q 7−→. y(q).

(26) Let us consider a set q, an associative group-like multiplicative magma
family F of {q}, and a group G. Suppose F = q 7−→. G. Then there exists a
homomorphism H0 from

∏
F to G such that

(i) H0 is bijective, and

(ii) for every (the carrier ofG)-valued total {q}-defined function x,H0(x) =∏
x.
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The theorem is a consequence of (21), (25), and (9). Proof: Consider I
being a homomorphism from G to

∏
F such that I is bijective and for

every element x of G, I(x) = q 7−→. x. Set H0 = I−1. For every (the carrier
of G)-valued total {q}-defined function y, H0(y) =

∏
y. �

(27) Let us consider non empty finite sets I0, I, an associative group-like mul-
tiplicative magma family F0 of I0, an associative group-like multiplicative
magma family F of I, groups H, K, an element q of I, and a homomor-
phism G0 from H to

∏
F0. Suppose

(i) q /∈ I0, and

(ii) I = I0 ∪ {q}, and

(iii) F = F0+·(q 7−→. K), and

(iv) G0 is bijective.

Then there exists a homomorphism G from
∏
〈H,K〉 to

∏
F such that

(v) G is bijective, and

(vi) for every element h of H and for every element k of K, there exists
a function g such that g = G0(h) and G(〈h, k〉) = g+·(q 7−→. k).

The theorem is a consequence of (22), (23), and (24). Proof: Set HK =
〈H,K〉. Define P[set, set] ≡ there exists an element h of H and there
exists an element k of K and there exists a function g such that $1 = 〈h,
k〉 and g = G0(h) and $2 = g+·(q 7−→. k). For every element z of

∏
〈H,

K〉, there exists an element w of the carrier of
∏
F such that P[z, w].

Consider G being a function from
∏
〈H,K〉 into

∏
F such that for every

element x of
∏
〈H,K〉, P[x,G(x)]. For every element h of H and for every

element k of K, there exists a function g such that g = G0(h) and G(〈h,
k〉) = g+·(q 7−→. k). �

(28) Let us consider non empty finite sets I0, I, an associative group-like mul-
tiplicative magma family F0 of I0, an associative group-like multiplicative
magma family F of I, groups H, K, an element q of I, and a homomor-
phism G0 from

∏
F0 to H. Suppose

(i) q /∈ I0, and

(ii) I = I0 ∪ {q}, and

(iii) F = F0+·(q 7−→. K), and

(iv) G0 is bijective.

Then there exists a homomorphism G from
∏
F to

∏
〈H,K〉 such that

(v) G is bijective, and

(vi) for every function x0 and for every element k of K and for eve-
ry element h of H such that h = G0(x0) and x0 ∈

∏
F0 holds

G(x0+·(q 7−→. k)) = 〈h, k〉.
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The theorem is a consequence of (27). Proof: Set L0 = G0
−1. Consider

L being a homomorphism from
∏
〈H,K〉 to

∏
F such that L is bijective

and for every element h of H and for every element k of K, there exists a
function g such that g = L0(h) and L(〈h, k〉) = g+·(q 7−→. k). Set G = L−1.
For every function x0 and for every element k of K and for every element
h of H such that h = G0(x0) and x0 ∈

∏
F0 holds G(x0+·(q 7−→. k)) = 〈h,

k〉. �

(29) Let us consider a non empty finite set I, an associative group-like multi-
plicative magma family F of I, and a total I-defined function x. Suppose
an element p of I. Then x(p) ∈ F (p). Then x ∈ the carrier of

∏
F .

(30) Let us consider non empty finite sets I0, I, an associative group-like mul-
tiplicative magma family F0 of I0, an associative group-like multiplicative
magma family F of I, a group K, an element q of I, and an element x of∏
F . Suppose

(i) q /∈ I0, and

(ii) I = I0 ∪ {q}, and

(iii) F = F0+·(q 7−→. K).

Then there exists a total I0-defined function x0 and there exists an element
k of K such that x0 ∈

∏
F0 and x = x0+·(q 7−→. k) and for every element

p of I0, x0(p) ∈ F0(p). Proof: Reconsider y = x as a total I-defined
function. Reconsider k = y(q) as an element of K. Reconsider y0 = y�I0

as an I0-defined function. For every element i of I0, y0(i) ∈ (the support
of F0)(i) and y0(i) ∈ F0(i). �

(31) Let us consider a group G, a subgroup H of G, a finite sequence f of
elements of G, and a finite sequence g of elements of H. If f = g, then∏
f =
∏
g. Proof: Define P[natural number] ≡ for every finite sequence

f of elements of G for every finite sequence g of elements of H such that
$1 = len f and f = g holds

∏
f =
∏
g. P[0]. For every natural number k

such that P[k] holds P[k + 1]. �

(32) Let us consider a non empty finite set I, a group G, a subgroup H of G,
a (the carrier of G)-valued total I-defined function x, and a (the carrier
of H)-valued total I-defined function x0. If x = x0, then

∏
x =
∏
x0. The

theorem is a consequence of (31).

(33) Let us consider a commutative group G, non empty finite sets I0, I, an
element q of I, a (the carrier of G)-valued total I-defined function x, a
(the carrier of G)-valued total I0-defined function x0, and an element k of
G. Suppose

(i) q /∈ I0, and

(ii) I = I0 ∪ {q}, and
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(iii) x = x0+·(q 7−→. k).

Then
∏
x =
∏
x0 ·k. The theorem is a consequence of (8) and (9). Proof:

Reconsider y = q 7−→. k as a (the carrier of G)-valued total {q}-defined
function. I0 misses {q}. �

Let us consider a finite commutative group G. Now we state the propositions:

(34) Suppose G > 1. Then there exists a non empty finite set I and there
exists an associative group-like commutative multiplicative magma family
F of I and there exists a homomorphism H0 from

∏
F to G such that

I = support PrimeFactorization(G) and for every element p of I, F (p) is

a subgroup of G and F (p) = (PrimeFactorization(G))(p) and for every
elements p, q of I such that p 6= q holds (the carrier of F (p))∩(the carrier
of F (q)) = {1G} and H0 is bijective and for every (the carrier of G)-valued
total I-defined function x such that for every element p of I, x(p) ∈ F (p)
holds x ∈

∏
F and H0(x) =

∏
x.

(35) Suppose G > 1. Then there exists a non empty finite set I and there
exists an associative group-like commutative multiplicative magma family
F of I such that I = support PrimeFactorization(G) and for every element

p of I, F (p) is a subgroup of G and F (p) = (PrimeFactorization(G))(p)
and for every elements p, q of I such that p 6= q holds (the carrier of
F (p)) ∩ (the carrier of F (q)) = {1G} and for every element y of G, there
exists a (the carrier of G)-valued total I-defined function x such that for
every element p of I, x(p) ∈ F (p) and y =

∏
x and for every (the carrier

of G)-valued total I-defined functions x1, x2 such that for every element
p of I, x1(p) ∈ F (p) and for every element p of I, x2(p) ∈ F (p) and∏
x1 =

∏
x2 holds x1 = x2.
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