

Semantics of MML Query - Ordering

Grzegorz Bancerek Association of Mizar Users Białystok, Poland

Summary. Semantics of order directives of MML Query is presented. The formalization is done according to [1].

MML identifier: MMLQUER2, version: 8.1.01 5.7.1169

The notation and terminology used in this paper have been introduced in the following articles: [2], [7], [13], [9], [10], [8], [3], [4], [5], [11], [17], [19], [18], [6], [15], [16], [14], and [12].

1. Preliminaries

In this paper X denotes a set, R, R_1 , R_2 denote binary relations, x, y, z denote sets, and n, m, k denote natural numbers.

Let us consider a binary relation R on X. Now we state the propositions:

- (1) field $R \subseteq X$.
- (2) If $x, y \in R$, then $x, y \in X$.

Now we state the propositions:

- (3) Let us consider sets X, Y. Then $(id_X)^{\circ}Y = X \cap Y$.
- (4) $\langle x, y \rangle \in \mathbb{R}$ | 2X if and only if $x, y \in X$ and $\langle x, y \rangle \in \mathbb{R}$.
- (5) $\operatorname{dom}(X \upharpoonright R) \subseteq \operatorname{dom} R$.
- (6) Let us consider a total reflexive binary relation R on X and a subset S of X. Then $R \mid^2 S$ is a total reflexive binary relation on S. The theorem is a consequence of (4). PROOF: Set $Q = R \mid^2 S$. dom Q = S. \square
- (7) Let us consider transfinite sequences f, g. Then $\operatorname{rng}(f \cap g) = \operatorname{rng} f \cup \operatorname{rng} g$. Let us consider R. Let us note that R is transitive if and only if the condition (Def. 1) is satisfied.

(Def. 1) If $x, y \in R$ and $y, z \in R$, then $x, z \in R$.

One can verify that R is antisymmetric if and only if the condition (Def. 2) is satisfied.

(Def. 2) If $x, y \in R$ and $y, x \in R$, then x = y.

Now we state the proposition:

(8) Let us consider a non empty set X, a total connected binary relation R on X, and elements x, y of X. If $x \neq y$, then $x, y \in R$ or $y, x \in R$.

2. Composition of Orders

Let R_1 , R_2 be binary relations. The functor R_1 , R_2 yielding a binary relation is defined by the term

(Def. 3) $R_1 \cup (R_2 \setminus R_1^{\smile})$.

Now we state the propositions:

- (9) $x, y \in R_1, R_2$ if and only if $x, y \in R_1$ or $y, x \notin R_1$ and $x, y \in R_2$.
- (10) field (R_1, R_2) = field $R_1 \cup$ field R_2 . The theorem is a consequence of (9).
- (11) $R_1, R_2 \subseteq R_1 \cup R_2$. The theorem is a consequence of (9).

Let X be a set and R_1 , R_2 be binary relations on X. Note that the functor R_1 , R_2 yields a binary relation on X. Let R_1 , R_2 be reflexive binary relations. One can verify that R_1 , R_2 is reflexive.

Let R_1 , R_2 be antisymmetric binary relations. Note that R_1 , R_2 is antisymmetric.

Let X be a set and R be a binary relation on X. We say that R is β -transitive if and only if

(Def. 4) Let us consider elements x, y of X. If $x, y \notin R$, then for every element z of X such that $x, z \in R$ holds $y, z \in R$.

Observe that every binary relation on X which is connected total and transitive is also β -transitive.

Let us observe that there exists an order in X which is connected.

Let R_1 be a β -transitive transitive binary relation on X and R_2 be a transitive binary relation on X. Observe that R_1 , R_2 is transitive.

Let R_1 be a binary relation on X and R_2 be a total reflexive binary relation on X. Let us note that R_1 , R_2 is total and reflexive as a binary relation on X.

Let R_2 be a total connected reflexive binary relation on X. One can verify that R_1 , R_2 is connected.

Now we state the propositions:

- (12) $(R, R_1), R_2 = R, (R_1, R_2)$. The theorem is a consequence of (9).
- (13) Let us consider a connected reflexive total binary relation R on X and a binary relation R_2 on X. Then R, $R_2 = R$. The theorem is a consequence of (9) and (2).

3. number of ORDERING

Let X be a set and f be a function from X into \mathbb{N} . The functor number of f yielding a binary relation on X is defined by

(Def. 5) $x, y \in it$ if and only if $x, y \in X$ and f(x) < f(y).

Let us note that number of f is antisymmetric transitive and β -transitive.

Let X be a finite set and O be an operation of X. The functor value of O yielding a function from X into \mathbb{N} is defined by

(Def. 6) Let us consider an element x of X. Then $it(x) = \overline{\overline{x(O)}}$.

Now we state the proposition:

(14) Let us consider a finite set X, an operation O of X, and elements x, y of X. Then $x, y \in$ number of value of O if and only if $\overline{x(O)} < \overline{y(O)}$.

Let us consider X. Let O be an operation of X. The functor first O yielding a binary relation on X is defined by

(Def. 7) Let us consider elements x, y of X. Then $x, y \in it$ if and only if $x(O) \neq \emptyset$ and $y(O) = \emptyset$.

Let us observe that first O is antisymmetric transitive and β -transitive.

4. Ordering by Resources

Let A be a finite sequence and x be an element. The functor $A \leftarrow x$ yielding a set is defined by the term

(Def. 8) $\bigcap (A^{-1}(\{x\})).$

Let us consider x. Note that $A \leftarrow x$ is natural.

Let us consider a finite sequence A. Now we state the propositions:

- (15) If $x \notin \operatorname{rng} A$, then $A \leftarrow x = 0$.
- (16) If $x \in \operatorname{rng} A$, then $A \leftarrow x \in \operatorname{dom} A$ and $x = A(A \leftarrow x)$.
- (17) If $A \leftarrow x = 0$, then $x \notin \operatorname{rng} A$.

Let us consider X. Let A be a finite sequence and f be a function. The functor resource(X, A, f) yielding a binary relation on X is defined by

(Def. 9) $x, y \in it$ if and only if $x, y \in X$ and $A \leftarrow (f(x)) \neq 0$ and $A \leftarrow (f(x)) < A \leftarrow (f(y))$ or $A \leftarrow (f(y)) = 0$.

Let us observe that resource(X, A, f) is antisymmetric transitive and β -transitive.

5. Ordering by Number of Iteration

Let us consider X. Let R be a binary relation on X and n be a natural number. One can check that the functor R^n yields a binary relation on X. Now we state the propositions:

- (18) If $(R^n)^{\circ}X = \emptyset$ and $m \ge n$, then $(R^m)^{\circ}X = \emptyset$.
- (19) If for every n, $(R^n)^{\circ}X \neq \emptyset$ and X is finite, then there exists x such that $x \in X$ and for every n, $(R^n)^{\circ}x \neq \emptyset$. The theorem is a consequence of (18). PROOF: Define $\mathcal{P}[\text{element}, \text{element}] \equiv \text{there exists } n \text{ such that } \$_2 = n \text{ and } (R^n)^{\circ}\$_1 = \emptyset$. For every element x such that $x \in X$ there exists an element y such that $y \in \mathbb{N}$ and $\mathcal{P}[x,y]$. Consider f being a function such that $\text{dom } f = X \text{ and rng } f \subseteq \mathbb{N} \text{ and for every element } x \text{ such that } x \in X \text{ holds } \mathcal{P}[x,f(x)]$. Consider n such that $\text{rng } f \subseteq \mathbb{Z}_n$. $\{\{x\} \text{ where } x \text{ is an element of } X: x \in X\} \subseteq 2^X$. Reconsider $Y = \{\{x\} \text{ where } x \text{ is an element of } X: x \in X\}$ as a family of subsets of X. $X = \bigcup Y$. $\{(R^n)^{\circ}y \text{ where } y \text{ is a subset of } X: y \in Y\} \subseteq \{\emptyset\}$. \square
- (20) If R is reversely well founded and irreflexive and X is finite and R is finite, then there exists n such that $(R^n)^{\circ}X = \emptyset$. The theorem is a consequence of (19). PROOF: Define $\mathcal{Q}[\text{element}] \equiv \text{for every } n, (R^n)^{\circ}\$_1 \neq \emptyset$. Consider x0 being a set such that $x0 \in X$ and $\mathcal{Q}[x0]$. Define $\mathcal{P}[\text{element, element, element}] \equiv \text{if } \mathcal{Q}[\$_2]$, then $\$_3 \in R^{\circ}\$_2$ and $\mathcal{Q}[\$_3]$. For every natural number n and for every set x, there exists a set y such that $\mathcal{P}[n, x, y]$. Consider f being a function such that dom $f = \mathbb{N}$ and f(0) = x0 and for every natural number n, $\mathcal{P}[n, f(n), f(n+1)]$. Define $\mathcal{R}[\text{natural number}] \equiv \mathcal{Q}[f(\$_1)]$. rng $f \subseteq \text{field } R$. Consider z being an element such that $z \in \text{rng } f$ and for every element x such that $x \in \text{rng } f$ and $z \neq x$ holds $\langle z, x \rangle \notin R$. Consider z being an element such that $z \in \text{rng } f$ and $z \in \mathcal{P}[x]$.

Let us consider X. Let O be an operation of X. Assume O is reversely well founded, irreflexive, and finite. The functor iteration of O yielding a binary relation on X is defined by

- (Def. 10) There exists a function f from X into \mathbb{N} such that
 - (i) it = number of f, and
 - (ii) for every element x of X such that $x \in X$ there exists n such that f(x) = n and $x(O^n) \neq \emptyset$ or n = 0 and $x(O^n) = \emptyset$ and $x(O^{n+1}) = \emptyset$.

Let us note that every binary relation which is empty is also irreflexive and reversely well founded.

Let us consider X. Let us note that there exists an operation of X which is empty.

Let O be a reversely well founded irreflexive finite operation of X. One can check that **iteration** of O is antisymmetric transitive and β -transitive.

6. value of Ordering

Let X be a finite set. Let us observe that every order in X is well founded. Note that every connected order in X is well-ordering.

Let us consider X. Let R be a connected order in X and S be a finite subset of X. The functor $\operatorname{order}(S, R)$ yielding a finite 0-sequence of X is defined by

- (Def. 11) (i) rng it = S, and
 - (ii) it is one-to-one, and
 - (iii) for every natural numbers i, j such that $i, j \in \text{dom } it \text{ holds } i \leq j \text{ iff } it(i), it(j) \in R.$

Now we state the proposition:

(21) Let us consider finite subsets S_1 , S_2 of X and a connected order R in X. Then $\operatorname{order}(S_1 \cup S_2, R) = \operatorname{order}(S_1, R) \cap \operatorname{order}(S_2, R)$ if and only if for every x and y such that $x \in S_1$ and $y \in S_2$ holds $x \neq y$ and $x, y \in R$. The theorem is a consequence of (7). PROOF: Set $o1 = \operatorname{order}(S_1, R)$. Set $o2 = \operatorname{order}(S_2, R)$. $\operatorname{order}(S_1, R) \cap \operatorname{order}(S_2, R)$ is one-to-one. \square

Let X be a finite set, O be an operation of X, and R be a connected order in X. The functor value of(O, R) yielding a binary relation on X is defined by

(Def. 12) Let us consider elements x, y of X. Then $x, y \in it$ if and only if $x(O) \neq \emptyset$ and $y(O) = \emptyset$ or $y(O) \neq \emptyset$ and $(\operatorname{order}(x(O), R))_0, (\operatorname{order}(y(O), R))_0 \in R$ and $(\operatorname{order}(x(O), R))_0 \neq (\operatorname{order}(y(O), R))_0$.

Let R_1 be a connected order in X. One can check that value of (O, R_1) is antisymmetric transitive and β -transitive.

References

- [1] Grzegorz Bancerek. Information retrieval and rendering with MML query. LNCS, 4108: 266-279, 2006.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. Semantics of MML query. Formalized Mathematics, 20(2):147–155, 2012. doi:10.2478/v10037-012-0017-x.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711–714, 1990.
- [6] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
- [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [8] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.

- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [14] Krzysztof Hryniewiecki. Relations of tolerance. Formalized Mathematics, 2(1):105-109, 1991.
- [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [19] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. *Formalized Mathematics*, 1(1):85–89, 1990.

Received December 1, 2012