

Riemann Integral of Functions from \mathbb{R} into Real Banach Space¹

Keiko Narita Hirosaki-city Aomori, Japan Noboru Endou Gifu National College of Technology Japan

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article we deal with the Riemann integral of functions from \mathbb{R} into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from \mathbb{R} into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers.

In addition we proved some theorems about the convergence of sequences. We applied definitions introduced in the previous article [21] to the proof of integrability.

MSC: 26A42 03B35

Keywords: formalization of Riemann integral

MML identifier: INTEGR20, version: 8.1.02 5.17.1181

The notation and terminology used in this paper have been introduced in the following articles: [6], [1], [7], [22], [4], [8], [14], [9], [10], [21], [15], [16], [17], [18], [28], [26], [5], [27], [2], [23], [24], [3], [11], [19], [25], [32], [33], [30], [12], [20], [31], and [13].

1. Some Properties of Continuous Functions

In this paper s_1 , s_2 , q_1 denote sequences of real numbers.

Let X be a real normed space and f be a partial function from \mathbb{R} to the carrier of X. We say that f is uniformly continuous if and only if

 $^{^{1}}$ This work was supported by JSPS KAKENHI 22300285 and 23500029.

- (Def. 1) Let us consider a real number r. Suppose 0 < r. Then there exists a real number s such that
 - (i) 0 < s, and
 - (ii) for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom } f$ and $|x_1 x_2| < s$ holds $||f_{x_1} f_{x_2}|| < r$.

Now we state the propositions:

- (1) Let us consider a set X, a real normed space Y, and a partial function f from \mathbb{R} to the carrier of Y. Then $f \upharpoonright X$ is uniformly continuous if and only if for every real number r such that 0 < r there exists a real number s such that 0 < s and for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom}(f \upharpoonright X)$ and $|x_1 x_2| < s$ holds $||f_{x_1} f_{x_2}|| < r$. PROOF: If $f \upharpoonright X$ is uniformly continuous, then for every real number r such that 0 < r there exists a real number s such that 0 < s and for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom}(f \upharpoonright X)$ and $|x_1 x_2| < s$ holds $||f_{x_1} f_{x_2}|| < r$ by [11, (80)]. Consider s being a real number such that 0 < s and for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom}(f \upharpoonright X)$ and $|x_1 x_2| < s$ holds $||f_{x_1} f_{x_2}|| < r$. \square
- (2) Let us consider sets X, X_1 , a real normed space Y, and a partial function f from \mathbb{R} to the carrier of Y. Suppose
 - (i) $f \upharpoonright X$ is uniformly continuous, and
 - (ii) $X_1 \subseteq X$.

Then $f \mid X_1$ is uniformly continuous. The theorem is a consequence of (1).

- (3) Let us consider a real normed space X, a partial function f from \mathbb{R} to the carrier of X, and a subset Z of \mathbb{R} . Suppose
 - (i) $Z \subseteq \text{dom } f$, and
 - (ii) Z is compact, and
 - (iii) $f \upharpoonright Z$ is continuous.

Then $f \upharpoonright Z$ is uniformly continuous. The theorem is a consequence of (1).

2. Some Properties of Sequences

Now we state the proposition:

- (4) Let us consider a real normed space X, natural numbers n, m, a function a from Seg $n \times$ Seg m into X, and finite sequences p, q of elements of X. Suppose
 - (i) dom p = Seg n, and

- (ii) for every natural number i such that $i \in \text{dom } p$ there exists a finite sequence r of elements of X such that dom r = Seg m and $p(i) = \sum r$ and for every natural number j such that $j \in \text{dom } r$ holds r(j) = a(i, j), and
- (iii) dom q = Seg m, and
- (iv) for every natural number j such that $j \in \text{dom } q$ there exists a finite sequence s of elements of X such that dom s = Seg n and $q(j) = \sum s$ and for every natural number i such that $i \in \text{dom } s$ holds s(i) = a(i,j).

Then $\sum p = \sum q$. Proof: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every natural number } m$ for every function a from $\text{Seg} \, \$_1 \times \text{Seg} \, m$ into X for every finite sequences p, q of elements of X such that $\text{dom} \, p = \text{Seg} \, \$_1$ and for every natural number i such that $i \in \text{dom} \, p$ there exists a finite sequence r of elements of X such that $\text{dom} \, r = \text{Seg} \, m$ and $p(i) = \sum r$ and for every natural number j such that $j \in \text{dom} \, r$ holds r(j) = a(i,j) and $\text{dom} \, q = \text{Seg} \, m$ and for every natural number j such that $j \in \text{dom} \, q$ there exists a finite sequence s of elements of X such that $\text{dom} \, s = \text{Seg} \, \$_1$ and $q(j) = \sum s$ and for every natural number i such that $i \in \text{dom} \, s$ holds s(i) = a(i,j) holds $\sum p = \sum q$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [4, (5)], [2, (11)], [13, (95)]. For every natural number n, $\mathcal{P}[n]$ from [2, Sch. 2]. \square

Let A be a subset of \mathbb{R} . The extension of $\operatorname{vol}(A)$ yielding a real number is defined by the term

(Def. 2)
$$\begin{cases} 0, & \text{if } A \text{ is empty,} \\ \text{vol}(A), & \text{otherwise.} \end{cases}$$

In the sequel n denotes an element of \mathbb{N} and a, b denote real numbers. Now we state the propositions:

- (5) Let us consider a real bounded subset A of \mathbb{R} . Then $0 \leq$ the extension of vol(A).
- (6) Let us consider a non empty closed interval subset A of \mathbb{R} , a Division D of A, and a finite sequence q of elements of \mathbb{R} . Suppose
 - (i) dom q = Seg len D, and
 - (ii) for every natural number i such that $i \in \text{Seg len } D$ holds q(i) = vol(divset(D, i)).

Then $\sum q = \operatorname{vol}(A)$. PROOF: Set $p = \operatorname{lower_volume}(\chi_{A,A}, D)$. For every natural number k such that $k \in \operatorname{dom} q$ holds q(k) = p(k) by [15, (19)]. \square

- (7) Let us consider a real normed space Y, a point E of Y, a finite sequence q of elements of \mathbb{R} , and a finite sequence S of elements of Y. Suppose
 - (i) len S = len q, and

(ii) for every natural number i such that $i \in \text{dom } S$ there exists a real number r such that r = q(i) and $S(i) = r \cdot E$.

Then $\sum S = \sum q \cdot E$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite}$ sequence q of elements of \mathbb{R} for every finite sequence S of elements of Y such that $\$_1 = \text{len } S$ and len S = len q and for every natural number i such that $i \in \text{dom } S$ there exists a real number r such that r = q(i) and $S(i) = r \cdot E$ holds $\sum S = \sum q \cdot E$. $\mathcal{P}[0]$ by [30, (10)], [12, (72)], [30, (43)]. For every natural number i, $\mathcal{P}[i]$ from [2, Sch. 2]. \square

- (8) Let us consider a non empty closed interval subset A of \mathbb{R} , a Division D of A, a non empty closed interval subset B of \mathbb{R} , and a finite sequence v of elements of \mathbb{R} . Suppose
 - (i) $B \subseteq A$, and
 - (ii) len D = len v, and
 - (iii) for every natural number i such that $i \in \text{dom } v \text{ holds } v(i) = \text{the extension of } \text{vol}(B \cap \text{divset}(D, i)).$

Then $\sum v = \operatorname{vol}(B)$. The theorem is a consequence of (5). PROOF: Define $\mathcal{P}[\operatorname{natural number}] \equiv \text{for every non empty closed interval subset } A \text{ of } \mathbb{R} \text{ for every Division } D \text{ of } A \text{ for every non empty closed interval subset } B \text{ of } \mathbb{R} \text{ for every finite sequence } v \text{ of elements of } \mathbb{R} \text{ such that } \$_1 = \operatorname{len} D \text{ and } B \subseteq A \text{ and len } D = \operatorname{len} v \text{ and for every natural number } k \text{ such that } k \in \operatorname{dom} v \text{ holds } v(k) = \text{the extension of } \operatorname{vol}(B \cap \operatorname{divset}(D, k)) \text{ holds } \sum v = \operatorname{vol}(B).$ For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [29, (29)], [4, (4)], [2, (11)]. For every natural number i, $\mathcal{P}[i]$ from [2, Sch. 2]. \square

- (9) Let us consider a real normed space Y, a finite sequence x_3 of elements of Y, and a finite sequence y of elements of \mathbb{R} . Suppose
 - (i) $len x_3 = len y$, and
 - (ii) for every element i of \mathbb{N} such that $i \in \text{dom } x_3$ there exists a point v of Y such that $v = x_{3i}$ and y(i) = ||v||.

Then $\|\sum x_3\| \leqslant \sum y$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite}$ sequence x_3 of elements of Y for every finite sequence y of elements of \mathbb{R} such that $\$_1 = \text{len } x_3$ and $\text{len } x_3 = \text{len } y$ and for every element i of \mathbb{N} such that $i \in \text{dom } x_3$ there exists a point v of Y such that $v = x_{3i}$ and $y(i) = \|v\|$ holds $\|\sum x_3\| \leqslant \sum y$. $\mathcal{P}[0]$ by [30, (43)], [12, (72)]. For every natural number i, $\mathcal{P}[i]$ from [2, Sch. 2]. \square

- (10) Let us consider a real normed space Y, a finite sequence p of elements of Y, and a finite sequence q of elements of \mathbb{R} . Suppose
 - (i) len p = len q, and
 - (ii) for every natural number j such that $j \in \text{dom } p \text{ holds } ||p_j|| \leq q(j)$.

Then $\|\sum p\| \leqslant \sum q$. The theorem is a consequence of (9). PROOF: Define $\mathcal{Q}[\text{natural number, set}] \equiv \text{there exists a point } v \text{ of } Y \text{ such that } v = p_{\$_1} \text{ and } \$_2 = \|v\|$. For every natural number i such that $i \in \text{Seg len } p$ there exists an element x of \mathbb{R} such that $\mathcal{Q}[i,x]$. Consider u being a finite sequence of elements of \mathbb{R} such that dom u = Seg len p and for every natural number i such that $i \in \text{Seg len } p$ holds $\mathcal{Q}[i,u(i)]$ from [4, Sch. 5]. For every element i of \mathbb{N} such that $i \in \text{dom } p$ there exists a point v of Y such that $v = p_i$ and $u(i) = \|v\|$. \square

- (11) Let us consider an element j of \mathbb{N} , a non empty closed interval subset A of \mathbb{R} , and a Division D_1 of A. Suppose $j \in \text{dom } D_1$. Then $\text{vol}(\text{divset}(D_1, j)) \leq \delta_{D_1}$.
- (12) Let us consider a non empty closed interval subset A of \mathbb{R} , a Division D of A, and a real number r. Suppose $\delta_D < r$. Let us consider a natural number i and real numbers s, t. If $i \in \text{dom } D$ and s, $t \in \text{divset}(D, i)$, then |s-t| < r. The theorem is a consequence of (11).
- (13) Let us consider a real Banach space X, a non empty closed interval subset A of \mathbb{R} , and a function h from A into the carrier of X. Suppose a real number r. Suppose 0 < r. Then there exists a real number s such that
 - (i) 0 < s, and
 - (ii) for every real numbers x_1, x_2 such that $x_1, x_2 \in \text{dom } h$ and $|x_1 x_2| < s$ holds $||h_{x_1} h_{x_2}|| < r$.

Let us consider a division sequence T of A and a middle volume sequence S of h and T. Suppose

- (iii) δ_T is convergent, and
- (iv) $\lim \delta_T = 0$.

Then middle sum(h, S) is convergent. The theorem is a consequence of (8), (7), (4), (12), (5), (10), and (6). PROOF: For every division sequence T of A and for every middle volume sequence S of h and T such that δ_T is convergent and $\lim \delta_T = 0$ holds middle sum(h, S) is convergent by [32, (57)], [15, (9)], [17, (9)]. \square

The scheme ExRealSeq2X deals with a non empty set \mathcal{D} and a unary functor \mathcal{F} , \mathcal{G} yielding an element of \mathcal{D} and states that

(Sch. 1) There exists a sequence s of \mathcal{D} such that for every natural number n, $s(2 \cdot n) = \mathcal{F}(n)$ and $s(2 \cdot n + 1) = \mathcal{G}(n)$.

Now we state the propositions:

(14) Let us consider a natural number n. Then there exists a natural number k such that $n = 2 \cdot k$ or $n = 2 \cdot k + 1$.

- (15) Let us consider a non empty closed interval subset A of \mathbb{R} and division sequences T_2 , T of A. Then there exists a division sequence T_1 of A such that for every natural number i, $T_1(2 \cdot i) = T_2(i)$ and $T_1(2 \cdot i + 1) = T(i)$. The theorem is a consequence of (14).
- (16) Let us consider a non empty closed interval subset A of \mathbb{R} and division sequences T_2 , T, T_1 of A. Suppose
 - (i) δ_{T_2} is convergent, and
 - (ii) $\lim \delta_{T_2} = 0$, and
 - (iii) δ_T is convergent, and
 - (iv) $\lim \delta_T = 0$, and
 - (v) for every natural number i, $T_1(2 \cdot i) = T_2(i)$ and $T_1(2 \cdot i + 1) = T(i)$. Then
 - (vi) δ_{T_1} is convergent, and
 - (vii) $\lim \delta_{T_1} = 0$.

The theorem is a consequence of (14).

- (17) Let us consider a real normed space X, a non empty closed interval subset A of \mathbb{R} , a function h from A into the carrier of X, division sequences T_2 , T, T_1 of A, a middle volume sequence S_7 of h and T_2 , and a middle volume sequence S of h and T. Suppose a natural number i. Then
 - (i) $T_1(2 \cdot i) = T_2(i)$, and
 - (ii) $T_1(2 \cdot i + 1) = T(i)$.

Then there exists a middle volume sequence S_1 of h and T_1 such that for every natural number i, $S_1(2 \cdot i) = S_7(i)$ and $S_1(2 \cdot i + 1) = S(i)$. The theorem is a consequence of (14). PROOF: Reconsider $S_2 = S_7$, $S_3 = S$ as a sequence of (the carrier of X)*. Define $\mathcal{F}(\text{natural number}) = S_{2\S_1}$. Define $\mathcal{G}(\text{natural number}) = S_{3\S_1}$. Consider S_1 being a sequence of (the carrier of X)* such that for every natural number n, $S_1(2 \cdot n) = \mathcal{F}(n)$ and $S_1(2 \cdot n + 1) = \mathcal{G}(n)$ from ExRealSeq2X. For every element i of \mathbb{N} , $S_1(i)$ is a middle volume of h and $T_1(i)$. \square

- (18) Let us consider a real normed space X and sequences S_4 , S_6 , S_5 of X. Suppose
 - (i) S_5 is convergent, and
 - (ii) for every natural number i, $S_5(2 \cdot i) = S_4(i)$ and $S_5(2 \cdot i + 1) = S_6(i)$. Then
 - (iii) S_4 is convergent, and
 - (iv) $\lim S_4 = \lim S_5$, and
 - (v) S_6 is convergent, and

(vi) $\lim S_6 = \lim S_5$.

The theorem is a consequence of (14). PROOF: For every real number r such that 0 < r there exists a natural number m_1 such that for every natural number i such that $m_1 \le i$ holds $||S_4(i) - \lim S_5|| < r$ by [2, (11)]. For every real number r such that 0 < r there exists a natural number m_1 such that for every natural number i such that i holds $||S_6(i) - \lim S_5|| < r$ by [2, (11)]. \square

(19) Let us consider a real Banach space X and a continuous partial function f from \mathbb{R} to the carrier of X. If $a \leq b$ and $[a,b] \subseteq \mathrm{dom}\, f$, then f is integrable on [a,b]. The theorem is a consequence of (3), (13), (15), (17), (16), and (18). Proof: Set A = [a,b]. Reconsider $h = f \upharpoonright A$ as a function from A into the carrier of X. Consider T_2 being a division sequence of A such that δ_{T_2} is convergent and $\dim \delta_{T_2} = 0$. Set $S_7 = \mathrm{the}\, \mathrm{middle}\, \mathrm{volume}\, \mathrm{sequence}\, of\, h$ and T_2 . Set $I = \dim \mathrm{middle}\, \mathrm{sum}(h, S_7)$. For every division sequence T of A and for every middle volume sequence S of h and T such that δ_T is convergent and $\dim \delta_T = 0$ holds middle $\mathrm{sum}(h, S)$ is convergent and $\dim \mathrm{middle}\, \mathrm{sum}(h, S) = I$. \square

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263–269, 1992.
- [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [12] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [15] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93–102, 1999.
- [16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191–196, 2001.
- [17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. Formalized Mathematics, 9(1):197–200, 2001.
- [18] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for

- partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
- [19] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.
- [20] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [21] Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from ℝ into real normed space. Formalized Mathematics, 19(1):17–22, 2011. doi:10.2478/v10037-011-0003-8.
- [22] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997.
- [23] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45–49, 2011. doi:10.2478/v10037-011-0008-3.
- [24] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [25] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [26] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, $12(1):39-48,\ 2004.$
- [27] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
- [28] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [29] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [30] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

Received June 18, 2013