
FORMALIZED MATHEMATICS

Vol. 21, No. 2, Pages 153–162, 2013
DOI: 10.2478/forma-2013-0017 degruyter.com/view/j/forma

On Square-Free Numbers

Adam Grabowski
Institute of Informatics
University of Białystok

Akademicka 2, 15-267 Białystok
Poland

Summary. In the article the formal characterization of square-free num-
bers is shown; in this manner the paper is the continuation of [19]. Essentially,
we prepared some lemmas for convenient work with numbers (including the pro-
of that the sequence of prime reciprocals diverges [1]) according to [18] which
were absent in the Mizar Mathematical Library. Some of them were expressed in
terms of clusters’ registrations, enabling automatization machinery available in
the Mizar system. Our main result of the article is in the final section; we proved
that the lattice of positive divisors of a positive integer n is Boolean if and only
if n is square-free.
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1. Preliminaries

Let a, b be non zero natural numbers. Let us observe that gcd(a, b) is non
zero and lcm(a, b) is non zero.

Let n be a natural number. Note that 0−′ n reduces to 0.
Now we state the propositions:

(1) Let us consider natural numbers n, i. If n ­ 22·i+2, then n
2 ­ 2i ·

√
n.

(2) Let us consider a natural number n. Then support PFExp(n) ⊆ P.
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Let us consider a non zero natural number n. Now we state the propositions:

(3) n− (n div 2) · 2 ¬ 1.

(4) (n div 2) · 2 ¬ n.

Now we state the propositions:

(5) Let us consider non zero natural numbers a, b. Suppose a and b are not
relatively prime. Then there exists a non zero natural number k such that

(i) k 6= 1, and

(ii) k | a, and

(iii) k | b.

(6) Let us consider non zero natural numbers n, a. If a | n, then n div a 6= 0.

(7) Let us consider natural numbers i, j. If i and j are relatively prime, then
lcm(i, j) = i · j.

Let f be a natural-valued finite sequence. Let us note that
∏
f is natural.

2. Prime Numbers

Now we state the propositions:

(8) pr(0) = 2.

(9) P(3) = {2}. Proof: For every natural number q, q ∈ {2} iff q < 3 and
q is prime by [27, (28)], [4, (13)]. �

(10) pr(1) = 3. The theorem is a consequence of (9).

(11) P(5) = {2, 3}. Proof: For every natural number q, q ∈ {2, 3} iff q < 5
and q is prime by [27, (28)], [17, (41)], [4, (13)]. �

(12) pr(2) = 5. The theorem is a consequence of (11).

(13) P(6) = {2, 3, 5}. Proof: {2, 3, 5} ⊆ N. For every natural number q,
q ∈ {2, 3, 5} iff q < 6 and q is prime by [27, (28)], [17, (41), (59)]. �

(14) P(7) = {2, 3, 5}. Proof: {2, 3, 5} ⊆ N. For every natural number q,
q ∈ {2, 3, 5} iff q < 7 and q is prime by [27, (28)], [17, (41), (59)]. �

(15) pr(3) = 7. The theorem is a consequence of (14).

(16) P(11) = {2, 3, 5, 7}. Proof: {2, 3, 5, 7} ⊆ N. For every natural number
q, q ∈ {2, 3, 5, 7} iff q < 11 and q is prime by [27, (28)], [17, (41), (59)]. �

(17) pr(4) = 11. The theorem is a consequence of (16).

(18) P(13) = {2, 3, 5, 7, 11}. Proof: {2, 3, 5, 7, 11} ⊆ N. For every natural
number q, q ∈ {2, 3, 5, 7, 11} iff q < 13 and q is prime by [27, (28)], [17,
(41), (59)]. �

(19) pr(5) = 13.

(20) Let us consider natural numbers m, n. Then
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(i) P(m) ⊆ P(n), or

(ii) P(n) ⊆ P(m).

(21) Let us consider natural numbers n, m. Then n < m if and only if pr(n) <
pr(m). Proof: For every natural numbers n, m such that n < m holds
pr(n) < pr(m) by [2, (11)], [26, (69)], [4, (39)]. �

3. Prime Reciprocals

In this paper n, i denote natural numbers.
The functor invP yielding a sequence of real numbers is defined by

(Def. 1) Let us consider a natural number i. Then it(i) = 1
pr(i) .

Let f be a sequence of real numbers. We introduce f is divergent as an
antonym for f is convergent.

Let us note that invP is decreasing and lower bounded and invP is convergent.
The functor invN yielding a sequence of real numbers is defined by

(Def. 2) Let us consider a natural number i. Then it(i) = 1
i .

Let us note that invN is non-negative yielding and invN is convergent.
Now we state the propositions:

(22) lim invN = 0.

(23) invP is a subsequence of invN. The theorem is a consequence of (21).
Proof: Define F(natural number) = pr($1). Consider f being a sequence
of real numbers such that for every natural number i, f(i) = F(i) from
[24, Sch. 1]. For every natural number n, f(n) is an element of N. For every
natural numbers n, m such that n < m holds f(n) < f(m). invP = invN ·f
by [10, (13)]. �

Let f be a non-negative yielding sequence of real numbers. One can verify
that every subsequence of f is non-negative yielding and invP is non-negative
yielding.

Now we state the proposition:

(24) lim invP = 0.

Observe that (
∑κ
α=0(invP)(α))κ∈N is non-decreasing as a sequence of real

numbers.
Now we state the proposition:

(25) Let us consider a non-negative yielding sequence f of real numbers. Sup-
pose f is summable. Let us consider a real number p. Suppose p > 0. Then
there exists an element i of N such that

∑
(f ↑ i) < p.
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4. Square Factors

Let n be a non zero natural number. The functor SqFactorsn yielding a
many sorted set indexed by P is defined by

(Def. 3) (i) support it = support PFExp(n), and

(ii) for every natural number p such that p ∈ support PFExp(n) holds
it(p) = p(p -count(n)) div 2.

Let us observe that SqFactorsn is finite-support and natural-valued.
Note that every element of support SqFactorsn is natural.
The functor SqFn yielding a natural number is defined by the term

(Def. 4)
∏

SqFactorsn.

Now we state the proposition:

(26) Let us consider a bag f of P. Then
∏
f 6= 0.

Let n be a non zero natural number. Let us observe that SqFn is non zero.
Let p be a prime number. The functor SqFDiv p yielding a subset of N is

defined by

(Def. 5) Let us consider a natural number n. Then n ∈ it if and only if n is
square-free and for every prime number i such that i | n holds i ¬ p.

In the sequel p denotes a prime number.
Now we state the propositions:

(27) 1 ∈ SqFDiv p. Proof: For every prime number i such that i | 1 holds
i ¬ p by [21, (15)]. �

(28) 0 /∈ SqFDiv p.

Let us note that there exists a natural number which is square-free and non
zero.

Let us consider p. One can verify that there exists a bag of Seg p which is
positive yielding.

Now we state the propositions:

(29) Let us consider a positive yielding bag f of Seg p. Then dom f = support f .
Proof: Seg p ⊆ support f by [10, (3)]. �

(30) dom CFS(Seg p) = Seg p.

(31) Let us consider a finite set A. Then dom CFS(A) = Seg A .

(32) Let us consider a positive yielding bag g of Seg p. If g = p 7→ p, then
g = g · CFS(support g). The theorem is a consequence of (29) and (30).
Proof: Set g = f · CFS(Seg p). For every element x such that x ∈ dom g

holds g(x) = p 7→ p(x) by [10, (12)], [35, (7)], [10, (3)]. �

(33) Let us consider a positive yielding bag f of Seg p. If f = p 7→ p, then∏
f = pp. The theorem is a consequence of (32).

Let us consider a non zero natural number n. Now we state the propositions:
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(34) If n ∈ SqFDiv p, then support PFExp(n) ⊆ Seg p.

(35) If n ∈ SqFDiv p, then support PFExp(n) ¬ p.
Now we state the propositions:

(36) Let us consider a square-free non zero natural number n.
Then rng PFExp(n) ⊆ {0, 1}.

(37) Let us consider non zero natural numbersm, n. If PFExp(m) = PFExp(n),
thenm = n. Proof: For every element x such that x ∈ dom PPF(m) holds
(PPF(m))(x) = (PPF(n))(x) by [23, (33)]. �

Let p be a prime number. Observe that SqFDiv p is non empty.
Note that every element of SqFDiv p is non empty.
The functor 2P(p) yielding a set is defined by the term

(Def. 6) 2Seg p∩P.

Let us note that 2P(p) is finite.
The functor HomP(p) yielding a function from SqFDiv p into 2P(p) is defined

by

(Def. 7) Let us consider an element x of SqFDiv p.
Then it(x) = PFExp(x)�(Seg p ∩ P).

Observe that HomP(p) is one-to-one.
Now we state the proposition:

(38) SqFDiv p ⊆ 2P(p).

Let p be a prime number. One can verify that SqFDiv p is finite.
Now we state the propositions:

(39) SqFDiv p ¬ 2p.

(40) If n 6= 0 and pi | n, then i ¬ p -count(n).

(41) If n 6= 0 and for every prime number p, p -count(n) ¬ 1, then n is
square-free. The theorem is a consequence of (40).

(42) Let us consider a prime number p and a non zero natural number n. If
p -count(n) = 0, then (SqFactorsn)(p) = 0.

(43) Let us consider a non zero natural number n and a prime number p.
Suppose p -count(n) 6= 0. Then (SqFactorsn)(p) = p(p -count(n)) div 2.

(44) Let us consider non zero natural numbers m, n. Suppose m and n are
relatively prime. Then SqFactors(m ·n) = SqFactorsm+SqFactorsn. The
theorem is a consequence of (42) and (43).

(45) Let us consider a non zero natural number n. Then SqFn | n. The
theorem is a consequence of (44). Proof: Define F(non zero natural
number) =

∏
SqFactors $1. Define G(non zero natural number) = SqFac-

tors $1. Define P[natural number] ≡ for every non zero natural number n
such that supportG(n) ⊆ Seg $1 holds F(n) | n. For every natural number
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k such that P[k] holds P[k + 1] by [6, (1)], [4, (13)], [23, (34), (42)]. P[0]
by [23, (20)]. For every natural number k, P[k] from [4, Sch. 2]. �

Let n be a non zero natural number. One can check that PFactorsn is prime-
factorization-like.

Let us consider a bag f of P. Now we state the propositions:

(46) There exists a finite sequence g of elements of N such that

(i)
∏
f =
∏
g, and

(ii) g = f · CFS(support f).

(47) If f(p) = pn, then pn |
∏
f .

(48) If f(p) = pn, then p -count(
∏
f) ­ n.

5. Extracting Square-containing and Square-free Part of a
Number

Let n be a non zero natural number. The functor TSqFactorsn yielding a
many sorted set indexed by P is defined by

(Def. 8) (i) support it = support PFExp(n), and

(ii) for every natural number p such that p ∈ support PFExp(n) holds
it(p) = p2·((p -count(n)) div 2).

Now we state the proposition:

(49) Let us consider a non zero natural number n. Then TSqFactorsn =
(SqFactorsn)2. Proof: For every element x such that x ∈ dom TSqFact-
ors n holds (TSqFactorsn)(x) = (SqFactorsn)2(x) by [26, (9), (11)]. �

Let n be a non zero natural number. Let us observe that TSqFactorsn is
finite-support and natural-valued.

The functor TSqFn yielding a natural number is defined by the term

(Def. 9)
∏

TSqFactorsn.

Observe that TSqFn is non zero.
Now we state the propositions:

(50) Let us consider a prime number p and a non zero natural number n. If
p -count(n) = 0, then (TSqFactorsn)(p) = 0.

(51) Let us consider a non zero natural number n and a prime number p.
Suppose p -count(n) 6= 0. Then (TSqFactorsn)(p) = p2·((p -count(n)) div 2).

(52) Let us consider non zero natural numbers m, n. Suppose m and n are
relatively prime. Then TSqFactors(m ·n) = TSqFactorsm+TSqFactorsn.
The theorem is a consequence of (50) and (51).

Let n be a non zero natural number. One can check that support TSqFactorsn
is natural-membered.

Now we state the proposition:
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(53) Let us consider a non zero natural number n. Then TSqFn | n. The the-
orem is a consequence of (4) and (52). Proof: Define F(non zero natural
number) =

∏
TSqFactors $1. Define G(non zero natural number) = TSqFa-

ctors $1. Define P[natural number] ≡ for every non zero natural number n
such that supportG(n) ⊆ Seg $1 holds F(n) | n. For every natural number
k such that P[k] holds P[k + 1] by [6, (1)], [4, (13)], [23, (34), (42)]. P[0]
by [23, (20)]. For every natural number k, P[k] from [4, Sch. 2]. �

Let n be a non zero natural number. Let us note that n div TSqFn is square-
free as a natural number.

Now we state the propositions:

(54) Let us consider non zero natural numbers n, k. If k 6= 1 and k2 | n, then
n is square-containing.

(55) Let us consider a square-free non zero natural number n and a non zero
natural number a. If a | n, then a and n div a are relatively prime. The
theorem is a consequence of (5) and (54). Proof: n div a 6= 0 by [29, (12)].
Consider k being a non zero natural number such that k 6= 1 and k | a
and k | n div a. �

6. Binary Operations

Now we state the propositions:

(56) Let us consider non empty sets A, C, a commutative binary operation L
on A, and a binary operation L1 on C. If C ⊆ A and L1 = L � C, then L1
is commutative. Proof: For every elements a, b of C, L1(a, b) = L1(b, a)
by [14, (87)], [10, (49)]. �

(57) Let us consider non empty sets A, C, an associative binary operation L
on A, and a binary operation L1 on C. If C ⊆ A and L1 = L � C, then L1
is associative. Proof: For every elements a, b, c of C, L1(a, L1(b, c)) =
L1(L1(a, b), c) by [14, (87)], [10, (49), (47)]. �

Let C be a non empty set, L be a commutative binary operation on C, and
M be a binary operation on C. Note that 〈C,L,M〉 is join-commutative.

Let L be a binary operation on C and M be a commutative binary operation
on C. Let us observe that 〈C,L,M〉 is meet-commutative.

Let L be an associative binary operation on C and M be a binary operation
on C. Note that 〈C,L,M〉 is join-associative.

Let L be a binary operation on C and M be an associative binary operation
on C. Let us observe that 〈C,L,M〉 is meet-associative.
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7. On the Natural Divisors

Now we state the proposition:

(58) Let us consider a non zero natural number n. Then the set of positive
divisors of n ⊆ N+.

Let us consider a non zero natural number n and natural numbers x, y. Now
we state the propositions:

(59) Suppose x, y ∈ the set of positive divisors of n. Then lcm(x, y) ∈ the set
of positive divisors of n.

(60) Suppose x, y ∈ the set of positive divisors of n. Then gcd(x, y) ∈ the set
of positive divisors of n.

Let n be a non zero natural number. Note that the set of positive divisors of n
is non empty and gcdN is commutative and associative and lcmN is commutative
and associative.

Now we state the propositions:

(61) gcdN+ = gcdN � N+. Proof: Set h1 = gcdN+ . Set h = gcdN. Set N = N+.
h1 = h�(N ×N) by [41, (62)], [10, (49), (2)]. �

(62) lcmN+ = lcmN � N+. Proof: Set h1 = lcmN+ . Set h = lcmN. Set N =
N+. h1 = h�(N ×N) by [41, (62)], [10, (49), (2)]. �

Let us observe that gcdN+ is commutative and lcmN+ is commutative and
gcdN+ is associative and lcmN+ is associative.

8. The Lattice of Natural Divisors

Let n be a non zero natural number. The lattice of positive divisors of n
yielding a strict sublattice of LN+ is defined by

(Def. 10) The carrier of it = the set of positive divisors of n.

One can check that the carrier of the lattice of positive divisors of n is
natural-membered.

Now we state the proposition:

(63) Let us consider a non zero natural number n and elements a, b of the
lattice of positive divisors of n. Then

(i) a t b = lcm(a, b), and

(ii) a u b = gcd(a, b).

Let n be a non zero natural number and p, q be elements of the lattice of
positive divisors of n. We identify lcm(p, q) with ptq. We identify gcd(p, q) with
p u q. Let us note that the lattice of positive divisors of n is non empty.

Note that the lattice of positive divisors of n is distributive and bounded.
Now we state the proposition:
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(64) Let us consider a non zero natural number n. Then

(i) >α = n, and

(ii) ⊥α = 1,

where α is the lattice of positive divisors of n. Proof: Set L = the lattice
of positive divisors of n. Reconsider T = n as an element of L. For every
element a of L, T t a = T and a t T = T by [26, (44)], [19, (39)]. �

Let n be a square-free non zero natural number. One can verify that the
lattice of positive divisors of n is Boolean.

Let n be a non zero natural number. One can verify that every element of
the lattice of positive divisors of n is non zero.

Now we state the proposition:

(65) Let us consider a non zero natural number n. Then the lattice of positive
divisors of n is Boolean if and only if n is square-free. The theorem is a
consequence of (64) and (7). Proof: Set L = the lattice of positive
divisors of n. If L is Boolean, then n is square-free by [26, (81)], [19, (39)],
[28, (7)]. �
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