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Summary. Double sequences are important extension of the ordinary no-
tion of a sequence. In this article we formalized three types of limits of double
sequences and the theory of these limits.
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The notation and terminology used in this paper have been introduced in the
following articles: [3], [4], [13], [5], [15], [6], [7], [16], [10], [1], [2], [8], [11], [18],
[12], [17], and [9].

In this paper R, R1, R2 denote functions from N × N into R, r1, r2 denote
convergent sequences of real numbers, n, m, N ,M denote natural numbers, and
e, r denote real numbers.

Let us consider R. We say that R is p-convergent if and only if

(Def. 1) There exists a real number p such that for every real number e such
that 0 < e there exists a natural number N such that for every natural
numbers n, m such that n  N and m  N holds |R(n,m)− p| < e.

Assume R is p-convergent. The functor P-limR yielding a real number is
defined by

(Def. 2) Let us consider a real number e. Suppose 0 < e. Then there exists a
natural number N such that for every natural numbers n, m such that
n  N and m  N holds |R(n,m)− it | < e.
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We say that R is convergent in the first coordinate if and only if

(Def. 3) Let us consider an element m of N. Then curry′(R,m) is convergent.

We say that R is convergent in the second coordinate if and only if

(Def. 4) Let us consider an element n of N. Then curry(R,n) is convergent.

The lim in the first coordinate of R yielding a function from N into R is
defined by

(Def. 5) Let us consider an element m of N. Then it(m) = lim curry′(R,m).

The lim in the second coordinate of R yielding a function from N into R is
defined by

(Def. 6) Let us consider an element n of N. Then it(n) = lim curry(R,n).

Assume the lim in the first coordinate of R is convergent. The first coordinate
major iterated lim of R yielding a real number is defined by

(Def. 7) Let us consider a real number e. Suppose 0 < e. Then there exists
a natural number M such that for every natural number m such that
m M holds |(the lim in the first coordinate of R)(m)− it | < e.

Assume the lim in the second coordinate of R is convergent. The second
coordinate major iterated lim of R yielding a real number is defined by

(Def. 8) Let us consider a real number e. Suppose 0 < e. Then there exists a
natural number N such that for every natural number n such that n  N
holds |(the lim in the second coordinate of R)(n)− it | < e.

Let R be a function from N×N into R. We say that R is uniformly convergent
in the first coordinate if and only if

(Def. 9) (i) R is convergent in the first coordinate, and

(ii) for every real number e such that e > 0 there exists a natural number
M such that for every natural number m such that m M for every
natural number n, |R(n,m) − (the lim in the first coordinate of
R)(n)| < e.

We say that R is uniformly convergent in the second coordinate if and only if

(Def. 10) (i) R is convergent in the second coordinate, and

(ii) for every real number e such that e > 0 there exists a natural number
N such that for every natural number n such that n  N for every
natural number m, |R(n,m) − (the lim in the second coordinate of
R)(m)| < e.

Let us consider R. We say that R is non-decreasing if and only if

(Def. 11) Let us consider natural numbers n1,m1, n2,m2. If n1  n2 andm1  m2,
then R(n1,m1)  R(n2,m2).

We say that R is non-increasing if and only if

(Def. 12) Let us consider natural numbers n1,m1, n2,m2. If n1  n2 andm1  m2,
then R(n1,m1) ¬ R(n2,m2).
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Now we state the proposition:

(1) Let us consider real numbers a, b, c. If a ¬ b ¬ c, then |b| ¬ |a| or
|b| ¬ |c|.

Note that every function from N × N into R which is non-decreasing and
p-convergent is also lower bounded and upper bounded and every function from
N × N into R which is non-increasing and p-convergent is also lower bounded
and upper bounded.

Let r be an element of R. Let us note that N × N 7−→ r is p-convergent
convergent in the first coordinate and convergent in the second coordinate as a
function from N× N into R.

Now we state the proposition:

(2) Let us consider an element r of R. Then P-lim(N×N 7−→ r) = r. Proof:
Set R = N × N 7−→ r. For every natural numbers n, m, R(n,m) = r by
[15, (70)]. �

Note that there exists a function from N× N into R which is p-convergent,
convergent in the first coordinate, and convergent in the second coordinate.

In this paper P1 denotes a p-convergent function from N× N into R.
Let P4 be a p-convergent convergent in the second coordinate function from

N× N into R. Note that the lim in the second coordinate of P4 is convergent.
Now we state the proposition:

(3) Suppose R is p-convergent and convergent in the second coordinate.
Then P-limR = the second coordinate major iterated lim of R. Proof:
Consider z being a real number such that for every e such that 0 < e there
exists a natural number N1 such that for every n and m such that n  N1
and m  N1 holds |R(n,m) − z| < e. For every e such that 0 < e there
exists N such that for every n such that n  N holds |(the lim in the
second coordinate of R)(n) − z| < e by [4, (63), (60)]. For every e such
that 0 < e there exists N such that for every n such that n  N holds
|(the lim in the second coordinate of R)(n) − P-limR| < e by [4, (60),
(63)]. �

Let P3 be a p-convergent convergent in the first coordinate function from
N×N into R. Let us note that the lim in the first coordinate of P3 is convergent.

Now we state the proposition:

(4) Suppose R is p-convergent and convergent in the first coordinate. Then
P-limR = the first coordinate major iterated lim of R. Proof: Consider
z being a real number such that for every e such that 0 < e there exists
a natural number N1 such that for every n and m such that n  N1 and
m  N1 holds |R(n,m)− z| < e. For every e such that 0 < e there exists
N such that for every n such that n  N holds |(the lim in the first
coordinate of R)(n)− z| < e by [4, (63), (60)]. For every e such that 0 < e
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there exists N such that for every n such that n  N holds |(the lim in
the first coordinate of R)(n)− P-limR| < e by [4, (60), (63)]. �

One can verify that every function from N×N into R which is non-decreasing
and upper bounded is also p-convergent convergent in the first coordinate and
convergent in the second coordinate and every function from N×N into R which
is non-increasing and lower bounded is also p-convergent convergent in the first
coordinate and convergent in the second coordinate.

Now we state the propositions:

(5) Suppose R is uniformly convergent in the first coordinate and the lim in
the first coordinate of R is convergent. Then

(i) R is p-convergent, and

(ii) P-limR = the first coordinate major iterated lim of R.

(6) Suppose R is uniformly convergent in the second coordinate and the lim
in the second coordinate of R is convergent. Then

(i) R is p-convergent, and

(ii) P-limR = the second coordinate major iterated lim of R.

Let us consider R. We say that R is Cauchy if and only if

(Def. 13) Let us consider a real number e. Suppose e > 0. Then there exists a
natural numberN such that for every natural numbers n1, n2,m1,m2 such
that N ¬ n1 ¬ n2 and N ¬ m1 ¬ m2 holds |R(n2,m2)−R(n1,m1)| < e.

Now we state the propositions:

(7) R is p-convergent if and only if R is Cauchy. Proof: Define R(element
of N) = R($1, $1). Consider s1 being a function from N into R such that for
every element n of N, s1(n) = R(n) from [7, Sch. 4]. Reconsider z = lim s1
as a complex number. For every e such that 0 < e there exists N such that
for every n and m such that n  N and m  N holds |R(n,m) − z| < e
by [4, (63)]. �

(8) Let us consider a function R from N× N into R. Suppose

(i) R is non-decreasing, or

(ii) R is non-increasing.

Then R is p-convergent if and only if R is lower bounded and upper
bounded.

Let X, Y be non empty sets, H be a binary operation on Y , and f , g be
functions from X into Y . Observe that the functor Hf,g yields a function from
X ×X into Y . Now we state the propositions:

(9) (i) ·Rr1,r2 is convergent in the first coordinate and convergent in the
second coordinate, and

(ii) the lim in the first coordinate of ·Rr1,r2 is convergent, and
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(iii) the first coordinate major iterated lim of ·R r1,r2 = lim r1 · lim r2, and

(iv) the lim in the second coordinate of ·Rr1,r2 is convergent, and

(v) the second coordinate major iterated lim of ·R r1,r2 = lim r1 · lim r2,
and

(vi) ·Rr1,r2 is p-convergent, and

(vii) P-lim ·Rr1,r2 = lim r1 · lim r2.
Proof: Set R = ·Rr1,r2 . For every n and m, R(n,m) = r1(n) · r2(m)
by [5, (77)]. For every element m of N and for every real number e such
that 0 < e there exists N such that for every n such that n  N holds
|(curry′(R,m))(n) − lim r1 · r2(m)| < e by [4, (47), (65), (44)]. For every
element m of N, curry′(R,m) is convergent. For every element m of N and
for every real number e such that 0 < e there exists N such that for every
n such that n  N holds |(curry(R,m))(n) − r1(m) · lim r2| < e by [4,
(47), (65), (44)]. For every element m of N, curry(R,m) is convergent. For
every e such that 0 < e there exists N such that for every n such that
n  N holds |(the lim in the first coordinate of R)(n)− lim r1 · lim r2| < e
by [4, (46), (65)]. For every e such that 0 < e there exists N such that
for every n such that n  N holds |(the lim in the second coordinate of
R)(n) − lim r1 · lim r2| < e by [4, (46), (65)]. For every e such that 0 < e
there exists N such that for every n and m such that n  N and m  N
holds |R(n,m)− lim r1 · lim r2| < e by [12, (3)], [4, (63), (46), (65)]. �

(10) (i) +Rr1,r2 is convergent in the first coordinate and convergent in the
second coordinate, and

(ii) the lim in the first coordinate of +Rr1,r2 is convergent, and

(iii) the first coordinate major iterated lim of +R r1,r2 = lim r1 + lim r2,
and

(iv) the lim in the second coordinate of +Rr1,r2 is convergent, and

(v) the second coordinate major iterated lim of +R r1,r2 = lim r1+lim r2,
and

(vi) +Rr1,r2 is p-convergent, and

(vii) P-lim +Rr1,r2 = lim r1 + lim r2.
Proof: Set R = +Rr1,r2 . For every n and m, R(n,m) = r1(n) + r2(m) by
[5, (77)]. For every element m of N and for every real number e such that
0 < e there exists a natural number N such that for every natural number
n such that n  N holds |(curry′(R,m))(n) − (lim r1 + r2(m))| < e. For
every element m of N, curry′(R,m) is convergent. For every element m of
N and for every real number e such that 0 < e there exists N such that for
every n such that n  N holds |(curry(R,m))(n)− (r1(m) + lim r2)| < e.
For every element m of N, curry(R,m) is convergent. For every e such
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that 0 < e there exists N such that for every n such that n  N holds
|(the lim in the first coordinate of R)(n)− (lim r1+ lim r2)| < e. For every
e such that 0 < e there exists N such that for every n such that n  N
holds |(the lim in the second coordinate of R)(n)− (lim r1 + lim r2)| < e.
For every e such that 0 < e there exists N such that for every n and m
such that n  N and m  N holds |R(n,m)− (lim r1+ lim r2)| < e by [4,
(56)]. �

(11) Suppose R1 is p-convergent and R2 is p-convergent. Then

(i) R1 +R2 is p-convergent, and

(ii) P-lim(R1 +R2) = P-limR1 + P-limR2.

(12) Suppose R1 is p-convergent and R2 is p-convergent. Then

(i) R1 −R2 is p-convergent, and

(ii) P-lim(R1 −R2) = P-limR1 − P-limR2.

(13) Let us consider a function R from N × N into R and a real number r.
Suppose R is p-convergent. Then

(i) r ·R is p-convergent, and

(ii) P-lim(r ·R) = r · P-limR.

(14) If R is p-convergent and for every natural numbers n, m, R(n,m)  r,
then P-limR  r.

(15) Suppose R1 is p-convergent and R2 is p-convergent and for every natural
numbers n, m, R1(n,m) ¬ R2(n,m). Then P-limR1 ¬ P-limR2. The
theorem is a consequence of (12) and (14).

(16) Suppose R1 is p-convergent and R2 is p-convergent and P-limR1 =
P-limR2 and for every natural numbers n, m, R1(n,m) ¬ R(n,m) ¬
R2(n,m). Then

(i) R is p-convergent, and

(ii) P-limR = P-limR1.

Proof: For every e such that 0 < e there exists N such that for every n
and m such that n  N and m  N holds |R(n,m) − P-limR1| < e by
[14, (4), (5), (1)]. �

Let X be a non empty set and s1 be a function from N × N into X. A
subsequence of s1 is a function from N× N into X and is defined by

(Def. 14) There exist increasing sequences N , M of N such that for every natural
numbers n, m, it(n,m) = s1(N(n),M(m)).

Let us consider P1. Observe that every subsequence of P1 is p-convergent.
Now we state the proposition:

(17) Let us consider a subsequence P2 of P1. Then P-limP2 = P-limP1.
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Let R be a convergent in the first coordinate function from N × N into R.
Note that every subsequence of R is convergent in the first coordinate.

Now we state the proposition:

(18) Let us consider a subsequence R1 of R. Suppose

(i) R is convergent in the first coordinate, and

(ii) the lim in the first coordinate of R is convergent.

Then

(iii) the lim in the first coordinate of R1 is convergent, and

(iv) the first coordinate major iterated lim of R1 = the first coordinate
major iterated lim of R.

Proof: Consider I1, I2 being increasing sequences of N such that for every
natural numbers n, m, R1(n,m) = R(I1(n), I2(m)). For every e such that
0 < e there exists N such that for every m such that m  N holds
|(the lim in the first coordinate of R1)(m) − the first coordinate major
iterated lim of R| < e. �

Let R be a convergent in the second coordinate function from N × N into
R. One can check that every subsequence of R is convergent in the second
coordinate.

Now we state the proposition:

(19) Let us consider a subsequence R1 of R. Suppose

(i) R is convergent in the second coordinate, and

(ii) the lim in the second coordinate of R is convergent.

Then

(iii) the lim in the second coordinate of R1 is convergent, and

(iv) the second coordinate major iterated lim ofR1 = the second coordinate
major iterated lim of R.

Proof: Consider I1, I2 being increasing sequences of N such that for every
n and m, R1(n,m) = R(I1(n), I2(m)). For every e such that 0 < e there
exists N such that for every m such that m  N holds |(the lim in the
second coordinate of R1)(m)− the second coordinate major iterated lim
of R| < e. �
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