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Summary. The paper introduces coproducts in categories without uni-
queness of cod and dom. It is proven that set-theoretical disjoint union is the
coproduct in the category Ens [9].
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The notation and terminology used in this paper have been introduced in the
following articles: [10], [7], [6], [1], [11], [2], [3], [8], [4], [12], [14], [13], and [5].

From now on I denotes a set and E denotes a non empty set.
Let I be a non empty set, A be a many sorted set indexed by I, and i be an

element of I. Let us observe that coprod(i, A) is relation-like and function-like.
Let C be a non empty category structure, o be an object of C, I be a set,

and f be an objects family of I and C. A morphisms family of f and o is a
many sorted set indexed by I and is defined by

(Def. 1) Let us consider an element i. Suppose i ∈ I. Then there exists an object
o1 of C such that

(i) o1 = f(i), and

(ii) it(i) is a morphism from o1 to o.

Let I be a non empty set. Let us note that a morphisms family of f and o
can equivalently be formulated as follows:

(Def. 2) Let us consider an element i of I. Then it(i) is a morphism from f(i) to
o.
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Let M be a morphisms family of f and o and i be an element of I. Note
that the functor M(i) yields a morphism from f(i) to o. Let C be a functional
non empty category structure. Let I be a set. Let us note that every morphisms
family of f and o is function yielding.

Now we state the proposition:

(1) Let us consider a non empty category structure C, an object o of C, and
an objects family f of ∅ and C. Then ∅ is a morphisms family of f and o.

Let C be a non empty category structure, I be a set, A be an objects family
of I and C, B be an object of C, and P be a morphisms family of A and B. We
say that P is feasible if and only if

(Def. 3) Let us consider a set i. Suppose i ∈ I. Then there exists an object o of
C such that

(i) o = A(i), and

(ii) P (i) ∈ 〈o,B〉.
Let I be a non empty set. Let us observe that P is feasible if and only if the

condition (Def. 4) is satisfied.

(Def. 4) Let us consider an element i of I. Then P (i) ∈ 〈A(i), B〉.
Let C be a category and I be a set. We say that P is coprojection morphisms

if and only if

(Def. 5) Let us consider an object X of C and a morphisms family F of A and
X. Suppose F is feasible. Then there exists a morphism f from B to X
such that

(i) f ∈ 〈B,X〉, and

(ii) for every set i such that i ∈ I there exists an object si of C and there
exists a morphism Pi from si to B such that si = A(i) and Pi = P (i)
and F (i) = f · Pi, and

(iii) for every morphism f1 from B to X such that for every set i such
that i ∈ I there exists an object si of C and there exists a morphism
Pi from si to B such that si = A(i) and Pi = P (i) and F (i) = f1 ·Pi
holds f = f1.

Let I be a non empty set. Let us note that P is coprojection morphisms if
and only if the condition (Def. 6) is satisfied.

(Def. 6) Let us consider an object X of C and a morphisms family F of A and
X. Suppose F is feasible. Then there exists a morphism f from B to X
such that

(i) f ∈ 〈B,X〉, and

(ii) for every element i of I, F (i) = f · P (i), and

(iii) for every morphism f1 from B to X such that for every element i of
I, F (i) = f1 · P (i) holds f = f1.
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Let A be an objects family of ∅ and C. Note that every morphisms family
of A and B is feasible.

Now we state the propositions:

(2) Let us consider a category C, an objects family A of ∅ and C, and an
object B of C. Suppose B is initial. Then there exists a morphisms family
P of A and B such that P is empty and coprojection morphisms. The
theorem is a consequence of (1).

(3) Let us consider an objects family A of I and Ens{∅} and an object o of
Ens{∅}. Then I 7−→ ∅ is a morphisms family of A and o.

(4) Let us consider an objects family A of I and Ens{∅}, an object o of
Ens{∅}, and a morphisms family P of A and o. If P = I 7−→ ∅, then P
is feasible and coprojection morphisms. Proof: P is feasible by [11, (7)].
Reconsider f = ∅ as a morphism from o to Y. For every set i such that
i ∈ I there exists an object si of C and there exists a morphism Pi from
si to o such that si = A(i) and Pi = P (i) and F (i) = f ·Pi by [11, (7)]. �

Let C be a category. We say that C has coproducts if and only if

(Def. 7) Let us consider a set I and an objects family A of I and C. Then there
exists an object B of C and there exists a morphisms family P of A and
B such that P is feasible and coprojection morphisms.

Note that Ens{∅} has coproducts and there exists a category which is strict
and has products and coproducts.

Let C be a category, I be a set, A be an objects family of I and C, and B
be an object of C. We say that B is A-category coproduct-like if and only if

(Def. 8) There exists a morphisms family P of A and B such that P is feasible
and coprojection morphisms.

Let C be a category with coproducts. Let us observe that there exists an
object of C which is A-category coproduct-like.

Let C be a category and A be an objects family of ∅ and C. Note that every
object of C which is A-category coproduct-like is also initial.

Now we state the propositions:

(5) Let us consider a category C, an objects family A of ∅ and C, and an
object B of C. If B is initial, then B is A-category coproduct-like. The
theorem is a consequence of (2).

(6) Let us consider a category C, an objects family A of I and C, and objects
C1, C2 of C. Suppose

(i) C1 is A-category coproduct-like, and

(ii) C2 is A-category coproduct-like.

Then C1,C2 are iso.

From now on A denotes an objects family of I and EnsE .
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Let us consider I, E, and A. Assume
⋃

coprod(A) ∈ E. The functor
∐
A

yielding an object of EnsE is defined by the term

(Def. 9)
⋃

coprod(A).

The functor Coprod(A) yielding a many sorted set indexed by I is defined
by

(Def. 10) Let us consider an element i. Suppose i ∈ I. Then there exists a function
F from A(i) into

⋃
coprod(A) such that

(i) it(i) = F , and

(ii) for every element x such that x ∈ A(i) holds F (x) = 〈〈x, i〉〉.
Observe that Coprod(A) is function yielding.
Assume

⋃
coprod(A) ∈ E. The functor

∐
i∈I
A(i) yielding a morphisms family

of A and
∐
A is defined by the term

(Def. 11) Coprod(A).

Now we state the propositions:

(7) If
⋃

coprod(A) = ∅, then Coprod(A) is empty yielding.

(8) If
⋃

coprod(A) = ∅, then A is empty yielding.

(9) If
⋃

coprod(A) ∈ E and
⋃

coprod(A) = ∅, then
∐
i∈I
A(i) = I 7−→ ∅. The

theorem is a consequence of (7).

(10) If
⋃

coprod(A) ∈ E, then
∐
i∈I
A(i) is feasible and coprojection morphisms.

The theorem is a consequence of (7) and (8).

(11) If
⋃

coprod(A) ∈ E, then
∐
A is A-category coproduct-like. The theorem

is a consequence of (10).

(12) If for every I and A,
⋃

coprod(A) ∈ E, then EnsE has coproducts. The
theorem is a consequence of (10).
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