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Double Series and Sums1
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Summary. In this paper the author constructs several properties for do-
uble series and its convergence. The notions of convergence of double sequence
have already been introduced in our previous paper [18]. In section 1 we introdu-
ce double series and their convergence. Then we show the relationship between
Pringsheim-type convergence and iterated convergence. In section 2 we study do-
uble series having non-negative terms. As a result, we have equality of three type
sums of non-negative double sequence. In section 3 we show that if a non-negative
sequence is summable, then the squence of rearrangement of terms is summable
and it has the same sums. In the last section two basic relations between double
sequences and matrices are introduced.
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The notation and terminology used in this paper have been introduced in the
following articles: [7], [1], [2], [18], [6], [9], [16], [11], [12], [23], [25], [30], [17], [3],
[4], [13], [21], [20], [28], [29], [14], [22], [24], [27], and [15].

1. Double Series and their Convergence

From now on R1, R2, R3 denote functions from N× N into R.
Let f be a function from N × N into R. Let us note that f is non-negative

yielding if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let us consider natural numbers i, j. Then f(i, j) ­ 0.

Now we state the propositions:

(1) Suppose R1 is non-decreasing. Then
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(i) for every element m of N, curry(R1,m) is non-decreasing, and

(ii) for every element n of N, curry′(R1, n) is non-decreasing.

(2) If R1 is non-decreasing and convergent in the first coordinate, then the
lim in the first coordinate of R1 is non-decreasing.

(3) If R1 is non-decreasing and convergent in the second coordinate, then
the lim in the second coordinate of R1 is non-decreasing.

(4) If R1 is non-decreasing and p-convergent, then for every natural numbers
n, m, R1(n,m) ¬ P-limR1.

(5) (i) dom(R2 +R3) = N× N, and

(ii) dom(R2 −R3) = N× N, and

(iii) for every natural numbers n, m, (R2 + R3)(n,m) = R2(n,m) +
R3(n,m), and

(iv) for every natural numbers n, m, (R2 − R3)(n,m) = R2(n,m) −
R3(n,m).

(6) Let us consider non empty sets C, D, E and a function f from C ×D
into E. Then there exists a function g from D × C into E such that for
every element d of D for every element c of C, g(d, c) = f(c, d). Proof:
Define F(element of D, element of C) = f($2, $1). Consider I being a
function from D × C into E such that for every element d of D and for
every element c of C, I(d, c) = F(d, c) from [5, Sch. 2]. �

Let C, D, E be non empty sets and f be a function from C×D into E. The
functor fT yielding a function from D × C into E is defined by

(Def. 2) Let us consider an element d of D and an element c of C. Then it(d, c) =
f(c, d).

Now we state the proposition:

(7) Let us consider non empty sets C, D, E and a function f from C ×D
into E. Then f = (fT)T.

The scheme RecEx2D1 deals with a non empty set C and a non empty set
D and a function H from C into D and a ternary functor F yielding an element
of D and states that

(Sch. 1) There exists a function g from C ×N into D such that for every element
a of C, g(a, 0) = H(a) and for every natural number n, g(a, n + 1) =
F(g(a, n), a, n).

The scheme RecEx2D1R deals with a non empty set C and a function H
from C into R and a ternary functor F yielding a real number and states that

(Sch. 2) There exists a function g from C ×N into R such that for every element
a of C, g(a, 0) = H(a) and for every natural number n, g(a, n + 1) =
F(g(a, n), a, n).
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The scheme RecEx2D2 deals with a non empty set C and a non empty set
D and a function H from C into D and a ternary functor F yielding an element
of D and states that

(Sch. 3) There exists a function g from N×C into D such that for every element
a of C, g(0, a) = H(a) and for every natural number n, g(n + 1, a) =
F(g(n, a), a, n).

The scheme RecEx2D2R deals with a non empty set C and a function H
from C into R and a ternary functor F yielding a real number and states that

(Sch. 4) There exists a function g from N×C into R such that for every element
a of C, g(0, a) = H(a) and for every natural number n, g(n + 1, a) =
F(g(n, a), a, n).

Let R1 be a function from N × N into R. The partial sums in the second
coordinate of R1 yielding a function from N× N into R is defined by

(Def. 3) Let us consider natural numbers n, m. Then

(i) it(n, 0) = R1(n, 0), and

(ii) it(n,m+ 1) = it(n,m) +R1(n,m+ 1).

The partial sums in the first coordinate of R1 yielding a function from N×
N into R is defined by

(Def. 4) Let us consider natural numbers n, m. Then

(i) it(0,m) = R1(0,m), and

(ii) it(n+ 1,m) = it(n,m) +R1(n+ 1,m).

Now we state the propositions:

(8) (i) the partial sums in the second coordinate of R2+R3 = (the partial
sums in the second coordinate ofR2)+(the partial sums in the second
coordinate of R3), and

(ii) the partial sums in the first coordinate of R2 + R3 = (the partial
sums in the first coordinate of R2) + (the partial sums in the first
coordinate of R3).

The theorem is a consequence of (5).

(9) Let us consider natural numbers n, m. Then

(i) (the partial sums in the second coordinate ofR1)(n,m) = (the partial
sums in the first coordinate of R1T)(m,n), and

(ii) (the partial sums in the first coordinate of R1)(n,m) = (the partial
sums in the second coordinate of R1T)(m,n).

(10) (i) the partial sums in the second coordinate of R1 = (the partial
sums in the first coordinate of R1T)T, and

(ii) the partial sums in the second coordinate of R1T = (the partial sums
in the first coordinate of R1)T, and
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(iii) (the partial sums in the second coordinate of R1)T = the partial
sums in the first coordinate of R1T, and

(iv) (the partial sums in the second coordinate of R1T)T = the partial
sums in the first coordinate of R1.

The theorem is a consequence of (9).

Let R1 be a function from N × N into R. The functor (
∑κ
α=0R1(α))κ∈N

yielding a function from N× N into R is defined by the term

(Def. 5) The partial sums in the second coordinate of the partial sums in the first
coordinate of R1.

Now we state the propositions:

(11) Let us consider natural numbers n, m. Then

(i) (
∑κ
α=0R1(α))κ∈N(n+ 1,m) = (the partial sums in the second

coordinate of R1)(n+ 1,m) + (
∑κ
α=0R1(α))κ∈N(n,m), and

(ii) (the partial sums in the first coordinate of the partial sums in the
second coordinate of R1)(n,m + 1) = (the partial sums in the first
coordinate of R1)(n,m+1)+(the partial sums in the first coordinate
of the partial sums in the second coordinate of R1)(n,m).

Proof: Set R4 = (
∑κ
α=0R1(α))κ∈N. Set C5 = the partial sums in the

first coordinate of the partial sums in the second coordinate of R1. Set
R5 = the partial sums in the first coordinate of R1. Set C6 = the partial
sums in the second coordinate of R1. Define P[natural number] ≡ R4(n+
1, $1) = C6(n + 1, $1) + R4(n, $1). For every natural number k such that
P[k] holds P[k + 1]. For every natural number k, P[k] from [3, Sch. 2].
Define Q[natural number] ≡ C5($1,m+1) = R5($1,m+1)+C5($1,m). For
every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [3, Sch. 2]. �

(12) (
∑κ
α=0R1(α))κ∈N = the partial sums in the first coordinate of the partial

sums in the second coordinate of R1.

Let us consider natural numbers n, m. Now we state the propositions:

(13) R1(n+ 1,m+ 1) = (
∑κ
α=0R1(α))κ∈N(n+ 1,m+ 1)− (

∑κ
α=0R1(α))κ∈N

(n,m+ 1)− (
∑κ
α=0R1(α))κ∈N(n+ 1,m) + (

∑κ
α=0R1(α))κ∈N(n,m).

(14) R1(n+1,m+1) = (the partial sums in the first coordinate of the partial
sums in the second coordinate of R1)(n + 1,m + 1) − (the partial sums
in the first coordinate of the partial sums in the second coordinate of
R1)(n + 1,m) − (the partial sums in the first coordinate of the partial
sums in the second coordinate of R1)(n,m+ 1) + (the partial sums in the
first coordinate of the partial sums in the second coordinate of R1)(n,m).

Now we state the propositions:

(15) If (
∑κ
α=0R1(α))κ∈N is p-convergent, thenR1 is p-convergent and P-limR1
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= 0. Proof: For every real number e such that 0 < e there exists a natural
number N such that for every natural numbers n, m such that n ­ N and
m ­ N holds |R1(n,m)− 0| < e by [3, (13), (20)], (13), [8, (57)]. �

(16) (
∑κ
α=0(R2 + R3)(α))κ∈N = (

∑κ
α=0R2(α))κ∈N + (

∑κ
α=0R3(α))κ∈N. The

theorem is a consequence of (8).

(17) Suppose (
∑κ
α=0R2(α))κ∈N is p-convergent and (

∑κ
α=0R3(α))κ∈N is p-

convergent. Then (
∑κ
α=0(R2 + R3)(α))κ∈N is p-convergent. The theorem

is a consequence of (16).

(18) Let us consider elements m, n of N. Then

(i) (the partial sums in the first coordinate of R1)(m,n) =

(
∑κ
α=0(curry′(R1, n))(α))κ∈N(m), and

(ii) (the partial sums in the second coordinate of R1)(m,n) =

(
∑κ
α=0(curry(R1,m))(α))κ∈N(n).

Proof: Define P[natural number] ≡ (the partial sums in the first
coordinate of R1)($1, n) = (

∑κ
α=0(curry′(R1, n))(α))κ∈N($1). For every na-

tural number k such that P[k] holds P[k+1]. For every natural number k,
P[k] from [3, Sch. 2]. Define Q[natural number] ≡ (the partial sums in the
second coordinate of R1)(m, $1) = (

∑κ
α=0(curry(R1,m))(α))κ∈N($1). For

every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [3, Sch. 2]. �

(19) (i) curry((
∑κ
α=0R1(α))κ∈N, 0) = curry(the partial sums in the second

coordinate of R1, 0), and

(ii) curry′((
∑κ
α=0R1(α))κ∈N, 0) = curry′(the partial sums in the first

coordinate of R1, 0).
The theorem is a consequence of (12).

(20) Let us consider non empty sets C, D, functions F1, F2 from C×D into R,
and an element c of C. Then curry(F1+F2, c) = curry(F1, c)+curry(F2, c).

(21) Let us consider non empty sets C, D, functions F1, F2 from C × D

into R, and an element d of D. Then curry′(F1 + F2, d) = curry′(F1, d) +
curry′(F2, d).

(22) (
∑κ
α=0R1(α))κ∈N is convergent in the first coordinate if and only if the

partial sums in the first coordinate of R1 is convergent in the first coordi-
nate. The theorem is a consequence of (19), (12), and (11).

(23) (
∑κ
α=0R1(α))κ∈N is convergent in the second coordinate if and only if

the partial sums in the second coordinate of R1 is convergent in the second
coordinate. The theorem is a consequence of (19), (12), and (11).

Let us consider a natural number k. Now we state the propositions:

(24) Suppose (
∑κ
α=0R1(α))κ∈N is convergent in the first coordinate. Then

(the lim in the first coordinate of (
∑κ
α=0R1(α))κ∈N)(k + 1) = (the lim
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in the first coordinate of (
∑κ
α=0R1(α))κ∈N)(k) + (the lim in the first

coordinate of the partial sums in the first coordinate of R1)(k + 1). The
theorem is a consequence of (22).

(25) Suppose (
∑κ
α=0R1(α))κ∈N is convergent in the second coordinate. Then

(the lim in the second coordinate of (
∑κ
α=0R1(α))κ∈N)(k+ 1) = (the lim

in the second coordinate of (
∑κ
α=0R1(α))κ∈N)(k)+(the lim in the second

coordinate of the partial sums in the second coordinate of R1)(k+1). The
theorem is a consequence of (23) and (12).

Now we state the propositions:

(26) Suppose (
∑κ
α=0R1(α))κ∈N is convergent in the first coordinate. Then

the lim in the first coordinate of (
∑κ
α=0R1(α))κ∈N = (

∑κ
α=0(the lim in the

first coordinate of the partial sums in the first coordinate of R1)(α))κ∈N.
The theorem is a consequence of (19) and (24).

(27) Suppose (
∑κ
α=0R1(α))κ∈N is convergent in the second coordinate. Then

the lim in the second coordinate of (
∑κ
α=0R1(α))κ∈N = (

∑κ
α=0(the lim

in the second coordinate of the partial sums in the second coordinate of
R1)(α))κ∈N. The theorem is a consequence of (19) and (25).

2. Double Series of Non-Negative Double Sequence

Let us assume that R1 is non-negative yielding. Now we state the proposi-
tions:

(28) (i) the partial sums in the second coordinate of R1 is non-negative
yielding, and

(ii) the partial sums in the first coordinate of R1 is non-negative yielding.

(29) (
∑κ
α=0R1(α))κ∈N is non-decreasing. The theorem is a consequence of

(11) and (28).

(30) (
∑κ
α=0R1(α))κ∈N is p-convergent if and only if (

∑κ
α=0R1(α))κ∈N is lower

bounded and upper bounded. The theorem is a consequence of (29).

Let us consider natural numbers i, j. Now we state the propositions:

(31) Suppose for every natural numbers n, m, R2(n,m) ¬ R3(n,m). Then

(i) (the partial sums in the first coordinate of R2)(i, j) ¬ (the partial
sums in the first coordinate of R3)(i, j), and

(ii) (the partial sums in the second coordinate of R2)(i, j) ¬ (the partial
sums in the second coordinate of R3)(i, j).

Proof: Set R4 = the partial sums in the first coordinate of R2. Set R5 =
the partial sums in the first coordinate of R3. Set C1 = the partial sums
in the second coordinate of R2. Set C2 = the partial sums in the second
coordinate of R3. Define R[natural number] ≡ R4($1, j) ¬ R5($1, j). For
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every natural number k such that R[k] holds R[k + 1]. For every natural
number k, R[k] from [3, Sch. 2]. Define C[natural number] ≡ C1(i, $1) ¬
C2(i, $1). For every natural number k such that C[k] holds C[k + 1]. For
every natural number k, C[k] from [3, Sch. 2]. �

(32) Suppose R2 is non-negative yielding and for every natural numbers n, m,
R2(n,m) ¬ R3(n,m). Then (

∑κ
α=0R2(α))κ∈N(i, j) ¬ (

∑κ
α=0R3(α))κ∈N(i,

j). Proof: Set R4 = (
∑κ
α=0R2(α))κ∈N. Set R5 = (

∑κ
α=0R3(α))κ∈N. De-

fine P[natural number] ≡ R4(i, $1) ¬ R5(i, $1). P[0]. For every natural
number k such that P[k] holds P[k+ 1]. For every natural number k, P[k]
from [3, Sch. 2]. �

Now we state the propositions:

(33) Suppose R2 is non-negative yielding and for every natural numbers n,
m, R2(n,m) ¬ R3(n,m) and (

∑κ
α=0R3(α))κ∈N is p-convergent. Then

(
∑κ
α=0R2(α))κ∈N is p-convergent. The theorem is a consequence of (29)

and (32).

(34) Let us consider a sequence r1 of real numbers and a natural number
m. Suppose r1 is non-negative. Then r1(m) ¬ (

∑κ
α=0 r1(α))κ∈N(m). Pro-

of: Define P[natural number] ≡ r1($1) ¬ (
∑κ
α=0 r1(α))κ∈N($1). For every

natural number k such that P[k] holds P[k + 1] by [19, (34)]. For every
natural number k, P[k] from [3, Sch. 2]. �

Let us assume that R1 is non-negative yielding. Now we state the proposi-
tions:

(35) Let us consider natural numbers m, n. Then

(i) R1(m,n) ¬ (the partial sums in the first coordinate of R1)(m,n),
and

(ii) R1(m,n) ¬ (the partial sums in the second coordinate of R1)(m,n).

The theorem is a consequence of (34) and (18).

(36) (i) for every natural numbers i1, i2, j such that i1 ¬ i2 holds (the partial
sums in the first coordinate of R1)(i1, j) ¬ (the partial sums in the
first coordinate of R1)(i2, j), and

(ii) for every natural numbers i, j1, j2 such that j1 ¬ j2 holds (the partial
sums in the second coordinate of R1)(i, j1) ¬ (the partial sums in
the second coordinate of R1)(i, j2).

(37) (i) for every natural numbers i1, i2, j such that i1 ¬ i2 holds

(
∑κ
α=0R1(α))κ∈N(i1, j) ¬ (

∑κ
α=0R1(α))κ∈N(i2, j), and

(ii) for every natural numbers i, j1, j2 such that j1 ¬ j2 holds

(
∑κ
α=0R1(α))κ∈N(i, j1) ¬ (

∑κ
α=0R1(α))κ∈N(i, j2).

The theorem is a consequence of (36).

(38) Let us consider natural numbers i1, i2, j1, j2. Suppose
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(i) i1 ¬ i2, and

(ii) j1 ¬ j2.
Then (

∑κ
α=0R1(α))κ∈N(i1, j1) ¬ (

∑κ
α=0R1(α))κ∈N(i2, j2). The theorem is

a consequence of (37).

(39) Let us consider an element k of N. Then

(i) curry′(the partial sums in the first coordinate of R1, k) is non-decre-
asing, and

(ii) curry(the partial sums in the second coordinate of R1, k) is non-
decreasing, and

(iii) curry′(the partial sums in the first coordinate ofR1, k) is non-negative,
and

(iv) curry(the partial sums in the second coordinate of R1, k) is non-
negative, and

(v) curry′(the partial sums in the second coordinate of R1, k) is non-
negative, and

(vi) curry(the partial sums in the first coordinate ofR1, k) is non-negative.

The theorem is a consequence of (18) and (34).

Let us assume that R1 is non-negative yielding and (
∑κ
α=0R1(α))κ∈N is p-

convergent. Now we state the propositions:

(40) (i) the partial sums in the first coordinate of R1 is convergent in the
first coordinate, and

(ii) the partial sums in the second coordinate of R1 is convergent in the
second coordinate.

The theorem is a consequence of (39), (18), (34), and (29).

(41) (
∑κ
α=0R1(α))κ∈N is convergent in the first coordinate and convergent in

the second coordinate. The theorem is a consequence of (40), (22), and
(23).

(42) (i) the lim in the first coordinate of the partial sums in the first coor-
dinate of R1 is summable, and

(ii) the lim in the second coordinate of the partial sums in the second
coordinate of R1 is summable.

The theorem is a consequence of (41), (26), and (27).

(43) (i) P-lim(
∑κ
α=0R1(α))κ∈N =

∑
(the lim in the first coordinate of

the partial sums in the first coordinate of R1), and

(ii) P-lim(
∑κ
α=0R1(α))κ∈N =

∑
(the lim in the second coordinate of

the partial sums in the second coordinate of R1).
The theorem is a consequence of (41), (26), and (27).
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3. Summability for Rearrangements of Non-Negative Real
Sequence

Now we state the propositions:

(44) Let us consider sequences s1, s2 of real numbers. Suppose

(i) s1 is non-negative, and

(ii) s1 and s2 are fiberwise equipotent.

Then s2 is non-negative.

(45) Let us consider a non empty set X, a sequence s of X, and a natural
number n. Then dom Shift(s�Zn, 1) = Seg n.

Let X be a non empty set, s be a sequence of X, and n be a natural number.
Note that Shift(s�Zn, 1) is finite sequence-like.

Now we state the propositions:

(46) Let us consider a non empty set X, a sequence s of X, and a natural
number n. Then Shift(s�Zn, 1) is a finite sequence of elements of X.

(47) Let us consider a non empty set X, a sequence s of X, and natural num-
bers n, m. Suppose m+1 ∈ dom Shift(s�Zn, 1). Then (Shift(s�Zn, 1))(m+
1) = s(m).

(48) Let us consider a non empty set X and a sequence s of X. Then

(i) Shift(s�Z0, 1) = ∅, and

(ii) Shift(s�Z1, 1) = 〈s(0)〉, and

(iii) Shift(s�Z2, 1) = 〈s(0), s(1)〉, and

(iv) for every natural number n, Shift(s�Zn+1, 1) = Shift(s�Zn, 1)a〈s(n)〉.
The theorem is a consequence of (45) and (47).

(49) Let us consider a sequence s of real numbers and a natural number n.
Then (

∑κ
α=0 s(α))κ∈N(n) =

∑
Shift(s�Zn+1, 1). Proof: Define P[natural

number] ≡ (
∑κ
α=0 s(α))κ∈N($1) =

∑
Shift(s�Z$1+1, 1). Shift(s�Z0+1, 1) =

〈s(0)〉. For every natural number k such that P[k] holds P[k+ 1] by (48),
[14, (74)]. For every natural number k, P[k] from [3, Sch. 2]. �

(50) Let us consider a non empty set X, sequences s1, s2 of X, and a natural
number n. Suppose s1 and s2 are fiberwise equipotent. Then there exists
a natural number m and there exists a subset f2 of Shift(s2�Zm, 1) such
that Shift(s1�Zn+1, 1) and f2 are fiberwise equipotent. Proof: Consider
P being a permutation of dom s1 such that s1 = s2 · P . Define F(set) =
P ($1) + 1. Define G[set] ≡ $1 is a natural number. {F(i), where i is a
natural number : i ¬ n and G[i]} is finite from [6, Sch. 6]. Reconsider
D = {F(i), where i is a natural number : i ¬ n and G[i]} as a finite set.
Set f2 = {〈〈j + 1, s2(j)〉〉, where j is a natural number : j + 1 ∈ D}. Define
G[object, object] ≡ there exists a natural number i such that $1 = i + 1
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and $2 = P (i) + 1. For every object x such that x ∈ Seg(n + 1) the-
re exists an object y such that G[x, y] by [6, (1)], [3, (21)]. Consider G
being a function such that domG = Seg(n + 1) and for every object x
such that x ∈ Seg(n + 1) holds G[x,G(x)] from [11, Sch. 2]. domG =
dom Shift(s1�Zn+1, 1). dom(f2 ·G) = dom Shift(s1�Zn+1, 1). For every ob-
ject x such that x ∈ dom Shift(s1�Zn+1, 1) holds (Shift(s1�Zn+1, 1))(x) =
(f2 ·G)(x) by (45), [6, (1)], [3, (21)], (47). �

(51) Let us consider a non empty set X, a finite sequence f1 of elements of
X, and a subset f3 of f1. Then Seq f3 and f3 are fiberwise equipotent.

(52) Let us consider sequences s1, s2 of real numbers and a natural number
n. Suppose

(i) s1 and s2 are fiberwise equipotent, and

(ii) s1 is non-negative.

Then there exists a natural number m such that (
∑κ
α=0 s1(α))κ∈N(n) ¬

(
∑κ
α=0 s2(α))κ∈N(m). The theorem is a consequence of (44), (50), (46),

(51), (47), (49), and (48).

(53) Let us consider sequences s1, s2 of real numbers. Suppose

(i) s1 and s2 are fiberwise equipotent, and

(ii) s1 is non-negative and summable.

Then

(iii) s2 is summable, and

(iv)
∑
s1 =

∑
s2.

The theorem is a consequence of (44) and (52).

4. Basic Relations between Double Sequences and Matrices

Now we state the propositions:

(54) Let us consider a non empty set D, a function R1 from N × N into
D, and natural numbers n, m. Then there exists a matrix M over D of
dimension n+ 1×m+ 1 such that for every natural numbers i, j such that
i ¬ n and j ¬ m holds R1(i, j) = Mi+1,j+1. Proof: Define P[natural
number,natural number, object] ≡ there exist natural numbers i1, j1 such
that i1 = $1 − 1 and j1 = $2 − 1 and $3 = R1(i1, j1). Consider M being
a matrix over D of dimension n + 1×m + 1 such that for every natural
numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M holds P[i, j,Mi,j ]. �

(55) Let us consider natural numbers n, m, a function R1 from N × N into
R, and a matrix M over R of dimension n + 1×m + 1. Suppose natu-
ral numbers i, j. If i ¬ n and j ¬ m, then R1(i, j) = Mi+1,j+1. Then
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(
∑κ
α=0R1(α))κ∈N(n,m) = SumAllM . Proof: For every natural number

i such that i ¬ n holds (the partial sums in the second coordinate of
R1)(i,m) = (LineSumM)(i + 1) by [3, (11)], [6, (1), (59)], [26, (112)].
Define G[natural number] ≡ if $1 ¬ n, then (the partial sums in the first
coordinate of the partial sums in the second coordinate of R1)($1,m) =∑

(LineSumM�($1+ 1)). For every natural number k such that G[k] holds
G[k+1] by [3, (11)], [30, (20)], [6, (59)], [10, (21)]. For every natural number
k, G[k] from [3, Sch. 2]. �
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