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Semiring of Sets

Roland Coghetto
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7100 La Louviere, Belgium

Summary. Schmets [22] has developed a measure theory from a generali-
zed notion of a semiring of sets. Goguadze [15] has introduced another generalized
notion of semiring of sets and proved that all known properties that semiring ha-
ve according to the old definitions are preserved. We show that this two notions
are almost equivalent. We note that Patriota [20] has defined this quasi-semiring.
We propose the formalization of some properties developed by the authors.
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The notation and terminology used in this paper have been introduced in the
following articles: [1], [3], [4], [21], [6], [12], [24], 8], [9], [25], [13], [23], [11], [5],
(17, [18], [27], [28], [19], [26], [14], [16], and [10].

1. PRELIMINARIES

From now on X denotes a set and S denotes a family of subsets of X.
Now we state the proposition:

(1) Let us consider sets X, Y. Then (X UY)\ (Y \ X) = X.

Let us consider X and S. Let S7, S9 be finite subsets of S. Let us note that
S1 M Sy is finite.
Now we state the proposition:

(2) Let us consider a family S of subsets of X and an element A of S. Then
{z, where x is an element of S : x € [J(PARTITIONS(A) N FinS)} =
U(PARTITIONS(A) N Fin 5).

Let us consider X and S. Note that [J(PARTITIONS(()) N Fin S) is empty.
Note that 2% has empty element. Now we state the proposition:
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(3) Let us consider a set X. Suppose X is N-closed and U-closed. Then X is
a ring of sets.

2. THE EXISTENCE OF PARTITIONS

Let X be a set and S be a family of subsets of X. We say that S is N,-closed
if and only if
(Def. 1) Let us consider elements S, Sy of S. Suppose S1 NSy is not empty. Then
there exists a finite subset z of S such that = is a partition of S1 N Ss.
Let us observe that 2X is N fp-closed.
Observe that there exists a family of subsets of X which is Ng,-closed.
One can verify that every family of subsets of X which is N-closed is also
Nyp-closed.
Now we state the propositions:
(4) Let us consider a non empty set A, a Ng,-closed family S of subsets of
X, and partitions P;, Py of A. Suppose

(i) Py is a finite subset of S, and

(ii) P» is a finite subset of S.
Then there exists a partition P of A such that
(iii) P is a finite subset of S, and

(iv) P € P A Ps.

PROOF: Define Flobject, object] = $; € P; A Py and $ is a finite subset of
S and there exists a set A such that A = $; and $ is a partition of A. Set
Fy = {y, where y is a finite subset of S : there exists a set ¢ such that
t € P A Py and y is a partition of t}. Fy C 22" by [10, (67)]. For every
object u such that uw € P, A P, there exists an object v such that v € F}
and F[u,v]. Consider f being a function such that dom f = P; A P» and
rng f C F and for every object x such that x € P; A P, holds Flz, f(x)]
from [8, Sch. 6]. U f is a finite subset of S by [2 (88)]. U f is a partition
of = by [10} (77), (81), (74)]. Uf € PL A P,. O

(5) Let us consider a Ny,-closed family S of subsets of X and finite subsets
A, B of S. Suppose

(i) A is mutually-disjoint, and
(ii) B is mutually-disjoint.
Then there exists a finite subset P of S such that P is a partition of
UAnUB.
(6) Let us consider a Ny,-closed family S of subsets of X and a finite subset

W of S. Then there exists a finite subset P of S such that P is a partition
of NW.
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(7) Let us consider a Ny,-closed family S of subsets of X. Then {{Jz, where
x is a finite subset of S : = is mutually-disjoint} is N-closed. The theorem
is a consequence of (5).

Let X be a set and S be a family of subsets of X. We say that S is \ ¢,-closed
if and only if
(Def. 2) Let us consider elements S7, Sz of S. Suppose Sj \ S2 is not empty. Then
there exists a finite subset = of S such that x is a partition of S7 \ Ss.
Let us note that 2 is \ s,-closed.
Note that there exists a family of subsets of X which is \ y,-closed.
Observe that every family of subsets of X which is diff-closed is also \ ¢p-
closed. Now we state the proposition:

(8) Let us consider a \ g,-closed family S of subsets of X, an element S of
S, and a finite subset T of S. Then there exists a finite subset P of S
such that P is a partition of S; \ [U7T. PROOF: Consider py being a finite
sequence such that T' = rng py. Define P[finite sequence] = there exists a
finite subset p; of S such that p; is a partition of S; \ Urng$;. For every
finite sequence p of elements of S and for every element x of .S such that
Plp] holds P[p ~ ()] by [6, (31)], [10, (78)], [6, (38)], [12, (8), (7)]. Ples]
by [26], (1)], [21, (45)], [26} (41)], [21}, (39)]. For every finite sequence p of
elements of S, P[p| from [7, Sch. 2]. O

3. PARTITIONS IN A DIFFERENCE OF SETS

Let X be a set and S be a family of subsets of X. We say that S is \%p—closed
if and only if
(Def. 3) Let us consider elements S7, Sy of S. Suppose Sz C S;. Then there exists
a finite subset x of S such that x is a partition of Sy \ So.
Now we state the proposition:
(9) Let us consider a family S of subsets of X. Suppose S is \ y)-closed. Then
S is \J%p—closed.
Let us consider X. Note that every family of subsets of X which is \ s,-closed
is also \%p—closed.
Observe that 2% is \%p—closed. Observe that there exists a family of subsets
of X which is \%p—closed, \ fp-closed, and Ny,-closed and has empty element.
Now we state the propositions:
(10) Let us consider a \ ¢,-closed family S of subsets of X. Then {{Jx, where
x is a finite subset of S : x is mutually-disjoint} is diff-closed. PROOF: Set
Y = {Uz, where z is a finite subset of S : z is mutually-disjoint}. For
every sets A, B such that A, B €Y holds A\ B €Y by [0 (52)], (8), (5),
[12} (8), (7)]. O
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(11) Let us consider a Ng,-closed \%p—closed family S of subsets of X, an
element A of S, and a finite subset ) of S. Suppose

(i) UQ C A, and
(ii) @ is a partition of J Q.
Then there exists a finite subset R of S such that
(iii) U R misses J @, and
(iv) QU R is a partition of A.
(12) Every \%p—closed Nyp-closed family of subsets of X is \ y,-closed. PROOF:
For every elements S1, S of S such that S \ Sz is not empty there exists

a finite subset Py of S such that Py is a partition of Sp \ Sz by (11), [10}
(77), (81)]. O
Let X be a set. Let us observe that every Ny,-closed family of subsets of X
which is \%p—closed is also \ yp-closed. Now we state the propositions:

(13) Let us consider a Ng,-closed \%p—closed family S of subsets of X and
finite subsets W, T of S. Then there exists a finite subset P of S such
that P is a partition of W \UT.

(14) Let us consider a Ny,-closed \%p-closed family S of subsets of X and a
finite subset W of S. Then there exists a finite subset P of S such that

(i) P is a partition of |JW, and
(ii) for every element Y of W, Y = |J{s, where s is an element of S : s €

P and s CY}.

(15) Let us consider a N¢,-closed \%p-closed family S of subsets of X and a
function W from NT into S. Then there exists a countable subset P of S
such that

(i) P is a partition of |JW, and
(ii) for every positive natural number n, [J(W | Segn) = [J{s, where s is
an element of S: s € P and s C | J(W|Segn)}.

The theorem is a consequence of (8).

4. COUNTABLE COVERS

Let X be a set and S be a family of subsets of X. We say that S has countable
cover if and only if
(Def. 4) There exists a countable subset X; of S such that X; is a cover of X.
Let us consider X. One can check that 22X has countable cover.
One can check that there exists a family of subsets of X which is \%p—closed7
\ fp-closed, and Ny,-closed and has empty element and countable cover.
Now we state the proposition:
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(16) Let us consider a Ny,-closed \%p—closed family S of subsets of X. Suppose
S has countable cover. Then there exists a countable subset P of S such
that P is a partition of X. The theorem is a consequence of (15).

5. SEMIRING OF SETS

Let X be a set. A semiring of sets of X is a Ng,-closed \%p—closed family of
subsets of X with empty element.

Let us consider a Ng,-closed family S of subsets of X and an element A of
S. Now we state the propositions:

(17) {x, where z is an element of S : x € |J(PARTITIONS(A) NFinS)} is a
Nyp-closed family of subsets of A. The theorem is a consequence of (4).

(18) {x, where z is an element of S : x € |J(PARTITIONS(A) NFinS)} is a
\%p—closed family of subsets of A. The theorem is a consequence of (4).

(19) U(PARTITIONS(A) N Fin S) is Nyp-closed \ ¢p-closed family of subsets
of A and has non empty elements. The theorem is a consequence of (2),
(17), and (18).

(20) {0} U U(PARTITIONS(A) N Fin S) is a semiring of sets of A. PROOF:
Set A; = U(PARTITIONS(A) N Fin§). Set B = [J(PARTITIONS(A) N
Fin S)U{0}. A is a Ngp-closed \ pp-closed family of subsets of A. B C 24.
B is Ngp-closed. B is \ gp-closed by (19), [21}, (39)]. O

6. A RING OF SETS

Let us consider a Ny,-closed \ fp-closed family S of subsets of X. Now we
state the propositions:

(21) {U=z, where z is a finite subset of S : = is mutually-disjoint} is U-closed.
The theorem is a consequence of (14).

(22) {U=x, where x is a finite subset of S : x is mutually-disjoint} is a ring of
sets. The theorem is a consequence of (7), (21), and (3).
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