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Summary. In this article we prove the Tietze extension theorem for an
arbitrary convex compact subset of £ with a non-empty interior. This theorem
states that, if T is a normal topological space, X is a closed subset of 7', and A
is a convex compact subset of £” with a non-empty interior, then a continuous
function f : X — A can be extended to a continuous function g : T" — E".
Additionally we show that a subset A is replaceable by an arbitrary subset of a
topological space that is homeomorphic with a convex compact subset of £™ with
a non-empty interior. This article is based on [20]; [23] and [22] can also serve as
reference books.

MSC: 54A05 103B35

Keywords: Tietze extension; hypercube

MML identifier: TIETZE_2, version: 8.1.02 5.22.1199

The notation and terminology used in this paper have been introduced in the
following articles: [8], [36], [24], [30], [1], [15], [21], [16], [25], [6], [@], [I7], [37],
[0}, [, [3], [34], [, (2], [26], [33], [35], [A411, [42], [13], [40], [19], [31], [28],
[43], [18], [44], [29], and [14].

1. CLOSED HYPERCUBE

From now on n, m, ¢ denote natural numbers, p, ¢ denote points of £, r, s
denote real numbers, and R denotes a real-valued finite sequence.
Note that every finite sequence which is empty is also non-negative yielding.
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Let n be a non zero natural number, X be a set, and F' be an element of
((the carrier of RY)X)". Let us note that the functor [T* F yields a function from
X into £F. Now we state the proposition:

(1) Let us consider sets X, Y, a function yielding function F', and objects z,
y. Suppose

(i) Fis (YX)-valued, or
(ii) y € dom[[* F.

Then F(z)(y) = (IT" F)(y) ().

Let us consider n, p, and r. The functor OpenHypercube(p,r) yielding an
open subset of £F is defined by

(Def. 1) There exists a point e of " such that
(i) p=e, and
(ii) it = OpenHypercube(e,r).
Now we state the propositions:

(2) If ¢ € OpenHypercube(p,r) and s € |p(i) — r,p(i) + r[, then ¢ +-
(i,8) € OpenHypercube(p,r). PROOF: Consider e being a point of £"
such that p = e and OpenHypercube(p,r) = OpenHypercube(e,r). Set
I = Intervals(e,r). Set g3 = ¢q +- (i,s). For every object = such that
x € dom I holds g3(z) € I(x) by [2, (9)], [T, (31), (32)]. O

(3) 1Ifi € Segn, then (PROJ(n,i))°(OpenHypercube(p,r)) = |p(i) —r, p(i) +
r[. The theorem is a consequence of (2).

(4) q € OpenHypercube(p,r) if and only if for every i such that i € Segn
holds ¢(i) € |p(i) — r,p(i) + r[. The theorem is a consequence of (3).

Let us consider n, p, and R. The functor ClosedHypercube(p, R) yielding a

subset of £F is defined by
(Def. 2) ¢ € it if and only if for every i such that i € Segn holds ¢(i) € [p(i) —
R(i), p(i) + R(3)].

Now we state the propositions:

(5) If there exists i such that i € Segn N dom R and R(i) < 0, then
ClosedHypercube(p, R) is empty.

(6) If for every i such that i € Segn N dom R holds R(i) > 0, then p €
ClosedHypercube(p, R).

Let us consider n and p. Let R be a non-negative yielding real-valued finite

sequence. One can check that ClosedHypercube(p, R) is non empty.

Let us consider R. Let us observe that ClosedHypercube(p, R) is convex and

compact.

Now we state the propositions:
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(7) If i € Segn and g € ClosedHypercube(p, R) and r € [p(i) — R(i), p(i) +
R(7)], then g+-(i,7) € ClosedHypercube(p, R). PROOF: Set py = q+-(i,7).
For every natural number j such that j € Segn holds p4(j) € [p(j) —
R(j),p(j) + R(j)] by [7, (32), (31)]. O

(8) Suppose i € Segn and ClosedHypercube(p, R) is not empty.

Then (PROJ(n,?))°(ClosedHypercube(p, R)) = [p(i) — R(i),p(i) + R(7)].
The theorem is a consequence of (5), (7), and (6).

(9) Ifn<lenR and r < infrngR,
then OpenHypercube(p,r) C ClosedHypercube(p, R).

(10) ¢ € FrClosedHypercube(p, R) if and only if ¢ € ClosedHypercube(p, R)
and there exists 7 such that i € Segn and ¢(i) = p(i) — R(i) or q(i) =
p(i) + R(7). PROOF: Set T = &EF. If ¢ € Fr ClosedHypercube(p, R), then
q € ClosedHypercube(p, R) and there exists i such that i € Segn and
q(i) = p(i) — R(i) or q(i) = p(i) + R(:) by [16, (22)], [32, (105)], [14, (33)],
[6, (3)]. For every subset S of Ty such that S is open and ¢ € S holds
ClosedHypercube(p, R) meets S and (ClosedHypercube(p, R))¢ meets S
by [16, (67)], [43, (23)], [38, (5)], [31} (13)]. O

(11) If r > 0, then p € ClosedHypercube(p,n — ).

(12) If r > 0, then Int ClosedHypercube(p,n — r) = OpenHypercube(p,r).
PROOF: Set O = OpenHypercube(p, 7). Set C' = ClosedHypercube(p, n —
r). Set Ty = EF. Set R = n +— r. Consider e being a point of £" such
that p = e and OpenHypercube(p,r) = OpenHypercube(e,r). Int C C O
by [43l, (39)], [9, (57)], (10), [39, (29)]. Reconsider ¢ = z as a point of T}.
For every i such that ¢ € Segn holds ¢(i) € [p(i) — R(4),p(i) + R(7)] by
[9, (57)], (3). Consider ¢ such that i € Segn and ¢(i) = p(i) — R() or
q(@) = p(i) + R(i). (PROJ(n,1))°0 = le(i) — r,e(i) + r[. O

(13) OpenHypercube(p, ) C ClosedHypercube(p, n — r).

(14) If r < s, then ClosedHypercube(p,n — r) C OpenHypercube(p, s). The
theorem is a consequence of (4).

Let us consider n and p. Let r be a positive real number. Let us note that
ClosedHypercube(p, n — r) is non boundary.

2. PROPERTIES OF THE PrRODUCT OF CLOSED HYPERCUBE

From now on 17, Ts, S1, So denote non empty topological spaces, t; denotes
a point of T7, to denotes a point of T3, pa, g2 denote points of £F, and p1, q1
denote points of E7'.

Now we state the propositions:

(15) Let us consider a function f from T} into 75 and a function g from S;
into Ss. Suppose
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(i) f is a homeomorphism, and
(ii) g is a homeomorphism.

Then f x g is a homeomorphism.

Suppose r > 0 and s > 0. Then there exists a function h from
(EL] ClosedHypercube(pz,n — 7)) x (EF'] ClosedHypercube(pi, m — s))
into £ ClosedHypercube(Og%er, (n +m) — 1) such that

(i) h is a homeomorphism, and
(ii) h°(OpenHypercube(ps,r) x OpenHypercube(p, s)) =
OpenHypercube(Og%+m, 1).

PROOF: Set T = EF. Set T = EF. Set ny = n+m. Set T; = EL'. Set Ry =
ClosedHypercube(0z,, n +— 1). Set R4y = ClosedHypercube(pz, n +— r). Set
R5; = ClosedHypercube(p1, m — s). Set Ry = ClosedHypercube(0p,, m —
1). Set R3 = ClosedHypercube(07,,n; — 1). Reconsider Rigp = Rs, Rg =
Ry as a non empty subset of T5. Consider h3 being a function from T5[R1g
into T5[Rg such that hs is a homeomorphism and h3°(Fr R1p) = Fr Rg.
Reconsider Rg = R4, R7 = Ry as a non empty subset of Tg. Consider
h4 being a function from Tg[Rg into T [R7 such that h4 is a homeomor-
phism and h4°(Fr Ryg) = Fr R7. Set Og = OpenHypercube(pa, r). Set Og =
OpenHypercube(py, s). Set Og = OpenHypercube(0r,,1). Int Rip = Oy.
Set Os = OpenHypercube(0z,,1). Set O7; = OpenHypercube(0z,,1). Re-
consider Rg = Rj3 as a non empty subset of T7. Consider f being a function
from Tg x T5 into 17 such that f is a homeomorphism and for every ele-
ment f5 of Ty and for every element fs of T5s, f(f5, f6) = f5~ f6. fO(R7 X
Rq) € Ry by [I4, (87)], B (57)], [6) (25)]- Rs € f°(Rr x Rq) by [ (23)],
27, (17)], [, (11)], [6, (5)]. Set hs = h4 X hs. hs is a homeomorphism.
Int R7 = Os. Reconsider fi; = f[(R7 x Rg) as a function from (75| R7) X
(T5Rg) into T7[Rs. Reconsider h = f; - hs as a function from (T5[Ry) X
(T5|Rs) into T4 R3. Int Rg = O7. Int Ry = Og. h°(Og x Og) C Og by [14,
(87)], 10, (12)], [43}, (40)], [10, (49)]. Reconsider ps = y as a point of T%.
Consider p, ¢ being finite sequences of elements of R such that lenp = n
and leng = m and p3 = p~¢q. ¢ € O7. q € Rg. Consider xo being an object
such that z9 € dom hs and hs(z2) = q. p € Os. p € Ry. Consider z; being
an object such that x; € dom hy and hy(z1) = p. O

Suppose 7 > 0 and s > 0. Let us consider a function f from 7} into
&R | ClosedHypercube(ps, n +— 1) and a function g from 75 into
EF'| ClosedHypercube(py, m — s). Suppose

(i) f is a homeomorphism, and
(ii) g is a homeomorphism.

Then there exists a function A from 77 x T5 into
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EXFT™ | ClosedHypercube(Ogn+m, (n +m) — 1) such that
T
(iii) A is a homeomorphism, and
(iv) for every t; and to, f(t1) € OpenHypercube(ps,r) and g(t2) €
OpenHypercube(py, s) iff h(t1,t2) € OpenHypercube(0gn+m, 1).
T

PROOF: Set ny = n + m. Set Tg = EF. Set Ts = EP. Set Ty = &',
Set R = nw— r. Set Rg = m +— s. Set Rg = ny — 1. Set Ry =
ClosedHypercube(ps, R7). Set Rs = ClosedHypercube(p1, Rg). Set Cy =
ClosedHypercube(0r,, Rg). Reconsider Rjp = Rs as a non empty sub-
set of T5. Reconsider Rg = R4 as a non empty subset of Tg. Set Og =
OpenHypercube(pa, r). Set Og = OpenHypercube(p, s). Set O =
OpenHypercube(07;, 1). Consider h being a function from (75 [ Rg) x (15[ R10)
into T [Cy such that h is a homeomorphism and h°(Og x Og) = O. Re-
consider G = g as a function from 75 into T5[R19. Reconsider F' = f as
a function from T} into Tg[Ry. Reconsider fy = h- (F x G) as a function
from 17 x T3 into T7[Cy. F X G is a homeomorphism. Og C R1g. Og C Ry.
If f(tl) € Og and g(tg) S 09, then f4(t1,t2) €O by [14, (87)], [10, (12)}.
Consider z3 being an object such that x3 € dom h and x5 € Og x Og and
h(zz) = h({f(t1), g(t2))). O

Let us consider n. One can check that there exists a subset of £F which is

non boundary, convex, and compact.
Now we state the propositions:

(18) Let us consider a non boundary convex compact subset A of £, a non
boundary convex compact subset B of £, a non boundary convex com-
pact subset C of E4", a function f from T} into ERIA, and a function g
from 75 into EF'[B. Suppose

(i) f is a homeomorphism, and

(ii) g is a homeomorphism.
Then there exists a function h from T x T5 into S%er [C such that
(iii) A is a homeomorphism, and
(iv) for every t1 and to, f(t1) € Int A and g(t2) € Int B iff h(t1,t2) € Int C.
PROOF: Set Tg = EF. Set Ts = EF'. Set ny = n+m. Set T7 = EL'. Set Ry =
ClosedHypercube(0z,,n — 1). Set Rg = ClosedHypercube(0r,, m +— 1).
Set Rg = ClosedHypercube(0r,,n; +— 1). Consider g; being a function
from T5|B into T5[Rg such that g; is a homeomorphism and ¢1°(Fr B) =
Fr Rg. Reconsider go = g1 - g as a function from 75 into T5[Rg. Consi-
der f7 being a function from T§[A into T§[R7 such that fr is a home-
omorphism and f7°(Fr A) = Fr R;. Reconsider fs = f7 - f as a func-
tion from 77 into Ts[R7. Set O3 = OpenHypercube(0r,,1). Set Oz =
OpenHypercube(07y, 1). Set Os = OpenHypercube(0r;,1). Consider H
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being a function from T%[Rg into 17 [C such that H is a homeomorphism
and H°(Fr Rg) = FrC. Int Rg = Os. Consider P being a function from
Ty x Ty into T7 [ Rg such that P is a homeomorphism and for every t; and
to, fg(tl) S 03 and gg(tg) S OQ iff P(tl,tg) € 04. Reconsider Hy = H - P
as a function from 77 x Ty into T7[C. Int Rg = Oy4. If f(¢1) € Int A and
g(t2) € Int B, then Hi(t1,t2) € IntC by [10, (11), (12)], (12). P({t1,
tg)) € Int Rg. P(tl,tg) € Oy4. Int R7 = Os. f(tl) clntA by [43, (40)] U

Let us consider a point p2 of £F, a point p; of EF', r, and s. Suppose
(i) >0, and
(ii) s > 0.

Then there exists a function h from Tdisk(ps,r) x Tdisk(py, s) into
Tdisk(0gn+m, 1) such that
T

(iii) A is a homeomorphism, and
(iv) h°(Ball(pa,r) x Ball(p1, s)) = Ball(Og;er, 1).

PROOF: Set Tg = EF. Set Ts = EF'. Set ny = n + m. Set Ty = &EF.
Reconsider Cy = Ball(ps, ) as a non empty subset of Tg. Reconsider
C5 = Ball(p1, s) as a non empty subset of T5. Reconsider C5 = Ball(0r;, 1)
as a non empty subset of T7. Set R; = ClosedHypercube(0r,,n — 1). Set
R¢ = ClosedHypercube(07,, m +— 1). Consider f; being a function from
TsCy into Tg[R7 such that f7 is a homeomorphism and f7°(FrCy) =
Fr R7. Consider g; being a function from 75 [C5 into 15[ Rg such that ¢ is
a homeomorphism and ¢;°(Fr C3) = Fr Rg. Consider P being a function
from Tdisk(pg, ) x Tdisk(p1, s) into Tdisk(0r;, 1) such that P is a home-
omorphism and for every point t; of Tg[Cy and for every point to of T5[Cj,
f7(t1) € Int R; and gl(tg) € Int Rg iff P(tl,tg) € Int Cs. PO(BaH(pQ,T) X
Ball(p1, s)) € Ball(0z,, 1) by [30, (3)], [43, (40)]. Consider = being an ob-
ject such that = € dom P and P(z) = y. Consider y;, y2 being objects
such that y; € C4 and y € C5 and = = (y1, y2). O

Suppose 7 > 0 and s > 0 and 7 and &£}] Ball(pg,r) are homeomor-
phic and T and &' Ball(py,s) are homeomorphic. Then 77 x T and
ermy Ball(05%+m, 1) are homeomorphic.

3. TIETZE EXTENSION THEOREM

In the sequel T', S denote topological spaces, A denotes a closed subset of

T, and B denotes a subset of S.

Now we state the propositions:
(21)

Let us consider a non zero natural number n and an element F' of
((the carrier of R)®)"™. Suppose If i € dom F, then for every function
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h from T into R! such that h = F(i) holds h is continuous. Then [[* F
is continuous, where « is the carrier of T. PROOF: Set Ty = &EF. Set
F; = [[* F. For every subset Y of Ty such that Y is open holds F;~(Y)
is open by [16], (67)], [1T}, (2)], (1), [19, (17)]. O

(22) Suppose T is normal. Let us consider a function f from TTA into
5%[ClosedHypercube(Og%,n +— 1). Suppose f is continuous. Then there

exists a function g from T into 5%[ClosedHypercube(Og%,n — 1) such
that

(i) ¢ is continuous, and
(i) glA=f.
The theorem is a consequence of (8), (1), and (21).

(23) Suppose T is normal. Let us consider a subset X of EfL. Suppose X is
compact, non boundary, and convex. Let us consider a function f from
TTA into EL]X. Suppose f is continuous. Then there exists a function g
from T into 11X such that

(i) g is continuous, and

(i) glA=f.
The theorem is a consequence of (22).
Now we state the proposition:

(24) THE FIRST IMPLICATION OF TIETZE EXTENSION THEOREM FOR n-
DIMENSIONAL SPACES:

Suppose 1" is normal. Let us consider a subset X of £f. Suppose
(i) X is compact, non boundary, and convex, and
(ii) B and X are homeomorphic.
Let us consider a function f from T[A into S|B. Suppose f is continuous.
Then there exists a function g from 7T into S|B such that
(iii) g is continuous, and
(iv) glA=f.
The theorem is a consequence of (23).
Now we state the proposition:

(25) THE SECOND IMPLICATION OF TIETZE EXTENSION THEOREM FOR n-
DIMENSIONAL SPACES:

Let us consider a non empty topological space T' and n. Suppose
(i) n>1, and
(ii) for every topological space S and for every non empty closed subset

A of T and for every subset B of S such that there exists a subset X
of £F such that X is compact, non boundary, and convex and B and
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X are homeomorphic for every function f from TTA into S[B such
that f is continuous there exists a function g from T into S|B such
that g is continuous and g[A = f.

Then T is normal. PROOF: Set C = [—1, 1]p. For every non empty closed
subset A of T and for every continuous function f from T'[A into C1, there
exists a continuous function g from 7" into [—1, 1] such that g[A = f by
19l (18), (17)], [I1}, (2)], 33} (26)]. O
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