Special Issue: 25 years of the Mizar Mathematical Library

FORMALIZED MATHEMATICS Vol. 22, No. 2, Pages 119–123, 2014 DOI: 10.2478/forma-2014-0014

Bertrand's Ballot Theorem¹

Karol Pąk Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok Poland

Summary. In this article we formalize the Bertrand's Ballot Theorem based on [17]. Suppose that in an election we have two candidates: A that receives n votes and B that receives k votes, and additionally $n \ge k$. Then this theorem states that the probability of the situation where A maintains more votes than B throughout the counting of the ballots is equal to (n - k)/(n + k).

This theorem is item **#30** from the "Formalizing 100 Theorems" list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

MSC: 60C05 03B35

Keywords: ballot theorem; probability

MML identifier: BALLOT_1, version: 8.1.03 5.23.1210

The notation and terminology used in this paper have been introduced in the following articles: [24], [1], [14], [15], [18], [4], [5], [10], [21], [6], [12], [3], [11], [25], [26], [16], [8], [13], [23], and [9].

1. Preliminaries

From now on D, D_1 , D_2 denote non empty sets, d, d_1 , d_2 denote finite 0-sequences of D, and n, k, i, j denote natural numbers.

Now we state the propositions:

- (1) $XFS2FS(d \restriction n) = XFS2FS(d) \restriction n.$
- (2) $\operatorname{rng} d = \operatorname{rng} XFS2FS(d).$
- (3) Let us consider a finite 0-sequence d_1 of D_1 and a finite 0-sequence d_2 of D_2 . If $d_1 = d_2$, then XFS2FS $(d_1) =$ XFS2FS (d_2) .

 $^{^{1}}$ The paper has been financed by the resources of the Polish National Science Centre granted by decision no DEC-2012/07/N/ST6/02147.

KAROL PĄK

- (4) If XFS2FS(d_1) = XFS2FS(d_2), then $d_1 = d_2$. PROOF: For every *i* such that $i < \text{len } d_1 \text{ holds } d_1(i) = d_2(i)$ by [2, (13), (11)]. \Box
- (5) Let us consider a finite sequence d of elements of D. Then XFS2FS(FS2XFS(d)) = d.
- (6) Let us consider a finite sequence f and objects x, y. Suppose
 - (i) rng $f \subseteq \{x, y\}$, and
 - (ii) $x \neq y$.

Then $\overline{\overline{f^{-1}(\{x\})}} + \overline{\overline{f^{-1}(\{y\})}} = \operatorname{len} f.$

- (7) Let us consider functions f, g. Suppose f is one-to-one. Let us consider an object x. If $x \in \text{dom } f$, then $\text{Coim}(f \cdot g, f(x)) = \text{Coim}(g, x)$. PROOF: Set $f_3 = f \cdot g$. $\text{Coim}(f_3, f(x)) \subseteq \text{Coim}(g, x)$ by [6, (11), (12)]. \Box
- (8) Let us consider a real number r and a real-valued finite sequence f. Suppose rng $f \subseteq \{0, r\}$. Then $\sum f = r \cdot \overline{f^{-1}(\{r\})}$. PROOF: Define $\mathcal{P}[$ natural number $] \equiv$ for every real-valued finite sequence f such that len $f = \$_1$ and rng $f \subseteq \{0, r\}$ holds $\sum f = r \cdot \overline{f^{-1}(\{r\})}$. $\mathcal{P}[0]$ by [8, (72)]. For every n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [22, (55)], [8, (74)], [25, (70)], [2, (11)]. For every n, $\mathcal{P}[n]$ from [2, Sch. 2]. \Box

2. Properties of Elections

In the sequel A, B denote objects, v denotes an element of $\{A, B\}^{n+k}$, and f, g denote finite sequences.

Let us consider A, n, B, and k. The functor Election(A, n, B, k) yielding a subset of $\{A, B\}^{n+k}$ is defined by

(Def. 1) $v \in it$ if and only if $\overline{v^{-1}(\{A\})} = n$.

Let us note that Election(A, n, B, k) is finite. Now we state the propositions:

- (9) Election $(A, n, A, 0) = \{n \mapsto A\}$. PROOF: Election $(A, n, A, 0) \subseteq \{n \mapsto A\}$ by [19, (29)], [9, (33)], [21, (9)]. \Box
- (10) If k > 0, then Election(A, n, A, k) is empty.

Let us consider A and n. Let k be a non empty natural number. Let us observe that Election(A, n, A, k) is empty. Now we state the proposition:

(11) Election(A, n, B, k) = Choose(Seg(n+k), n, A, B). PROOF: Election(A, n, B, k) \subseteq Choose(Seg(n+k), n, A, B) by [7, (2)]. \Box

Let us assume that $A \neq B$. Now we state the propositions:

- (12) $v \in \text{Election}(A, n, B, k)$ if and only if $\overline{v^{-1}(\{B\})} = k$. The theorem is a consequence of (6).
- (13) $\overline{\text{Election}(A, n, B, k)} = \binom{n+k}{n}$. The theorem is a consequence of (11).

120

3. Properties of Dominated Elections

Let us consider A, n, B, and k. Let v be a finite sequence. We say that v is an (A, n, B, k)-dominated-election if and only if

(Def. 2) (i) $v \in \text{Election}(A, n, B, k)$, and

(ii) for every *i* such that i > 0 holds $\overline{(v | i)^{-1}(\{A\})} > \overline{(v | i)^{-1}(\{B\})}$.

Let us assume that f is an (A, n, B, k)-dominated-election. Now we state the propositions:

- (14) $A \neq B$.
- (15) n > k. The theorem is a consequence of (14) and (12). Now we state the propositions:
- (16) If $A \neq B$ and n > 0, then $n \mapsto A$ is an (A, n, B, 0)-dominated-election.
- (17) If f is an (A, n, B, k)-dominated-election and i < n-k, then $f^{(i)} \mapsto B$ is an (A, n, B, (k+i))-dominated-election. The theorem is a consequence of (14) and (12).
- (18) Suppose f is an (A, n, B, k)-dominated-election and g is an (A, i, B, j)-dominated-election. Then $f \cap g$ is an (A, (n+i), B, (k+j))-dominated-election. The theorem is a consequence of (14), (12), and (15).

Let us consider A, n, B, and k. The functor DominatedElection(A, n, B, k) yielding a subset of Election(A, n, B, k) is defined by

- (Def. 3) $f \in it$ if and only if f is an (A, n, B, k)-dominated-election.
 - (19) If A = B or $n \leq k$, then DominatedElection(A, n, B, k) is empty. The theorem is a consequence of (14) and (15).
 - (20) If n > k and $A \neq B$, then $n \mapsto A^{\widehat{}}(k \mapsto B) \in \text{DominatedElection}(A, n, B, k)$. The theorem is a consequence of (17) and (16).
 - (21) If $A \neq B$, then DominatedElection(A, n, B, k) =

DominatedElection(0, n, 1, k). PROOF: Set $T = [A \mapsto 0, B \mapsto 1]$. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{for every } f$ such that $f = \$_1$ holds $T \cdot f = \$_2$. For every object x such that $x \in \text{DominatedElection}(A, n, B, k)$ there exists an object y such that $y \in \text{DominatedElection}(0, n, 1, k)$ and $\mathcal{P}[x, y]$ by [25, (27), (26)], [5, (92)], (7). Consider C being a function from DominatedElection(A, n, B, k) into DominatedElection(0, n, 1, k) such that for every object x such that $x \in \text{DominatedElection}(0, n, 1, k)$ such that for every object x such that $x \in \text{DominatedElection}(A, n, B, k)$ holds $\mathcal{P}[x, C(x)]$ from [7, Sch. 1]. DominatedElection $(0, n, 1, k) \subseteq \text{rng } C$ by [25, (27), (26)], [5, (92)], (7). \Box

(22) Let us consider a finite sequence p of elements of \mathbb{N} . Then p is a (0, n, 1, k)-dominated-election if and only if p is an (n+k)-tuple of $\{0, 1\}$ and n > 0 and $\sum p = k$ and for every i such that i > 0 holds $2 \cdot \sum (p | i) < i$. PROOF: If p is a (0, n, 1, k)-dominated-election, then p is an (n+k)-tuple of $\{0, 1\}$

KAROL PĄK

and n > 0 and $\sum p = k$ and for every i such that i > 0 holds $2 \cdot \sum (p \upharpoonright i) < i$ by (8), (12), (15), [25, (70)]. $1 \cdot \overline{p^{-1}(\{1\})} = k \cdot \overline{p^{-1}(\{1\})} + \overline{p^{-1}(\{0\})} = \text{len } p$. $1 \cdot \overline{(p \upharpoonright i)^{-1}(\{1\})} = \sum (p \upharpoonright i) \cdot \overline{(p \upharpoonright i)^{-1}(\{1\})} + \overline{(p \upharpoonright i)^{-1}(\{0\})} = \text{len}(p \upharpoonright i) \cdot \Box$

- (23) If f is an (A, n, B, k)-dominated-election, then f(1) = A. The theorem is a consequence of (15).
- (24) Let us consider a finite 0-sequence d of N. Then $d \in \text{Domin}_0(n+k,k)$ if and only if $\langle 0 \rangle \cap \text{XFS2FS}(d) \in \text{DominatedElection}(0, n+1, 1, k)$. PROOF: Set $X_1 = \text{XFS2FS}(d)$. Set $Z = \langle 0 \rangle$. Set $Z_1 = Z \cap X_1$. Reconsider D = d as a finite 0-sequence of \mathbb{R} . XFS2FS(d) = XFS2FS(D). If $d \in \text{Domin}_0(n+k,k)$, then $Z_1 \in \text{DominatedElection}(0, n+1, 1, k)$ by [15, (20)], (2), [4, (31), (22)]. Z_1 is an (n+1+k)-tuple of $\{0,1\}$. For every k such that $k \leq \text{dom } d$ holds $2 \cdot \sum (d \upharpoonright k) \leq k$ by [20, (14)], [8, (76)], (1), (3). d is dominated by 0. $\sum d = k$. \Box
- (25) $\overline{\text{Domin}_0(n+k,k)} = \overline{\text{DominatedElection}(0,n+1,1,k)}$. PROOF: Set $D = \text{Domin}_0(n+k,k)$. Set B = DominatedElection(0,n+1,1,k). Set $Z = \langle 0 \rangle$. Define $\mathcal{F}[\text{object}, \text{object}] \equiv \text{for every finite 0-sequence } d \text{ of } \mathbb{N} \text{ such that } d = \$_1 \text{ holds } \$_2 = Z \cap \text{XFS2FS}(d)$. For every object x such that $x \in D$ there exists an object y such that $y \in B$ and $\mathcal{F}[x,y]$. Consider f being a function from D into B such that for every object x such that $x \in D$ holds $\mathcal{F}[x, f(x)]$ from [7, Sch. 1]. \Box
- (26) $\overline{\text{Domin}_0(n+k,k)} = \overline{\text{DominatedElection}(0,n+1,1,k)}$. PROOF: Set $D = \text{Domin}_0(n+k,k)$. Set B = DominatedElection(0,n+1,1,k). Set $Z = \langle 0 \rangle$. Define $\mathcal{F}[\text{object}, \text{object}] \equiv \text{for every finite 0-sequence } d \text{ of } \mathbb{N} \text{ such that } d = \$_1 \text{ holds } \$_2 = Z \cap \text{XFS2FS}(d)$. For every object x such that $x \in D$ there exists an object y such that $y \in B$ and $\mathcal{F}[x,y]$. Consider f being a function from D into B such that for every object x such that $x \in D$ holds $\mathcal{F}[x, f(x)]$ from [7, Sch. 1]. \Box
- (27) If $A \neq B$ and n > k, then DominatedElection $(A, n, B, k) = \frac{n-k}{n+k} \cdot \binom{n+k}{k}$. The theorem is a consequence of (21) and (26).

4. MAIN THEOREM

(28) BERTRAND'S BALLOT THEOREM: If $A \neq B$ and $n \geq k$, then P(DominatedElection(A, n, B, k)) = $\frac{n-k}{n+k}$. The theorem is a consequence of (13), (19), and (27).

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.

- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [11] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181–187, 2005.
- [12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [13] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [14] Karol Pąk. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399–406, 2005.
 [14] Karol Pak. The Graduate Particle Provide State S
- [15] Karol Pak. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153–159, 2006. doi:10.2478/v10037-006-0019-7.
- [16] Jan Popiołek. Introduction to probability. Formalized Mathematics, 1(4):755–760, 1990.
- [17] M. Renault. Four proofs of the ballot theorem. Mathematics Magazine, 80(5):345–352, December 2007.
- [18] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1): 115–122, 1990.
- [19] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [20] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5 (3):317–322, 1996.
- [21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [22] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [24] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825–829, 2001.
- [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received June 13, 2014