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Summary. An original result about Hilbert Positive Propositional Calcu-
lus introduced in [11] is proven. That is, it is shown that the pseudo-canonical
formulae of that calculus (and hence also the canonical ones, see [17]) are a subset
of the classical tautologies.
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The notation and terminology used in this paper have been introduced in the
following articles: [13], [1], [14], [10], [9], [15], [3], [4], [5], [6], [11], [16], [17], [2],
[7], [18], [20], [22], [21], [12], [19], and [8].

1. Preliminaries about Injectivity, Involutiveness, Fixed Points

From now on a, b, c, x, y, z, A, B, C, X, Y denote sets, f , g denote
functions, V denotes a SetValuation, P denotes a permutation of V , p, q, r, s
denote elements of HP-WFF, and n denotes an element of N.

Let us consider X and Y. Let f be a relation between X and Y. Note that
idX · f reduces to f and f · idY reduces to f .

Now we state the proposition:

(1) Let us consider one-to-one functions f , g. If f−1 = g−1, then f = g.
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One can verify that there exists a function which is involutive.
Let us consider A. Let us observe that there exists a permutation of A which

is involutive.
Now we state the propositions:

(2) Let us consider an involutive function f . Suppose rng f ⊆ dom f . Then
f · f = iddom f .

(3) Let us consider a function f . If f · f = iddom f , then f is involutive.

(4) Let us consider an involutive function f from A into A. Then f ·f = idA.
The theorem is a consequence of (2).

(5) Let us consider a function f from A into A. If f · f = idA, then f is
involutive. The theorem is a consequence of (3).

Observe that every function which is involutive is also one-to-one.
Let us consider A. Let f be an involutive permutation of A. One can verify

that f−1 is involutive.
Let n be a non zero natural number. Observe that [0 7−→ n, n 7−→ 0] is

without fixpoints.
Let z be a zero natural number. Note that fixpoints[z 7−→ n, n 7−→ z] is

empty.
Let X be a non empty set. Observe that there exists a permutation of X

which is non empty and involutive.
Let us consider A and B. Let f be an involutive function from A into A and

g be an involutive function from B into B. Observe that f × g is involutive.
Let A, B be non empty sets, f be an involutive permutation of A, and g be

an involutive permutation of B. Observe that f ⇒ g is involutive.

2. Facts about Perm’s Fixed Points

Now we state the propositions:

(6) If x is a fixpoint of Perm(P, q), then SetVal(V, p) 7−→ x is a fixpoint of
Perm(P, p⇒ q).

(7) If Perm(P, q) has fixpoints, then Perm(P, p ⇒ q) has fixpoints. The
theorem is a consequence of (6).

(8) If Perm(P, p) has fixpoints and Perm(P, q) is without fixpoints, then
Perm(P, p⇒ q) is without fixpoints.

3. Axiom of Choice in Functional Form via the Fraenkel Operator

Let X be a set. The functor ChoiceOnX yielding a set is defined by the
term

(Def. 1) {〈〈x, the element of x〉〉, where x is an element of X \ {∅} : x ∈ X \ {∅}}.
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One can check that ChoiceOnX is relation-like and function-like.
Let us consider f . The functor FieldCover f yielding a set is defined by the

term

(Def. 2) {{x, f(x)}, where x is an element of dom f : x ∈ dom f}.

The functor SomePoints f yielding a set is defined by the term

(Def. 3) field f \ rng ChoiceOn FieldCover f .

The functor OtherPoints f yielding a set is defined by the term

(Def. 4) (field f \ fixpoints f) \ SomePoints f .

Let us consider g. Let us observe that OtherPoints g∩SomePoints g is empty.

4. Building a Suitable Set Valuation and a Suitable Permutation
of It

Let us consider x. The functor ToHilb(x) yielding a set is defined by the
term

(Def. 5) (id1+·(1× ∅x) · (∅x × {1}))+·({1} × ∅x) · (∅x × {0}).
Note that ToHilb(x) is function-like and relation-like.
Now we state the propositions:

(9) If x 6= ∅, then ToHilb(x) = id1.

(10) ToHilb(∅) = [0 7−→ 1, 1 7−→ 0].

Let v be a function. The functor ToHilbPerm(v) yielding a set is defined by
the term

(Def. 6) the set of all 〈〈n, ToHilb(v(n))〉〉 where n is an element of N.

The functor ToHilbVal(v) yielding a set is defined by the term

(Def. 7) the set of all 〈〈n, dom ToHilb(v(n))〉〉 where n is an element of N.

One can check that ToHilbVal(v) is function-like and relation-like and ToHilb-
Perm (v) is function-like and relation-like and ToHilbVal(v) is N-defined and
ToHilbVal(v) is total and ToHilbPerm(v) is N-defined and ToHilbPerm(v) is
total.

One can verify that ToHilbVal(v) is non-empty.
Let us consider x. Let us note that ToHilb(x) is symmetric.
Let v be a function. Observe that the functor ToHilbPerm(v) yields a per-

mutation of ToHilbVal(v).
A set valuation is a many sorted set indexed by N. From now on v denotes

a set valuation.
Let us consider p and v. Note that Perm(ToHilbPerm(v), p) is involutive.
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5. Classical Semantics via SetVal0, an Extension of SetVal

Let V be a set valuation. The functor SetVal0 V yielding a many sorted set
indexed by HP-WFF is defined by

(Def. 8) (i) it(VERUM) = 1, and

(ii) for every n, it(propn) = V (n), and

(iii) for every p and q, it(p∧q) = it(p)× it(q) and it(p⇒ q) = (it(q))it(p).
Let us consider v and p. The functor SetVal0(v, p) yielding a set is defined

by the term

(Def. 9) (SetVal0 v)(p).

We say that p is classical if and only if

(Def. 10) SetVal0(v, p) 6= ∅.
One can check that every element of HP-WFF which is pseudo-canonical is

also classical.
Let us consider v. Let p be a classical element of HP-WFF. Note that

SetVal0(v, p) is non empty.
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