Special Issue: 25 years of the Mizar Mathematical Library

FORMALIZED MATHEMATICS Vol. 22, No. 2, Pages 105-110, 2014 DOI: 10.2478/forma-2014-0012

Lagrange's Four-Square Theorem

Yasushige Watase Suginami-ku Matsunoki 6 3-21 Tokyo, Japan

Summary. This article provides a formalized proof of the so-called "the four-square theorem", namely any natural number can be expressed by a sum of four squares, which was proved by Lagrange in 1770. An informal proof of the theorem can be found in the number theory literature, e.g. in [14], [1] or [23].

This theorem is item #19 from the "Formalizing 100 Theorems" list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

MSC: 11P99 03B35

Keywords: Lagrange's four-square theorem

MML identifier: LAGRA4SQ, version: 8.1.03 5.23.1207

The notation and terminology used in this paper have been introduced in the following articles: [19], [2], [7], [6], [12], [8], [9], [21], [17], [4], [15], [16], [5], [10], [13], [24], [25], [22], and [11].

1. Preliminaries

Let n be a natural number. We say that n is a sum of four squares if and only if

(Def. 1) There exist natural numbers n_1 , n_2 , n_3 , n_4 such that $n = n_1^2 + n_2^2 + n_3^2 + n_4^2$.

Note that there exists a natural number which is a sum of four squares. Let y be an integer object. Let us note that |y| is natural.

Now we state the proposition:

(1) Let us consider natural numbers n_1 , n_2 , n_3 , n_4 , m_1 , m_2 , m_3 , m_4 . Then $(n_1^2 + n_2^2 + n_3^2 + n_4^2) \cdot (m_1^2 + m_2^2 + m_3^2 + m_4^2) = (n_1 \cdot m_1 - n_2 \cdot m_2 - n_3 \cdot m_3 - n_4 \cdot m_4)^2 + (n_1 \cdot m_2 + n_2 \cdot m_1 + n_3 \cdot m_4 - n_4 \cdot m_3)^2 + (n_1 \cdot m_3 - n_2 \cdot m_4 + n_3 \cdot m_1 + n_4 \cdot m_2)^2 + (n_1 \cdot m_4 + n_2 \cdot m_3 - n_3 \cdot m_2 + n_4 \cdot m_1)^2$.

Let m, n be natural numbers. Let us note that $m \cdot n$ is a sum of four squares and there exists a prime natural number which is odd.

From now on i, j, k, v, w denote natural numbers, j_1 , j_2 , m, n, s, t, x, y denote integers, and p denotes an odd prime natural number.

Let us consider p. The functor $\operatorname{ModMap}(p)$ yielding a function from \mathbb{Z} into \mathbb{Z}_p is defined by

(Def. 2) Let us consider an element x of \mathbb{Z} . Then $it(x) = x \mod p$.

Let us consider v. The functor Lag4SqF(v) yielding a finite sequence of elements of \mathbb{Z} is defined by

- (Def. 3) (i) len it = v, and
 - (ii) for every natural number i such that $i \in \text{dom } it \text{ holds } it(i) = (i-1)^2$. The functor Lag4SqG(v) yielding a finite sequence of elements of \mathbb{Z} is defined by
- (Def. 4) (i) len it = v, and
 - (ii) for every natural number i such that $i \in \text{dom } it \text{ holds } it(i) = -1 (i-1)^2$.

Now we state the propositions:

- (2) Lag4SqF(v) is one-to-one.
- (3) Lag4SqG(v) is one-to-one.

In the sequel a denotes a real number and b denotes an integer.

Let us consider an odd prime natural number p, a natural number s, j_1 , and j_2 . Now we state the propositions:

- (4) If $2 \cdot s = p + 1$ and $j_1, j_2 \in \operatorname{rng} \operatorname{Lag4SqF}(s)$, then $j_1 = j_2$ or $j_1 \mod p \neq j_2 \mod p$. PROOF: Consider s such that $p+1 = 2 \cdot s$. For every integers j_1, j_2 such that $j_1, j_2 \in \operatorname{rng} \operatorname{Lag4SqF}(s)$ and $j_1 \neq j_2$ holds $j_1 \mod p \neq j_2 \mod p$ by $[21, (3), (55)], [16, (80)], [18, (22)]. \square$
- (5) If $2 \cdot s = p + 1$ and $j_1, j_2 \in \text{rng Lag4SqG}(s)$, then $j_1 = j_2$ or $j_1 \mod p \neq j_2 \mod p$. PROOF: Consider s such that $p + 1 = 2 \cdot s$. For every j_1 and j_2 such that $j_1, j_2 \in \text{rng Lag4SqG}(s)$ and $j_1 \neq j_2$ holds $j_1 \mod p \neq j_2 \mod p$ by [21, (3), (55)], [16, (80)], [20, (7)]. \square
- 2. Any Prime Number can be Expressed as a Sum of Four Squares

Now we state the propositions:

- (6) There exist natural numbers x_1, x_2, x_3, x_4, h such that
 - (i) 0 < h < p, and
 - (ii) $h \cdot p = x_1^2 + x_2^2 + x_3^2 + x_4^2$.

PROOF: Consider s such that $2 \cdot s = p + 1$. Set f = Lag4SqF(s). Set g = Lag4SqG(s). f is one-to-one. g is one-to-one. rng f misses rng g. $\overline{\text{rng}(g \cap f)} = p + 1$ by [2, (70)], [6, (57), (31)], [3, (35), (36)]. Set $A = \text{dom}(\text{ModMap}(p) \upharpoonright \text{rng}(g \cap f))$. Set $B = \text{rng}(\text{ModMap}(p) \upharpoonright \text{rng}(g \cap f))$. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists an element } m_1 \text{ of } \mathbb{Z} \text{ such that } \$_1 \in A$ and $\$_2 = m_1$ and $(\text{ModMap}(p) \upharpoonright \text{rng}(g \cap f))(\$_1) = m_1$. For every object x such that $x \in A$ there exists an object y such that $y \in B$ and $\mathcal{P}[x, y]$ by [8, (3)]. Consider h being a function from A into B such that for every object x such that $x \in A$ holds $\mathcal{P}[x, h(x)]$ from [9, Sch. 1]. Consider m_1, m_2 being objects such that $m_1 \in A$ and $m_2 \in A$ and $m_1 \neq m_2$ and $h(m_1) = h(m_2)$. If $m_1 \in \text{rng } f$, then $m_2 \in \text{rng } g$. If $m_1 \in \text{rng } g$, then $m_2 \in \text{rng } f$. There exist natural numbers x_1, x_2, x_3, x_4, h such that h > 0 and h < p and $h \cdot p = x_1^2 + x_2^2 + x_3^2 + x_4^2$ by [20, (7)], [21, (3)]. \square

- (7) Let us consider natural numbers x_1 , h. Suppose 1 < h. Then there exists an integer y_1 such that
 - (i) $x_1 \mod h = y_1 \mod h$, and
 - (ii) $-h < 2 \cdot y_1 \leqslant h$, and
 - (iii) $x_1^2 \mod h = y_1^2 \mod h$.

PROOF: Consider q_1 , r_1 being integers such that $x_1 = h \cdot q_1 + r_1$ and $0 \le r_1$ and $r_1 < h$. There exists an integer y_1 such that $x_1 \mod h = y_1 \mod h$ and $-h < 2 \cdot y_1 \le h$ and $x_1^2 \mod h = y_1^2 \mod h$ by [21, (3)], [18, (23)]. \square

- (8) Let us consider natural numbers i_1 , i_2 , c. If $i_1 \le c$ and $i_2 \le c$, then $i_1 + i_2 < 2 \cdot c$ or $i_1 = c$ and $i_2 = c$.
- (9) Let us consider natural numbers i_1 , i_2 , i_3 , i_4 , c. Suppose
 - (i) $i_1 \leqslant c$, and
 - (ii) $i_2 \leqslant c$, and
 - (iii) $i_3 \leqslant c$, and
 - (iv) $i_4 \leqslant c$.

Then

- (v) $i_1 + i_2 + i_3 + i_4 < 4 \cdot c$, or
- (vi) $i_1 = c$ and $i_2 = c$ and $i_3 = c$ and $i_4 = c$.

The theorem is a consequence of (8).

Let us consider natural numbers x_1 , h and an integer y_1 . Now we state the propositions:

- (10) Suppose 1 < h and $x_1 \mod h = y_1 \mod h$ and $-h < 2 \cdot y_1$ and $(2 \cdot y_1)^2 = h^2$. Then
 - (i) $2 \cdot y_1 = h$, and

- (ii) there exists a natural number m_1 such that $2 \cdot x_1 = (2 \cdot m_1 + 1) \cdot h$.
- (11) If 1 < h and $x_1 \mod h = y_1 \mod h$ and $y_1 = 0$, then there exists an integer m_1 such that $x_1 = h \cdot m_1$.

Now we state the proposition:

- (12) Let us consider an odd prime number p and natural numbers x_1, x_2, x_3, x_4, h . Suppose
 - (i) 1 < h < p, and
 - (ii) $h \cdot p = x_1^2 + x_2^2 + x_3^2 + x_4^2$.

Then there exist integers y_1 , y_2 , y_3 , y_4 and there exists a natural number r such that 0 < r < h and $r \cdot p = y_1^2 + y_2^2 + y_3^2 + y_4^2$. The theorem is a consequence of (7), (9), (10), and (11).

Let us consider a prime number p. Now we state the propositions:

- (13) If p is even, then p = 2.
- (14) There exist natural numbers x_1 , x_2 , x_3 , x_4 such that $p = x_1^2 + x_2^2 + x_3^2 + x_4^2$.

Now we state the proposition:

(15) Let us consider prime numbers p_1 , p_2 . Then there exist natural numbers x_1 , x_2 , x_3 , x_4 such that $p_1 \cdot p_2 = x_1^2 + x_2^2 + x_3^2 + x_4^2$. The theorem is a consequence of (14).

Let p_1 , p_2 be prime numbers. Let us observe that $p_1 \cdot p_2$ is a sum of four squares.

Now we state the proposition:

(16) Let us consider a prime number p and a natural number n. Then there exist natural numbers x_1, x_2, x_3, x_4 such that $p^n = x_1^2 + x_2^2 + x_3^2 + x_4^2$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{there exist natural numbers } x_1, x_2, x_3, x_4 \text{ such that } p^{\$_1} = x_1^2 + x_2^2 + x_3^2 + x_4^2$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by (14), [7, (75)], [16, (6)]. $\mathcal{P}[0]$ by [16, (4)]. For every natural number n, $\mathcal{P}[n]$ from [4, Sch. 2]. \square

Let p be a prime number and n be a natural number. Observe that p^n is a sum of four squares.

3. Proof of Lagrange's theorem

Now we state the proposition:

(17) Let us consider a non zero natural number n. Then there exist natural numbers x_1 , x_2 , x_3 , x_4 such that $\prod \operatorname{PPF}(n) = x_1^2 + x_2^2 + x_3^2 + x_4^2$. PROOF: Define $\mathcal{P}[\operatorname{natural number}] \equiv$ for every non zero natural number n such that $\overline{\operatorname{support} \operatorname{PPF}(n)} = \$_1$ there exist natural numbers x_1 , x_2 , x_3 , x_4 such that $\prod \operatorname{PPF}(n) = x_1^2 + x_2^2 + x_3^2 + x_4^2$. $\mathcal{P}[0]$ by [15, (20)]. For

every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [15, (34), (28), (25)]. For every natural number k, $\mathcal{P}[k]$ from [4, Sch. 2]. \square

Now we state the proposition:

(18) Lagrange's four-square theorem:

Let us consider a natural number n. Then there exist natural numbers x_1, x_2, x_3, x_4 such that $n = x_1^2 + x_2^2 + x_3^2 + x_4^2$. The theorem is a consequence of (17).

One can verify that every natural number is a sum of four squares.

References

- [1] Alan Baker. A Concise Introduction to the Theory of Numbers. Cambridge University Press, 1984.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
- [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317–321, 1998.
- [14] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1980.
- [15] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179–186, 2004.
- [16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.
- [18] Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics, 15(4):181–187, 2007. doi:10.2478/v10037-007-0022-7.
- [19] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [20] Christoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3): 247–252, 2008. doi:10.2478/v10037-008-0029-8.
- [21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [23] Hideo Wada. The World of Numbers (in Japanese). Iwanami Shoten, 1984.

- [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 $({\bf 1}):73-83,\,1990.$
- [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received June 4, 2014
