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Summary. In this article, semiring and semialgebra of sets are formalized
so as to construct a measure of a given set in the next step. Although a semiring
of sets has already been formalized in [13], that is, strictly speaking, a definition
of a quasi semiring of sets suggested in the last few decades [15]. We adopt a
classical definition of a semiring of sets here to avoid such a confusion. Ring
of sets and algebra of sets have been formalized as non empty preboolean set
[23] and field of subsets [18], respectively. In the second section, definitions of
a ring and a σ-ring of sets, which are based on a semiring and a ring of sets
respectively, are formalized and their related theorems are proved. In the third
section, definitions of an algebra and a σ-algebra of sets, which are based on a
semialgebra and an algebra of sets respectively, are formalized and their related
theorems are proved. In the last section, mutual relationships between σ-ring
and σ-algebra of sets are formalized and some related examples are given. The
formalization is based on [15], and also referred to [9] and [16].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider finite sequences f1, f2, and a natural number k. Suppose
k ∈ Seg(len f1 · len f2). Then

(i) (k −′ 1 mod len f2) + 1 ∈ dom f2, and

(ii) (k −′ 1 div len f2) + 1 ∈ dom f1.

(2) Let us consider a non empty, finite set S. Then
⋃

CFS(S) =
⋃
S.

(3) Let us consider an object x. Then 〈x〉 is a disjoint valued finite sequence.

(4) Let us consider sets x, y, and a finite sequence F . If F = 〈x, y〉 and x

misses y, then F is disjoint valued.

(5) Let us consider finite sequences f1, f2. Then there exists a finite sequence
f such that

(i)
⋃
f1 ∩
⋃
f2 =

⋃
f , and

(ii) dom f = Seg(len f1 · len f2), and

(iii) for every natural number i such that i ∈ dom f holds f(i) = f1((i−′
1 div len f2) + 1) ∩ f2((i−′ 1 mod len f2) + 1).

Proof: For every natural number k such that k ∈ Seg(len f1 · len f2) holds
(k−′ 1 mod len f2)+1 ∈ dom f2 and (k−′ 1 div len f2)+1 ∈ dom f1. Define
P[natural number, object] ≡ $2 = f1(($1 −′ 1 div len f2) + 1) ∩ f2(($1 −′
1 mod len f2) + 1). Consider f being a finite sequence such that dom f =
Seg(len f1 ·len f2) and for every natural number k such that k ∈ Seg(len f1 ·
len f2) holds P[k, f(k)] from [6, Sch. 1]. �

(6) Let us consider disjoint valued finite sequences f1, f2. Then there exists
a disjoint valued finite sequence f such that

(i)
⋃
f1 ∩
⋃
f2 =

⋃
f , and

(ii) dom f = Seg(len f1 · len f2), and

(iii) for every natural number i such that i ∈ dom f holds f(i) = f1((i−′
1 div len f2) + 1) ∩ f2((i−′ 1 mod len f2) + 1).

The theorem is a consequence of (5).

(7) Let us consider a set X, and a non empty, \-closed family S of subsets
of X. Then ∅ ∈ S.

Let X be a set. One can check that every family of subsets of X which is
non empty and \-closed has also the empty element.
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2. Classical Semiring, Ring and σ-ring of Sets

Let I1 be a set. We say that I1 is semi \-closed if and only if

(Def. 1) for every sets X, Y such that X, Y ∈ I1 there exists a disjoint valued
finite sequence F of elements of I1 such that X \ Y =

⋃
F .

Let X be a set. Let us note that 2X is semi \-closed and there exists a family
of subsets of X which is non empty, semi \-closed, and ∩-closed and there exists
a family of subsets of X which is semi \-closed and ∩-closed and has the empty
element.

A semiring of X is a semi \-closed, ∩-closed family of subsets of X with the
empty element. Now we state the propositions:

(8) Let us consider a set X, a family S of subsets of X, and sets S1, S2.
Suppose S1, S2 ∈ S and S is semi \-closed. Then there exists a finite
subset x of S such that x is a partition of S1 \ S2.

(9) Let us consider a set X, and a non empty family S of subsets of X. Sup-
pose S is semi \-closed. Then S is \⊆fp-closed. The theorem is a consequence
of (8).

(10) Let us consider a set X, and a family S of subsets of X. Suppose S

is ∩fp-closed and \⊆fp-closed and has the empty element. Then S is semi
\-closed. The theorem is a consequence of (2).

Note that every set which is \-closed is also semi \-closed and ∩-closed.
Let X be a set. Observe that there exists a family of subsets of X which is

non empty and preboolean and every set which is non empty and preboolean
has also the empty element.

Let X be a set and S be a semi \-closed, ∩-closed family of subsets of X with
the empty element. The ring generated by S yielding a non empty, preboolean
family of subsets of X is defined by the term

(Def. 2)
⋂
{Z, where Z is a non empty, preboolean family of subsets of X : S ⊆

Z}.
Now we state the proposition:

(11) Let us consider a set X, and a semi \-closed, ∩-closed family P of subsets
of X with the empty element. Then P ⊆ the ring generated by P .

Let X be a set and S be a semi \-closed, ∩-closed family of subsets of X
with the empty element. The functor DisUnionS yielding a non empty family
of subsets of X is defined by the term

(Def. 3) {A, where A is a subset of X : there exists a disjoint valued finite sequ-
ence F of elements of S such that A =

⋃
F}.
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Let us consider a set X and a semi \-closed, ∩-closed family S of subsets of
X with the empty element. Now we state the propositions:

(12) S ⊆ DisUnionS.

(13) DisUnionS is ∩-closed. The theorem is a consequence of (6) and (1).

Now we state the proposition:

(14) Let us consider a set X, a semi \-closed, ∩-closed family S of subsets of
X with the empty element, and sets A, B, P . If P = DisUnionS and A,
B ∈ P and A misses B, then A ∪B ∈ P .

Let us consider a set X, a semi \-closed, ∩-closed family S of subsets of X
with the empty element, and sets A, B. Now we state the propositions:

(15) If A, B ∈ S, then B \A ∈ DisUnionS.

(16) If A ∈ S and B ∈ DisUnionS, then B \A ∈ DisUnionS.
Proof: Reconsider A1 = A as a subset of X. Consider B1 being a subset
of X such that B = B1 and there exists a disjoint valued finite sequence
F of elements of S such that B1 =

⋃
F . Consider g1 being a disjoint

valued finite sequence of elements of S such that B1 =
⋃
g1. Reconsider

R1 = DisUnionS as a non empty set. Define P[natural number, object] ≡
$2 = g1($1)\A1. For every natural number k such that k ∈ Seg len g1 there
exists an element x of R1 such that P[k, x] by [10, (3)], (15). Consider g2
being a finite sequence of elements of R1 such that dom g2 = Seg len g1 and
for every natural number k such that k ∈ Seg len g1 holds P[k, g2(k)] from
[6, Sch. 5]. For every natural numbers n, m such that n, m ∈ dom g2 and
n 6= m holds g2(n) misses g2(m). Set R = DisUnionS. Define H[natural
number] ≡

⋃
rng(g2�$1) ∈ R. For every natural number k such that H[k]

holds H[k + 1] by [4, (13)], [6, (59), (82)], [24, (55)]. For every natural
number k, H[k] from [4, Sch. 2]. �

Now we state the propositions:

(17) Let us consider a set X, a semi \-closed, ∩-closed family S of subsets of
X with the empty element, and sets A, B, R. Suppose R = DisUnionS
and A, B ∈ R and A 6= ∅. Then B \A ∈ R.
Proof: Consider A1 being a subset ofX such that A = A1 and there exists
a disjoint valued finite sequence F of elements of S such that A1 =

⋃
F .

Consider f1 being a disjoint valued finite sequence of elements of S such
that A1 =

⋃
f1. Consider B1 being a subset of X such that B = B1 and

there exists a disjoint valued finite sequence F of elements of S such that
B1 =

⋃
F . Reconsider R1 = R as a non empty set. Define P[natural

number, object] ≡ $2 = B1 \ f1($1). For every natural number k such
that k ∈ Seg len f1 there exists an element x of R1 such that P[k, x] by
[10, (3)], (16). Consider F being a finite sequence of elements of R1 such
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that domF = Seg len f1 and for every natural number k such that k ∈
Seg len f1 holds P[k, F (k)] from [6, Sch. 5]. Define P[natural number] ≡⋂

rng(F �$1) ∈ R. For every natural number k such that P[k] holds P[k+1]
by [6, (82)], [4, (11)], [6, (59)], [24, (55)]. For every natural number k, P[k]
from [4, Sch. 2]. �

(18) Let us consider a set X, and a semi \-closed, ∩-closed family S of subsets
of X with the empty element. Then the ring generated by S = DisUnionS.
The theorem is a consequence of (13), (17), and (14).

Let X be a set.
A σ-ring of subsets of X is a non empty, preboolean family of subsets of X

and is defined by

(Def. 4) for every sequence F of subsets of X such that rngF ⊆ it holds
⋃
F ∈ it .

Let us observe that every σ-ring of subsets of X is σ-multiplicative.
Let S be a family of subsets of X. The functor σ-ring(S) yielding a σ-ring

of subsets of X is defined by

(Def. 5) S ⊆ it and for every set Z such that S ⊆ Z and Z is a σ-ring of subsets
of X holds it ⊆ Z.

Now we state the proposition:

(19) Let us consider a set X, and a semi \-closed, ∩-closed family S of subsets
of X with the empty element. Then σ-ring(the ring generated by S) =
σ-ring(S). The theorem is a consequence of (11).

3. Semialgebra, Algebra and σ-algebra of Sets

Let X be a set.
A semialgebra of sets of X is a semi \-closed, ∩-closed family of subsets of

X with the empty element and is defined by

(Def. 6) X ∈ it .
Now we state the proposition:

(20) Let us consider a set X. Then every field of subsets of X is a semialgebra
of sets of X.

Let X be a set and S be a semialgebra of sets of X. The field generated by
S yielding a non empty field of subsets of X is defined by the term

(Def. 7)
⋂
{Z, where Z is a field of subsets of X : S ⊆ Z}.

Now we state the propositions:

(21) Let us consider a set X, and a semialgebra P of sets of X. Then P ⊆
the field generated by P .
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(22) Let us consider a set X, and a semialgebra S of sets of X. Then the field
generated by S = DisUnionS. The theorem is a consequence of (13), (17),
and (14).

(23) Let us consider a non empty set X, and a semialgebra S of sets of X.
Then σ(the field generated by S) = σ(S). The theorem is a consequence
of (21).

4. Mutual Relationships between σ-ring and σ-algebra of Sets

Let us consider a set X and a set S. Now we state the propositions:

(24) If S is a σ-field of subsets of X, then S is a σ-ring of subsets of X.

(25) If S is a σ-ring of subsets of X and X ∈ S, then S is a σ-field of subsets
of X.

Let us consider a family S of subsets of R. Now we state the propositions:

(26) Suppose S = {I, where I is a subset of R : I is left open interval}. Then
S is semi \-closed and ∩-closed and has the empty element. The theorem
is a consequence of (10).

(27) Suppose S = {I, where I is a subset of R : I is right open interval}.
Then S is semi \-closed and ∩-closed and has the empty element. The
theorem is a consequence of (4) and (3).

Now we state the proposition:

(28) the set of all I where I is an interval is a semialgebra of sets of R. The
theorem is a consequence of (3) and (4).
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