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Summary. In this article we introduce necessary notation and definitions
to prove the Euler’s Partition Theorem according to H.S. Wilf’s lecture notes
[31]. Our aim is to create an environment which allows to formalize the theorem
in a way that is as similar as possible to the original informal proof.

Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100
Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/
100/| [30].
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The notation and terminology used in this paper have been introduced in the
following articles: [1], [2], [6], 8], [13], [271, [13], [14], [23], [9], [10], [7], [25], [24],
131, M, 09, [, [22], [32], [33], [11], [21], [28], [18], and [12].

1. AUXILIARY FACTS ABOUT FINITE SEQUENCES CONCATENATION

From now on z, y denote objects, D, D1, Dy denote non empty sets, ¢, j, k,
m, n denote natural numbers, f, g denote finite sequences of elements of D*, f;
denotes a finite sequence of elements of D1*, and f5 denotes a finite sequence of
elements of Dy*.

Now we state the propositions:
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(1) Let us consider a function yielding function F', and an object a. Then
a € Values F' if and only if there exists z and there exists y such that
x € dom F and y € dom(F'(x)) and a = F(z)(y).

(2) Let us consider a set D, and finite sequences f, g of elements of D*.
Then Values f ~ g = Values f U Values g.
PROOF: Set F' = f ™ g. Values f C Values F' by (1), [6, (26)]. Valuesg C
Values F' by (1), [6 (28)]. Values F' C Values f U Values g by (1), [, (25)].
U

(3) The concatenation of D ® f ™ g = (the concatenation of D ® f) ™
(the concatenation of D ® g).

(4) rng(the concatenation of D ® f) = Values f.
PROOF: Set D3 = the concatenation of D. Define Plnatural number| =
for every finite sequence f of elements of D* such that len f = $; holds
rng(D3 ® f) = Values f. P[0]. If Pi], then P[i + 1] by [8, (19), (16)], (3),
[27, (11)]. P[é] from [4, Sch. 2]. O

(5) If fi = fo, then the concatenation of Dy ® f; = the concatenation of
Dy ® fo.
PROOF: Set C = the concatenation of Dy. Set N = the concatenation of
D;. Define P[natural number| = for every finite sequence fy of elements
of D1* for every finite sequence f3 of elements of Dy* such that $; = len f;
and fi = f3 holds N® fy = C ® f3. P[0]. If P[i], then P[i+ 1] by [8, (19),
(16)], (3), 27, (11)]. P[i] from [4, Sch. 2]. O

(6) i € dom(the concatenation of D ® f) if and only if there exists n and
there exists k such that n + 1 € dom f and k& € dom(f(n + 1)) and
i = k + len(the concatenation of D ® f[n).
PROOF: Set D3 = the concatenation of D. Define P[natural number] = for
every 1 for every finite sequence f of elements of D* such that len f = $;
holds ¢ € dom(D3 ® f) iff there exists n and there exists k such that
n+1¢edomf and k € dom(f(n+1)) and i = k+len(D3 ® fIn). P[0]. If
Plj], then P[5 + 1] by [8, (19), (16)], (3), [27, (11)]. P[j] from [4, Sch. 2].
O

(7) Suppose i € dom(the concatenation of D ® f). Then

(i) (the concatenation of D® f)(i) = (the concatenation of D® f~g)(i),
and

(ii) (the concatenation of D® f)(i) = (the concatenation of D®g~ f)(i+
len(the concatenation of D ©® g)).

The theorem is a consequence of (3).
(8) Suppose k € dom(f(n+1)). Then f(n + 1)(k) = (the concatenation of
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D © f)(k + len(the concatenation of D ® f[n)). The theorem is a conse-
quence of (3).

2. FLEXARY PLUS

From now on f denotes a complex-valued function and g, h denote complex-
valued finite sequences.

Let us consider k£ and n. Let f, g be complex-valued functions. The functor
(f,k)+...4+(g,n) yielding a complex number is defined by

(Def. 1) (1) h(0+1)= f(0+k) and ... and h(n ="k +1) = f(n ="k + k), then
it =>(hl(n—"k+1)),if f=gand k < n,
(ii) it = 0, otherwise.
Now we state the propositions:
(9) Suppose k < n. Then there exists h such that

i) (f,k)+...+(f,n) => h, and

(ii) lenh =n—"k+1, and
(iii) h(0+1)=f(0+k) and ... and h(n —"k+1) = f(n —"k+ k).
PROOF: Define P(natural number) = f(k+$; —1). Set ng =n—"k+ 1.
Consider p being a finite sequence such that lenp = n3 and for every
i such that i € domp holds p(i) = P(i) from [6, Sch. 2]. rngp C C.
p(1+0) = f(k+0) and ... and p(1 + (n —" k)) = f(k+ (n =" k)) by [4,
(11)], [26l (25)]. O

(10) If (f,k)+...+(f,n) # 0, then there exists ¢ such that k¥ < i < n and
1 € dom f.
ProOF: Consider h such that (f,k)+...+(f,n) =Y h and lenh =n -/
k+1and h(04+1) = f(0+ k) and ... and h(n —" k+1) = f(n —" k+ k).
rngh C {0} by [26, (25)], [4, (11)]. O

(11) (f,k)+...+(f, k) = f(k). The theorem is a consequence of (9).

(12) Ifk <n+1, then (f,k)+...+(f,(n+1)) = ((f,k)+...+(f,n)+ f(n+
1). The theorem is a consequence of (11) and (9).

(13) If k < n, then (f,k)+...+(f,n) = f(k) + ((f,(E+1)+...+(f,n)).
The theorem is a consequence of (11) and (9).

(14) Ifk<m<n,then ((f,k)+...+(f,m)+((fy(m+1)+...+(f,n)) =
(f k) +...+(f,n).
PROOF: Define P[natural number] = ((f,k)+...+(f,m)) + ((f,(m +

M +...+(f,(m+ %)) = (f,k)+...+(f, (m + $1)). P0] by [, (13)].
If P[i], then P[i + 1] by [4, (11)], (12). PJi] from [4, Sch. 2]. O
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(15) If k > lenh, then (h,k)+...+(h,n) = 0. The theorem is a consequence
of (9).

(16) If n > lenh, then (h,k)+...+(h,n) = (h,k)+...+(h,lenh). The the-
orem is a consequence of (15) and (12).

(17) (h,0)+...+(h,k) = (h,1)+...+(h, k). The theorem is a consequence
of (13).

(18) (h,1)+...4+(h,lenh) =" h. The theorem is a consequence of (9).

(19) (g"h,k)+...+(g"h,n) = ((9,k)+...+(g,n))+((h,(k—"leng)) + ...+
(h,(n —"leng))). The theorem is a consequence of (11), (15), (16), (17),
and (14).

Let us consider n and k. Let f be a real-valued finite sequence. One can
check that (f,k)+...4+(f,n) is real.

Let f be a natural-valued finite sequence. Note that (f,k)+...+(f,n) is
natural.

Let f be a complex-valued function. Assume dom f NN is finite. The functor
(f,n)+ ... yielding a complex number is defined by
(Def. 2) for every k such that for every i such that ¢ € dom f holds ¢ < k holds
it =(f,n)+...+(f, k).
Let us consider h. One can check that the functor (h,n) +. .. yields a complex
number and is defined by the term

(Def. 3)  (h,n)+...+(h,lenh).

Let n be a natural number and h be a natural-valued finite sequence. Let us
note that (h,n)+ ... is natural.
Now we state the propositions:

(20) Let us consider a finite, complex-valued function f. Then f(n)+ (f, (n+
1))+...=(f,n)+.... The theorem is a consequence of (13).

21) Sh=(1)+...

(22) > h=h(1)+(h,2)+.... The theorem is a consequence of (18) and (20).

The scheme T'T deals with complex-valued finite sequences f, g and natural
numbers a, b and non zero natural numbers n, k and states that

(Sch. 1) (f,a)+...=1(g,b)+...
provided

o for every j, (f,(a+j-n)+...+(f,(a+j-n+(n-"1))) = (9,(b+7-
E)+...4+(g,(b+j-k+ (kE-"1))).
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3. PoweER FuNCTION

Let 7 be a real number and f be a real-valued function. The functor r/
yielding a real-valued function is defined by

(Def. 4) dom it = dom f and for every z such that z € dom f holds it(z) = rf(®),

Let n be a natural number and f be a natural-valued function. One can
verify that n/ is natural-valued.

Let r be a real number and f be a real-valued finite sequence. One can check
that r/ is finite sequence-like and r/ is (len f)-element.

Let f be a one-to-one, natural-valued function. Observe that (24 n)’ is
one-to-one.

(23) Let us consider real numbers 7, s. Then () = (%),

(24) Let us consider a real number 7, and real-valued finite sequences f, g.
Then v/ 9 = rf ~r9.
PROOF: Set f5 = f " g. Set 75 = rf. Set r3 = r9. For every i such that
1 <i <len f5 holds 75 (i) = (ro " r3)(4) by [26, (25)], [6, (25)]. O

(25) Let us consider a real-valued function f, and a function g. Then 2/ - g =
2/°9. ProoOF: Set h = 2/. Set f5 = f-g. dom(h-g) C dom2/5 by [9, (11)].
dom 275 C dom(h - g) by [9, (11)]. For every x such that 2 € dom 275 holds
(h- g)(x) =25 (x) by [, (11), (13)]. O

(26) Let us consider an increasing, natural-valued finite sequence f. If n > 1,
then nf (1) + (nf,2) +... < 2. pflenf),
PROOF: Define P[natural number| = for every increasing, natural-valued
finite sequence f such that n > 1 and f(len f) < $; and f # 0 holds
S nf < 2. nflenf) For every natural-valued finite sequence f such that
n > 1and len f = 1 holds Y. n/ < 2-nf0en)) by [26, (25)], [19, (83)], [6,
(40)], [I1}, (73)]. P[0] by [26], (25)], [4, (25)]. If P[é], then P[i+ 1] by [4, (8),
(25), (13)], [26, (25)]. P[i] from [, Sch. 2]. " nf =nf(1)+(nf,2)+....O

(27) Let us consider increasing, natural-valued finite sequences f1, fo. Suppo-
sen > 1and nf1(1)+(n/1,2) +... =n/2(1)+ (n'2,2) +.... Then f; = fo.
PRrROOF: For every natural-valued finite sequence f such that n > 1 and
S n/ < 0holds f = () by [IT], (85)], [I9, (83)]. Define P[natural number] =
for every increasing, natural-valued finite sequences fi, fs such that n > 1
and Y. nfl < $; and Y nft = Snf2 holds f; = fo. P[0]. If P[i], then
P[i + 1] by (21), (22), [ (8)], [IT, (72)]. P[i] from [, Sch. 2]. n/1(1) +
(nf1,2) +... =0t n2(1) + (n2,2)+... = n2. O

(28) Let us consider a natural-valued function f.If n > 1, then Coim(n/,n*) =
Coim(f, k). PrRoOF: Coim(n/,n*) C Coim(f, k) by [17, (30)]. O
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(29) Let us consider natural-valued functions fi, fo. Suppose n > 1. Then
f1 and f, are fiberwise equipotent if and only if n/ and n/? are fiberwise
equipotent. PROOF: If f; and f, are fiberwise equipotent, then n/1 and
nf2 are fiberwise equipotent by [9, (72)], [I7, (30)], (28). For every object
x, Coim(f1,2) = Coim(f2,x) by [9, (72)], [17, (30)], (28). O

(30) Let us consider one-to-one, natural-valued finite sequences fi1, f2. Sup-

pose n > 1 and n/1(1) + (n/1,2)+... = n/2(1) + (n/2,2) +.... Then
rng f1 = rng fa.
PROOF: Reconsider | = f1, F» = f2 as a finite sequence of elements of R.
Set s1 = sort, Fy. Set so = sort, Fy. nft and n®! are fiberwise equipotent.
n'2 and n*? are fiberwise equipotent. For every extended reals e, es such
that e1, e € doms; and e; < ez holds si(e;) < si(e2) by [16, (2)], [2,
(77)]. For every extended reals e, e such that e1, e € dom s and e < e
holds sa(e1) < s2(e2) by [16] (2)], [2, (77)]. o n®t =n®1(1)+ (n°,2) +.. ..
Saft = (1) + (n/1,2) +.. et = ettt (1) 4+ (n1,2) 4. =
n®2(1) 4+ (n2,2) 4 ... and s is increasing and natural-valued. OJ

(31) There exists an increasing, natural-valued finite sequence f such that
n=2/(1)+(2/,2)+...
PROOF: Set D = digits(n,2). Consider d being a finite 0-sequence of N
such that domd = dom D and for every natural number ¢ such that i €
domd holds d(i) = D(i) - 2° and value(D,2) = 3 d. Define P[natural
number| = if §; < lend, then there exists an increasing, natural-valued
finite sequence f such that (lenf = 0 or f(len f) < $;) and 3.2/ =
> (d[$1). P[(0 qua natural number)| by [L1], (72)]. If Pi], then P[i+ 1] by
[, (13)], 29, (36)], [20, (65)], [, (25), (23)]. P[i] from [4, Sch. 2]. Consider
f being an increasing, natural-valued finite sequence such that len f = 0
or f(len f) < lend and Y2/ = Y (d[lend). -2 = 2/(1) + (2/,2) +....
]

4. VALUE-BASED FUNCTION (RE)ORGANIZATION

Let o be a function yielding function and z, y be objects. The functor o,
yielding a set is defined by the term
(Def. 5)  o(x)(y).
Let F' be a function yielding function. We say that F' is double one-to-one
if and only if
(Def. 6) for every objects x1, z2, y1, y2 such that z; € dom F' and y; € dom(F'(z1))
and xo € dom F' and y» € dom(F(x2)) and Fy, 4, = Fy, 4, holds 21 = o
and y1 = ya.
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Let D be a set. Observe that every finite sequence of elements of D* which
is empty is also double one-to-one and there exists a function yielding function
which is double one-to-one and there exists a finite sequence of elements of D*
which is double one-to-one.

Let F be a double one-to-one, function yielding function and = be an object.
One can check that F(z) is one-to-one.

Let F' be a one-to-one function. One can check that (F') is double one-to-one.

Now we state the propositions:

(32) Let us consider a function yielding function f. Then f is double one-to-
one if and only if for every z, f(z) is one-to-one and for every z and y
such that = # y holds rng(f(x)) misses rng(f(y)).

(33) Let us consider a set D, and double one-to-one finite sequences fi, fa of
elements of D*. Suppose Values fi; misses Values fs. Then fi; ™ fo is double
one-to-one. The theorem is a consequence of (1).

Let D be a finite set.
A double reorganization of D is a double one-to-one finite sequence of ele-
ments of D* and is defined by

(Def. 7)  Values it = D.
Now we state the propositions:

(34) (i) 0 is a double reorganization of ), and

(i) () is a double reorganization of ().

(35) Let us consider a finite set D, and a one-to-one, onto finite sequence F
of elements of D. Then (F) is a double reorganization of D.

(36) Let us consider finite sets Dy, Do. Suppose D1 misses Da. Let us consider
a double reorganization o; of D1, and a double reorganization oy of Ds.
Then o1 ™ 02 is a double reorganization of Dy U Ds. The theorem is a
consequence of (33) and (2).

(37) Let us consider a finite set D, a double reorganization o of D, and a one-
to-one finite sequence F'. Suppose i € domo and rng F'N D C rng(o()).
Then o +- (i, F) is a double reorganization of rng F' U (D \ rng(o(7))).
PROOF: Set 1 = rng F'. Set 03 = 0(i). Set 74 = rngos. Set o4 = o+ (i, F).
mgoy C (riU(D\ ry))* by [7 (31), (32)]. 04 is double one-to-one by [T,
(32)], (1). Valuesoq C r1U(D\r4) by (1), [T, (31), (32)]. D\ 74 C Values oy
by (1), [7, (32)]. r1 C Valuesoy. O

Let D be a finite set and n be a non zero natural number. One can check
that there exists a double reorganization of D which is n-element.

Let D be a finite, natural-membered set, o be a double reorganization of D,
and x be an object. One can verify that o(x) is natural-valued.
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Now we state the propositions:

(38) Let us consider a non empty finite sequence F', and a finite function
G. Suppose rng G C rng F'. Then there exists a (len F)-element double
reorganization o of dom G such that for every n, F(n) = G(op,1) and ...
and F(n) = G(On,len(o(n)))'

PRrOOF: Set D = dom . Set d = the one-to-one ,onto finite sequence of
elements of D. Define P[natural number] = if $; < G, then there exists a
(len F')-element double reorganization o of d°(Seg$;) such that for every
k, F(k) = G(og,1) and ... and F(k) = G(0gen(o(k)))- P[0]. If P[i], then
Pli+1] by 4 (13)], [26, (29)], [4, (11)], [26) (25)]. P[i] from [4, Sch. 2]. O

(39) Let us consider a non empty finite sequence F', and a finite sequence
G. Suppose rng G C rng F. Then there exists a (len F)-element double
reorganization o of dom G such that for every n, o(n) is increasing and
F(n) = G(on,1) and ... and F(n) = G(0y 1en(o(n)))-

PROOF: Define P[natural number] = if $§; < len G, then there exists a
(len F')-element double reorganization o of Seg$; such that for every k,
o(k) is increasing and F'(k) = G(og,1) and ... and F(k) = G(ok,len(o(k))).
P[0]. If Pi], then Pli 4+ 1] by [4, (13)], [26, (29)], [4, (11)], [26} (25)]. P[]
from [4, Sch. 2]. O
Let f be a finite function, o be a double reorganization of dom f, and = be
an object. One can check that f - o(z) is finite sequence-like and there exists a
finite sequence which is complex-functions-valued and finite sequence-yielding.
Let f be a function yielding function and g be a function. We introduce g® f
as a synonym of [g, f].
One can check that g ® f is function yielding.
Let f be a ((dom g)*)-valued finite sequence. One can check that g ® f is
finite sequence-yielding.
Let « be an object. Let us note that (g ® f)(x) is (len(f(x)))-element.
Let f be a function yielding finite sequence. One can verify that g © f is
finite sequence-like and g ® f is (len f)-element.
Let f be a function yielding function and g be a complex-valued function.
One can check that g ® f is complex-functions-valued.
Let g be a natural-valued function. One can check that ¢ ® f is natural-
functions-valued.
Let us consider a function yielding function f and a function g. Now we
state the propositions:

(40) Valuesg ® f = ¢g°(Values f).

PROOF: Set g3 = g ® f. Valuesgs C g°(Values f) by (1), [9, (11), (12)].
Consider b being an object such that b € domg and b € Values f and
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g(b) = a. Consider x, y being objects such that x € dom f and y €

dom(f(x)) and b= f(z)(y). O
41) (9o f)(z) =g f(z).
Now we state the proposition:

(42) Let us consider a function yielding function f, a finite sequence g, and
objects z, y. Then (¢ ® f)zy = 9(fz,y). The theorem is a consequence of
(41).
Let f be a complex-functions-valued, finite sequence-yielding function. The
functor Y f yielding a complex-valued function is defined by
(Def. 8) dom it = dom f and for every set z, it(x) = > (f(x)).
Let f be a complex-functions-valued, finite sequence-yielding finite sequence.
One can verify that > f is finite sequence-like and Y f is (len f)-element.
Let f be a natural-functions-valued, finite sequence-yielding function. One
can verify that > f is natural-valued.
Let f, g be complex-functions-valued finite sequences. One can check that
f 7 g is complex-functions-valued.
Let f, g be extended real-valued finite sequences. One can verify that f "¢
is extended real-valued.
Let f be a complex-functions-valued function and X be a set. One can check
that f]X is complex-functions-valued.
Let f be a finite sequence-yielding function. One can check that f[X is finite
sequence-yielding.
Let F be a complex-valued function. One can check that (F') is complex-
functions-valued.
Let us consider finite sequences f, g. Now we state the propositions:
(43) If f~ g is finite sequence-yielding, then f is finite sequence-yielding and
g is finite sequence-yielding.
(44) If f~ g is complex-functions-valued, then f is complex-functions-valued
and ¢ is complex-functions-valued.
Now we state the propositions:
(45) Let us consider a complex-valued finite sequence f. Then Y (f) = (3 f).

(46) Let us consider complex-functions-valued, finite sequence-yielding finite
sequences f, g. Then Y (f ~g)=>f"> g
PROOF: For every i such that 1 < i <len f 4 leng holds (3>(f " ¢))(i) =
(X2 f 722 9)(@) by [26, (25)], [6, (25)]. O

(47) Let us consider a complex-valued finite sequence f, and a double reor-
ganization o of dom f. Then Y f =Y > (f ® o).
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PROOF: Define Plnatural number| = for every complex-valued finite se-
quence f for every double reorganization o of dom f such that len f = $;
holds Y~ f =Y > (f®o). P[0] by [26} (29)], [1T), (72)], [23] (11)], [11} (81)].
If P[i], then P[i + 1] by [4, (11)], [26 (25)], (1), [I2, (116)]. P[é] from [4,
Sch. 2]. O

Let us note that N* is natural-functions-membered and C* is complex-

functions-membered.
Now we state the proposition:

(48) Let us consider a finite sequence f of elements of C*.

Then Y (the concatenation of C® f) =3 > f.
PROOF: Set C' = the concatenation of C. Define P[natural number| =
for every finite sequence f of elements of C* such that len f = $; holds
Y(C o f)=3>f. Pl0]. If P[], then Pli + 1] by [8, (19), (16)], (46),
(45). P[i] from [4, Sch. 2]. O

Let f be a finite function.

A valued reorganization of f is a double reorganization of dom f and is

defined by
(Def. 9) for every n, there exists x such that x = f(it,,;) and ... and = =

f(ity jen(it(n))) and for every mnatural numbers ni, ng, i1, iz such that
i1 € dom(it(ny)) and iy € dom(it(ng)) and f(ity, i) = f(itn,,) holds
ny = nyg.

Now we state the propositions:

(49) Let us consider a finite function f, and a valued reorganization o of f.
Then

(i) rmg((f ©0)(n)) =0, or
(i) mg((f ©0)(n)) ={f(on1)} and 1 € dom(o(n)).

PROOF: Consider y such that y € rng((f ® 0)(n)). Consider x such that
x € dom((f ®0)(n)) and (f ® 0)(n)(x) = y. n € dom(f ® o). Consider
w being an object such that w = f(on,1) and ... and w = f(0p jen(o(n)))-
rng((f © 0)(”)) - {f(on,1>} by [9, (11)7 (12)]7 [267 (25)]' U

(50) Let us consider a finite sequence f, and valued reorganizations o1, o2 of f.
Suppose rng((f ®01)()) = rng((f ®02)(7)). Then rng(o; (7)) = rng(o2(i)).

(51) Let us consider a finite sequence f, a complex-valued finite sequence
g, and double reorganizations o1, oy of domg. Suppose 01 is a valued
reorganization of f and o9 is a valued reorganization of f and rmg((f ®

o1)(#)) = rmg((f © 02)(i)). Then (3(g © 01))(i) = (32(g © 02))(i). The

theorem is a consequence of (41).
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