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Summary. In this article we introduce necessary notation and definitions
to prove the Euler’s Partition Theorem according to H.S. Wilf’s lecture notes
[31]. Our aim is to create an environment which allows to formalize the theorem
in a way that is as similar as possible to the original informal proof.

Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100
Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/
100/ [30].
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The notation and terminology used in this paper have been introduced in the
following articles: [1], [2], [6], [8], [15], [27], [13], [14], [23], [9], [10], [7], [25], [24],
[3], [4], [19], [5], [22], [32], [33], [11], [21], [28], [18], and [12].

1. Auxiliary Facts about Finite Sequences Concatenation

From now on x, y denote objects, D, D1, D2 denote non empty sets, i, j, k,
m, n denote natural numbers, f , g denote finite sequences of elements of D∗, f1
denotes a finite sequence of elements of D1∗, and f2 denotes a finite sequence of
elements of D2∗.

Now we state the propositions:
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(1) Let us consider a function yielding function F , and an object a. Then
a ∈ ValuesF if and only if there exists x and there exists y such that
x ∈ domF and y ∈ dom(F (x)) and a = F (x)(y).

(2) Let us consider a set D, and finite sequences f , g of elements of D∗.
Then Values f a g = Values f ∪Values g.
Proof: Set F = f a g. Values f ⊆ ValuesF by (1), [6, (26)]. Values g ⊆
ValuesF by (1), [6, (28)]. ValuesF ⊆ Values f ∪Values g by (1), [6, (25)].
�

(3) The concatenation of D � f a g = (the concatenation of D � f) a

(the concatenation of D � g).
(4) rng(the concatenation of D � f) = Values f .
Proof: Set D3 = the concatenation of D. Define P[natural number] ≡
for every finite sequence f of elements of D∗ such that len f = $1 holds
rng(D3 � f) = Values f . P[0]. If P[i], then P[i+ 1] by [8, (19), (16)], (3),
[27, (11)]. P[i] from [4, Sch. 2]. �

(5) If f1 = f2, then the concatenation of D1 � f1 = the concatenation of
D2 � f2.
Proof: Set C = the concatenation of D2. Set N = the concatenation of
D1. Define P[natural number] ≡ for every finite sequence f4 of elements
of D1∗ for every finite sequence f3 of elements of D2∗ such that $1 = len f4
and f4 = f3 holds N � f4 = C � f3. P[0]. If P[i], then P[i+ 1] by [8, (19),
(16)], (3), [27, (11)]. P[i] from [4, Sch. 2]. �

(6) i ∈ dom(the concatenation of D � f) if and only if there exists n and
there exists k such that n + 1 ∈ dom f and k ∈ dom(f(n + 1)) and
i = k + len(the concatenation of D � f�n).
Proof: Set D3 = the concatenation of D. Define P[natural number] ≡ for
every i for every finite sequence f of elements of D∗ such that len f = $1
holds i ∈ dom(D3 � f) iff there exists n and there exists k such that
n+ 1 ∈ dom f and k ∈ dom(f(n+ 1)) and i = k + len(D3 � f�n). P[0]. If
P[j], then P[j + 1] by [8, (19), (16)], (3), [27, (11)]. P[j] from [4, Sch. 2].
�

(7) Suppose i ∈ dom(the concatenation of D � f). Then

(i) (the concatenation of D�f)(i) = (the concatenation of D�f ag)(i),
and

(ii) (the concatenation of D�f)(i) = (the concatenation of D�gaf)(i+
len(the concatenation of D � g)).

The theorem is a consequence of (3).

(8) Suppose k ∈ dom(f(n+ 1)). Then f(n+ 1)(k) = (the concatenation of
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D � f)(k + len(the concatenation of D � f�n)). The theorem is a conse-
quence of (3).

2. Flexary Plus

From now on f denotes a complex-valued function and g, h denote complex-
valued finite sequences.

Let us consider k and n. Let f , g be complex-valued functions. The functor
(f, k) + . . .+(g, n) yielding a complex number is defined by

(Def. 1) (i) h(0 + 1) = f(0 + k) and ... and h(n−′ k + 1) = f(n−′ k + k), then
it =

∑
(h�(n−′ k + 1)), if f = g and k ¬ n,

(ii) it = 0, otherwise.

Now we state the propositions:

(9) Suppose k ¬ n. Then there exists h such that

(i) (f, k) + . . .+(f, n) =
∑
h, and

(ii) lenh = n−′ k + 1, and

(iii) h(0 + 1) = f(0 + k) and ... and h(n−′ k + 1) = f(n−′ k + k).

Proof: Define P(natural number) = f(k + $1 − 1). Set n3 = n −′ k + 1.
Consider p being a finite sequence such that len p = n3 and for every
i such that i ∈ dom p holds p(i) = P(i) from [6, Sch. 2]. rng p ⊆ C.
p(1 + 0) = f(k + 0) and ... and p(1 + (n −′ k)) = f(k + (n −′ k)) by [4,
(11)], [26, (25)]. �

(10) If (f, k) + . . .+(f, n) 6= 0, then there exists i such that k ¬ i ¬ n and
i ∈ dom f .
Proof: Consider h such that (f, k) + . . .+(f, n) =

∑
h and lenh = n −′

k + 1 and h(0 + 1) = f(0 + k) and ... and h(n −′ k + 1) = f(n −′ k + k).
rng h ⊆ {0} by [26, (25)], [4, (11)]. �

(11) (f, k) + . . .+(f, k) = f(k). The theorem is a consequence of (9).

(12) If k ¬ n+1, then (f, k) + . . .+(f, (n+1)) = ((f, k) + . . .+(f, n))+f(n+
1). The theorem is a consequence of (11) and (9).

(13) If k ¬ n, then (f, k) + . . .+(f, n) = f(k) + ((f, (k + 1)) + . . .+(f, n)).
The theorem is a consequence of (11) and (9).

(14) If k ¬ m ¬ n, then ((f, k) + . . .+(f,m)) + ((f, (m+ 1)) + . . .+(f, n)) =
(f, k) + . . .+(f, n).
Proof: Define P[natural number] ≡ ((f, k) + . . .+(f,m)) + ((f, (m +
1)) + . . .+(f, (m + $1))) = (f, k) + . . .+(f, (m + $1)). P[0] by [4, (13)].
If P[i], then P[i+ 1] by [4, (11)], (12). P[i] from [4, Sch. 2]. �



84 karol pąk

(15) If k > lenh, then (h, k) + . . .+(h, n) = 0. The theorem is a consequence
of (9).

(16) If n ­ lenh, then (h, k) + . . .+(h, n) = (h, k) + . . .+(h, lenh). The the-
orem is a consequence of (15) and (12).

(17) (h, 0) + . . .+(h, k) = (h, 1) + . . .+(h, k). The theorem is a consequence
of (13).

(18) (h, 1) + . . .+(h, lenh) =
∑
h. The theorem is a consequence of (9).

(19) (gah, k) + . . .+(gah, n) = ((g, k) + . . .+(g, n))+((h, (k−′ len g)) + . . .+
(h, (n −′ len g))). The theorem is a consequence of (11), (15), (16), (17),
and (14).

Let us consider n and k. Let f be a real-valued finite sequence. One can
check that (f, k) + . . .+(f, n) is real.

Let f be a natural-valued finite sequence. Note that (f, k) + . . .+(f, n) is
natural.

Let f be a complex-valued function. Assume dom f ∩N is finite. The functor
(f, n) + . . . yielding a complex number is defined by

(Def. 2) for every k such that for every i such that i ∈ dom f holds i ¬ k holds
it = (f, n) + . . .+(f, k).

Let us consider h. One can check that the functor (h, n) + . . . yields a complex
number and is defined by the term

(Def. 3) (h, n) + . . .+(h, lenh).

Let n be a natural number and h be a natural-valued finite sequence. Let us
note that (h, n) + . . . is natural.

Now we state the propositions:

(20) Let us consider a finite, complex-valued function f . Then f(n)+(f, (n+
1)) + . . . = (f, n) + . . .. The theorem is a consequence of (13).

(21)
∑
h = (h, 1) + . . ..

(22)
∑
h = h(1)+(h, 2) + . . .. The theorem is a consequence of (18) and (20).

The scheme TT deals with complex-valued finite sequences f , g and natural
numbers a, b and non zero natural numbers n, k and states that

(Sch. 1) (f, a) + . . . = (g, b) + . . .

provided

• for every j, (f, (a + j · n)) + . . .+(f, (a + j · n + (n −′ 1))) = (g, (b + j ·
k)) + . . .+(g, (b+ j · k + (k −′ 1))).
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3. Power Function

Let r be a real number and f be a real-valued function. The functor rf

yielding a real-valued function is defined by

(Def. 4) dom it = dom f and for every x such that x ∈ dom f holds it(x) = rf(x).

Let n be a natural number and f be a natural-valued function. One can
verify that nf is natural-valued.

Let r be a real number and f be a real-valued finite sequence. One can check
that rf is finite sequence-like and rf is (len f)-element.

Let f be a one-to-one, natural-valued function. Observe that (2 + n)f is
one-to-one.

(23) Let us consider real numbers r, s. Then r〈s〉 = 〈rs〉.
(24) Let us consider a real number r, and real-valued finite sequences f , g.

Then rf
ag = rf a rg.

Proof: Set f5 = f a g. Set r2 = rf . Set r3 = rg. For every i such that
1 ¬ i ¬ len f5 holds rf5(i) = (r2 a r3)(i) by [26, (25)], [6, (25)]. �

(25) Let us consider a real-valued function f , and a function g. Then 2f · g =
2f ·g. Proof: Set h = 2f . Set f5 = f · g. dom(h · g) ⊆ dom 2f5 by [9, (11)].
dom 2f5 ⊆ dom(h · g) by [9, (11)]. For every x such that x ∈ dom 2f5 holds
(h · g)(x) = 2f5(x) by [9, (11), (13)]. �

(26) Let us consider an increasing, natural-valued finite sequence f . If n > 1,
then nf (1) + (nf , 2) + . . . < 2 · nf(len f).
Proof: Define P[natural number] ≡ for every increasing, natural-valued
finite sequence f such that n > 1 and f(len f) ¬ $1 and f 6= ∅ holds∑
nf < 2 · nf(len f). For every natural-valued finite sequence f such that
n > 1 and len f = 1 holds

∑
nf < 2 · nf(len f) by [26, (25)], [19, (83)], [6,

(40)], [11, (73)]. P[0] by [26, (25)], [4, (25)]. If P[i], then P[i+1] by [4, (8),
(25), (13)], [26, (25)]. P[i] from [4, Sch. 2].

∑
nf = nf (1) + (nf , 2) + . . .. �

(27) Let us consider increasing, natural-valued finite sequences f1, f2. Suppo-
se n > 1 and nf1(1) + (nf1 , 2) + . . . = nf2(1) + (nf2 , 2) + . . .. Then f1 = f2.
Proof: For every natural-valued finite sequence f such that n > 1 and∑
nf ¬ 0 holds f = ∅ by [11, (85)], [19, (83)]. Define P[natural number] ≡

for every increasing, natural-valued finite sequences f1, f2 such that n > 1
and
∑
nf1 ¬ $1 and

∑
nf1 =

∑
nf2 holds f1 = f2. P[0]. If P[i], then

P[i + 1] by (21), (22), [4, (8)], [11, (72)]. P[i] from [4, Sch. 2]. nf1(1) +
(nf1 , 2) + . . . =

∑
nf1 . nf2(1) + (nf2 , 2) + . . . =

∑
nf2 . �

(28) Let us consider a natural-valued function f . If n > 1, then Coim(nf , nk) =
Coim(f, k). Proof: Coim(nf , nk) ⊆ Coim(f, k) by [17, (30)]. �
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(29) Let us consider natural-valued functions f1, f2. Suppose n > 1. Then
f1 and f2 are fiberwise equipotent if and only if nf1 and nf2 are fiberwise
equipotent. Proof: If f1 and f2 are fiberwise equipotent, then nf1 and
nf2 are fiberwise equipotent by [9, (72)], [17, (30)], (28). For every object

x, Coim(f1, x) = Coim(f2, x) by [9, (72)], [17, (30)], (28). �

(30) Let us consider one-to-one, natural-valued finite sequences f1, f2. Sup-
pose n > 1 and nf1(1) + (nf1 , 2) + . . . = nf2(1) + (nf2 , 2) + . . .. Then
rng f1 = rng f2.
Proof: Reconsider F1 = f1, F2 = f2 as a finite sequence of elements of R.
Set s1 = sorta F1. Set s2 = sorta F2. nF1 and ns1 are fiberwise equipotent.
nF2 and ns2 are fiberwise equipotent. For every extended reals e1, e2 such
that e1, e2 ∈ dom s1 and e1 < e2 holds s1(e1) < s1(e2) by [16, (2)], [2,
(77)]. For every extended reals e1, e2 such that e1, e2 ∈ dom s2 and e1 < e2
holds s2(e1) < s2(e2) by [16, (2)], [2, (77)].

∑
ns1 = ns1(1) + (ns1 , 2) + . . ..∑

nf1 = nf1(1) + (nf1 , 2) + . . ..
∑
ns1 =

∑
ns2 . ns1(1) + (ns1 , 2) + . . . =

ns2(1) + (ns2 , 2) + . . . and s1 is increasing and natural-valued. �

(31) There exists an increasing, natural-valued finite sequence f such that
n = 2f (1) + (2f , 2) + . . ..
Proof: Set D = digits(n, 2). Consider d being a finite 0-sequence of N
such that dom d = domD and for every natural number i such that i ∈
dom d holds d(i) = D(i) · 2i and value(D, 2) =

∑
d. Define P[natural

number] ≡ if $1 ¬ len d, then there exists an increasing, natural-valued
finite sequence f such that (len f = 0 or f(len f) < $1) and

∑
2f =∑

(d�$1). P[(0 qua natural number)] by [11, (72)]. If P[i], then P[i+1] by
[4, (13)], [29, (86)], [20, (65)], [4, (25), (23)]. P[i] from [4, Sch. 2]. Consider
f being an increasing, natural-valued finite sequence such that len f = 0
or f(len f) < len d and

∑
2f =

∑
(d� len d).

∑
2f = 2f (1) + (2f , 2) + . . ..

�

4. Value-based Function (Re)Organization

Let o be a function yielding function and x, y be objects. The functor ox,y
yielding a set is defined by the term

(Def. 5) o(x)(y).

Let F be a function yielding function. We say that F is double one-to-one
if and only if

(Def. 6) for every objects x1, x2, y1, y2 such that x1 ∈ domF and y1 ∈ dom(F (x1))
and x2 ∈ domF and y2 ∈ dom(F (x2)) and Fx1,y1 = Fx2,y2 holds x1 = x2
and y1 = y2.
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Let D be a set. Observe that every finite sequence of elements of D∗ which
is empty is also double one-to-one and there exists a function yielding function
which is double one-to-one and there exists a finite sequence of elements of D∗

which is double one-to-one.
Let F be a double one-to-one, function yielding function and x be an object.

One can check that F (x) is one-to-one.
Let F be a one-to-one function. One can check that 〈F 〉 is double one-to-one.
Now we state the propositions:

(32) Let us consider a function yielding function f . Then f is double one-to-
one if and only if for every x, f(x) is one-to-one and for every x and y
such that x 6= y holds rng(f(x)) misses rng(f(y)).

(33) Let us consider a set D, and double one-to-one finite sequences f1, f2 of
elements of D∗. Suppose Values f1 misses Values f2. Then f1a f2 is double
one-to-one. The theorem is a consequence of (1).

Let D be a finite set.
A double reorganization of D is a double one-to-one finite sequence of ele-

ments of D∗ and is defined by

(Def. 7) Values it = D.

Now we state the propositions:

(34) (i) ∅ is a double reorganization of ∅, and

(ii) 〈∅〉 is a double reorganization of ∅.
(35) Let us consider a finite set D, and a one-to-one, onto finite sequence F

of elements of D. Then 〈F 〉 is a double reorganization of D.

(36) Let us consider finite sets D1, D2. Suppose D1 misses D2. Let us consider
a double reorganization o1 of D1, and a double reorganization o2 of D2.
Then o1 a o2 is a double reorganization of D1 ∪ D2. The theorem is a
consequence of (33) and (2).

(37) Let us consider a finite set D, a double reorganization o of D, and a one-
to-one finite sequence F . Suppose i ∈ dom o and rngF ∩ D ⊆ rng(o(i)).
Then o+· (i, F ) is a double reorganization of rngF ∪ (D \ rng(o(i))).
Proof: Set r1 = rngF . Set o3 = o(i). Set r4 = rng o3. Set o4 = o+· (i, F ).
rng o4 ⊆ (r1 ∪ (D \ r4))∗ by [7, (31), (32)]. o4 is double one-to-one by [7,
(32)], (1). Values o4 ⊆ r1∪(D\r4) by (1), [7, (31), (32)]. D\r4 ⊆ Values o4
by (1), [7, (32)]. r1 ⊆ Values o4. �

Let D be a finite set and n be a non zero natural number. One can check
that there exists a double reorganization of D which is n-element.

Let D be a finite, natural-membered set, o be a double reorganization of D,
and x be an object. One can verify that o(x) is natural-valued.
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Now we state the propositions:

(38) Let us consider a non empty finite sequence F , and a finite function
G. Suppose rngG ⊆ rngF . Then there exists a (lenF )-element double
reorganization o of domG such that for every n, F (n) = G(on,1) and ...
and F (n) = G(on,len(o(n))).
Proof: Set D = domG. Set d = the one-to-one , onto finite sequence of
elements of D. Define P[natural number] ≡ if $1 ¬ G , then there exists a
(lenF )-element double reorganization o of d◦(Seg $1) such that for every
k, F (k) = G(ok,1) and ... and F (k) = G(ok,len(o(k))). P[0]. If P[i], then
P[i+ 1] by [4, (13)], [26, (29)], [4, (11)], [26, (25)]. P[i] from [4, Sch. 2]. �

(39) Let us consider a non empty finite sequence F , and a finite sequence
G. Suppose rngG ⊆ rngF . Then there exists a (lenF )-element double
reorganization o of domG such that for every n, o(n) is increasing and
F (n) = G(on,1) and ... and F (n) = G(on,len(o(n))).
Proof: Define P[natural number] ≡ if $1 ¬ lenG, then there exists a
(lenF )-element double reorganization o of Seg $1 such that for every k,
o(k) is increasing and F (k) = G(ok,1) and ... and F (k) = G(ok,len(o(k))).
P[0]. If P[i], then P[i+ 1] by [4, (13)], [26, (29)], [4, (11)], [26, (25)]. P[i]
from [4, Sch. 2]. �

Let f be a finite function, o be a double reorganization of dom f , and x be
an object. One can check that f · o(x) is finite sequence-like and there exists a
finite sequence which is complex-functions-valued and finite sequence-yielding.

Let f be a function yielding function and g be a function. We introduce g�f
as a synonym of [g, f ].

One can check that g � f is function yielding.
Let f be a ((dom g)∗)-valued finite sequence. One can check that g � f is

finite sequence-yielding.
Let x be an object. Let us note that (g � f)(x) is (len(f(x)))-element.
Let f be a function yielding finite sequence. One can verify that g � f is

finite sequence-like and g � f is (len f)-element.
Let f be a function yielding function and g be a complex-valued function.

One can check that g � f is complex-functions-valued.
Let g be a natural-valued function. One can check that g � f is natural-

functions-valued.
Let us consider a function yielding function f and a function g. Now we

state the propositions:

(40) Values g � f = g◦(Values f).
Proof: Set g3 = g � f . Values g3 ⊆ g◦(Values f) by (1), [9, (11), (12)].
Consider b being an object such that b ∈ dom g and b ∈ Values f and
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g(b) = a. Consider x, y being objects such that x ∈ dom f and y ∈
dom(f(x)) and b = f(x)(y). �

(41) (g � f)(x) = g · f(x).
Now we state the proposition:

(42) Let us consider a function yielding function f , a finite sequence g, and
objects x, y. Then (g � f)x,y = g(fx,y). The theorem is a consequence of
(41).

Let f be a complex-functions-valued, finite sequence-yielding function. The
functor

∑
f yielding a complex-valued function is defined by

(Def. 8) dom it = dom f and for every set x, it(x) =
∑

(f(x)).

Let f be a complex-functions-valued, finite sequence-yielding finite sequence.
One can verify that

∑
f is finite sequence-like and

∑
f is (len f)-element.

Let f be a natural-functions-valued, finite sequence-yielding function. One
can verify that

∑
f is natural-valued.

Let f , g be complex-functions-valued finite sequences. One can check that
f a g is complex-functions-valued.

Let f , g be extended real-valued finite sequences. One can verify that f a g

is extended real-valued.
Let f be a complex-functions-valued function and X be a set. One can check

that f�X is complex-functions-valued.
Let f be a finite sequence-yielding function. One can check that f�X is finite

sequence-yielding.
Let F be a complex-valued function. One can check that 〈F 〉 is complex-

functions-valued.
Let us consider finite sequences f , g. Now we state the propositions:

(43) If f a g is finite sequence-yielding, then f is finite sequence-yielding and
g is finite sequence-yielding.

(44) If f a g is complex-functions-valued, then f is complex-functions-valued
and g is complex-functions-valued.

Now we state the propositions:

(45) Let us consider a complex-valued finite sequence f . Then
∑
〈f〉 = 〈

∑
f〉.

(46) Let us consider complex-functions-valued, finite sequence-yielding finite
sequences f , g. Then

∑
(f a g) =

∑
f a∑ g.

Proof: For every i such that 1 ¬ i ¬ len f + len g holds (
∑

(f a g))(i) =
(
∑
f a∑ g)(i) by [26, (25)], [6, (25)]. �

(47) Let us consider a complex-valued finite sequence f , and a double reor-
ganization o of dom f . Then

∑
f =
∑∑

(f � o).
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Proof: Define P[natural number] ≡ for every complex-valued finite se-
quence f for every double reorganization o of dom f such that len f = $1
holds

∑
f =
∑∑

(f�o). P[0] by [26, (29)], [11, (72)], [23, (11)], [11, (81)].
If P[i], then P[i + 1] by [4, (11)], [26, (25)], (1), [12, (116)]. P[i] from [4,
Sch. 2]. �

Let us note that N∗ is natural-functions-membered and C∗ is complex-
functions-membered.

Now we state the proposition:

(48) Let us consider a finite sequence f of elements of C∗.
Then

∑
(the concatenation of C� f) =

∑∑
f .

Proof: Set C = the concatenation of C. Define P[natural number] ≡
for every finite sequence f of elements of C∗ such that len f = $1 holds∑

(C � f) =
∑∑
f . P[0]. If P[i], then P[i + 1] by [8, (19), (16)], (46),

(45). P[i] from [4, Sch. 2]. �

Let f be a finite function.
A valued reorganization of f is a double reorganization of dom f and is

defined by

(Def. 9) for every n, there exists x such that x = f(itn,1) and ... and x =
f(itn,len(it(n))) and for every natural numbers n1, n2, i1, i2 such that
i1 ∈ dom(it(n1)) and i2 ∈ dom(it(n2)) and f(itn1,i1) = f(itn2,i2) holds
n1 = n2.

Now we state the propositions:

(49) Let us consider a finite function f , and a valued reorganization o of f .
Then

(i) rng((f � o)(n)) = ∅, or

(ii) rng((f � o)(n)) = {f(on,1)} and 1 ∈ dom(o(n)).

Proof: Consider y such that y ∈ rng((f � o)(n)). Consider x such that
x ∈ dom((f � o)(n)) and (f � o)(n)(x) = y. n ∈ dom(f � o). Consider
w being an object such that w = f(on,1) and ... and w = f(on,len(o(n))).
rng((f � o)(n)) ⊆ {f(on,1)} by [9, (11), (12)], [26, (25)]. �

(50) Let us consider a finite sequence f , and valued reorganizations o1, o2 of f .
Suppose rng((f � o1)(i)) = rng((f � o2)(i)). Then rng(o1(i)) = rng(o2(i)).

(51) Let us consider a finite sequence f , a complex-valued finite sequence
g, and double reorganizations o1, o2 of dom g. Suppose o1 is a valued
reorganization of f and o2 is a valued reorganization of f and rng((f �
o1)(i)) = rng((f � o2)(i)). Then (

∑
(g � o1))(i) = (

∑
(g � o2))(i). The

theorem is a consequence of (41).
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