

Finite Product of Semiring of Sets

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. We formalize that the image of a semiring of sets [17] by an injective function is a semiring of sets. We offer a non-trivial example of a semiring of sets in a topological space [21]. Finally, we show that the finite product of a semiring of sets is also a semiring of sets [21] and that the finite product of a classical semiring of sets [8] is a classical semiring of sets. In this case, we use here the notation from the book of Aliprantis and Border [1].

MSC: 28A05 03E02 03B35 Keywords: set partitions; semiring of sets MML identifier: SRINGS_4, version: 8.1.04 5.32.1237

The notation and terminology used in this paper have been introduced in the following articles: [9], [2], [3], [4], [22], [7], [15], [23], [10], [11], [6], [12], [20], [26], [27], [19], [14], [16], [25], [18], and [13].

1. Preliminaries

From now on X_1 , X_2 , X_3 , X_4 denote sets.

Now we state the propositions:

- (1) (i) $X_1 \cap X_4 \setminus (X_2 \cup X_3)$ misses $X_1 \setminus ((X_2 \cup X_3) \cup X_4)$, and
 - (ii) $X_1 \cap X_4 \setminus (X_2 \cup X_3)$ misses $(X_1 \cap X_3) \cap X_4 \setminus X_2$, and
 - (iii) $X_1 \setminus ((X_2 \cup X_3) \cup X_4)$ misses $(X_1 \cap X_3) \cap X_4 \setminus X_2$.
- $(2) \quad (X_1 \setminus X_2) \setminus (X_3 \setminus X_4) = (X_1 \setminus (X_2 \cup X_3)) \cup (X_1 \cap X_4 \setminus X_2).$
- $(3) \quad (X_1 \setminus (X_2 \cup X_3)) \cup (X_1 \cap X_4 \setminus X_2) = ((X_1 \cap X_4 \setminus (X_2 \cup X_3)) \cup (X_1 \setminus ((X_2 \cup X_3) \cup X_4))) \cup ((X_1 \cap X_3) \cap X_4 \setminus X_2).$

C 2015 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online)

- (4) $(X_1 \setminus X_2) \setminus (X_3 \setminus X_4) = ((X_1 \cap X_4 \setminus (X_2 \cup X_3)) \cup (X_1 \setminus ((X_2 \cup X_3) \cup X_4))) \cup ((X_1 \cap X_3) \cap X_4 \setminus X_2)$. The theorem is a consequence of (2) and (3).
- (5) $\bigcup \{X_1, X_2, X_3\} = (X_1 \cup X_2) \cup X_3.$

2. The Direct Image of a Semiring of Sets by an Injective Function

Now we state the proposition:

(6) Let us consider sets T, S, a function f from T into S, and a family G of subsets of T. Then $f^{\circ}G = \{f^{\circ}A, \text{ where } A \text{ is a subset of } T : A \in G\}.$

Let T, S be sets, f be a function from T into S, and G be a finite family of subsets of T. Let us note that $f^{\circ}G$ is finite.

Let f be a function and A be a countable set. Let us note that $f^{\circ}A$ is countable.

The scheme *FraenkelCountable* deals with a set \mathcal{A} and a set \mathcal{X} and a unary functor \mathcal{F} yielding a set and states that

- (Sch. 1) $\{\mathcal{F}(w), \text{ where } w \text{ is an element of } \mathcal{A} : w \in \mathcal{X}\}$ is countable provided
 - \mathcal{X} is countable.

Let T, S be sets, f be a function from T into S, and G be a countable family of subsets of T. Let us note that $f^{\circ}G$ is countable.

Let X, Y be sets, S be a family of subsets of X with the empty element, and f be a function from X into Y. One can verify that $f^{\circ}S$ has the empty element.

- Now we state the propositions:
- (7) Let us consider sets X, Y, a function f from X into Y, and families S_1, S_2 of subsets of X. If $S_1 \subseteq S_2$, then $f^{\circ}S_1 \subseteq f^{\circ}S_2$. The theorem is a consequence of (6).
- (8) Let us consider sets $X, Y, a \cap$ -closed family S of subsets of X, and a function f from X into Y. Suppose f is one-to-one. Then $f^{\circ}S$ is a \cap -closed family of subsets of Y.
- (9) Let us consider non empty sets $X, Y, a \cap_{fp}$ -closed family S of subsets of X, and a function f from X into Y. Suppose f is one-to-one. Then $f^{\circ}S$ is a \cap_{fp} -closed family of subsets of Y.
- (10) Let us consider non empty sets $X, Y, a \setminus_{fp}^{\subseteq}$ -closed family S of subsets of X, and a function f from X into Y. Suppose f is one-to-one and $f^{\circ}S$ is not empty. Then $f^{\circ}S$ is a $\setminus_{fp}^{\subseteq}$ -closed family of subsets of Y.

PROOF: Reconsider $f_1 = f^{\circ}S$ as a family of subsets of Y. f_1 is $\setminus_{f_p}^{\subseteq}$ -closed by [10, (64), (87)], [11, (103)], [26, (123)]. \Box

- (11) Let us consider non empty sets $X, Y, a \setminus_{fp}$ -closed family S of subsets of X, and a function f from X into Y. Suppose f is one-to-one. Then $f^{\circ}S$ is a \setminus_{fp} -closed family of subsets of Y.
- (12) Let us consider non empty sets X, Y, a semiring S of sets of X, and a function f from X into Y. If f is one-to-one, then $f^{\circ}S$ is a semiring of sets of Y.

3. The Set of Set Differences of All Elements of a Semiring of Sets

Now we state the proposition:

- (13) Let us consider a 1-element finite sequence X. Suppose X(1) is not empty. Then there exists a function I from X(1) into $\prod X$ such that
 - (i) I is one-to-one and onto, and
 - (ii) for every object x such that $x \in X(1)$ holds $I(x) = \langle x \rangle$.

Let X be a set. Observe that 2^X_* is \cap -closed and there exists a \cap -closed family of subsets of X which has the empty element and there exists a \cap -closed family of subsets of X with the empty element which is \cup -closed.

Let X, Y be non empty sets. Let us observe that $X \setminus Y$ is non empty. Now we state the proposition:

(14) Let us consider a set X, and a family S of subsets of X with the empty element. Then $S \setminus S =$ the set of all $A \setminus B$ where A, B are elements of S.

Let X be a set and S be a family of subsets of X with the empty element. The functor semidiff S yielding a family of subsets of X is defined by the term (Def. 1) $S \setminus S$.

Now we state the proposition:

(15) Let us consider a set X, a family S of subsets of X with the empty element, and an object x. Suppose $x \in$ semidiff S. Then there exist elements A, B of S such that $x = A \setminus B$. The theorem is a consequence of (14).

Let X be a set and S be a family of subsets of X with the empty element. Observe that semidiff S has the empty element.

Let S be a \cap -closed, \cup -closed family of subsets of X with the empty element. Note that semidiff S is \cap -closed and \setminus_{fp} -closed.

Now we state the proposition:

(16) Let us consider a set X, and a \cap -closed, \cup -closed family S of subsets of X with the empty element. Then semidiff S is a semiring of sets of X.

4. The Collection of All Locally Closed Sets $LC(X, \tau)$ of a Topological Space (X, τ)

Let T be a non empty topological space. The functor LC(T) yielding a family of subsets of Ω_T is defined by the term

(Def. 2) $\{A \cap B, \text{ where } A, B \text{ are subsets of } T : A \text{ is open and } B \text{ is closed}\}.$

Let us note that LC(T) is \cap -closed and \setminus_{fp} -closed and has the empty element.

(17) Let us consider a non empty topological space T. Then LC(T) is a semiring of sets of Ω_T .

5. The Finite Product of Semirings of Sets

Let n be a natural number. Note that there exists an n-element finite sequence which is non-empty.

Let n be a non-zero natural number and X be a non-empty, n-element finite sequence.

A semiring family of X is an n-element finite sequence and is defined by

(Def. 3) for every natural number i such that $i \in \text{Seg } n$ holds it(i) is a semiring of sets of X(i).

In the sequel n denotes a non-zero natural number and X denotes a nonempty, n-element finite sequence. Now we state the propositions:

- (18) Let us consider a semiring family S of X. Then dom S = dom X.
- (19) Let us consider a semiring family S of X, and a natural number i. If $i \in \text{Seg } n$, then $\bigcup(S(i)) \subseteq X(i)$.
- (20) Let us consider a function f, and an *n*-element finite sequence X. If $f \in \prod X$, then f is an *n*-element finite sequence.

Let n be a non zero natural number and X be an n-element finite sequence. The functor SemiringProduct X yielding a set is defined by

(Def. 4) for every object $f, f \in it$ iff there exists a function g such that $f = \prod g$ and $g \in \prod X$.

Now we state the propositions:

- (21) Let us consider an *n*-element finite sequence X. Then SemiringProduct $X \subseteq 2^{(\bigcup \bigcup X)^{\dim X}}$.
- (22) Let us consider a semiring family S of X. Then SemiringProduct S is a family of subsets of $\prod X$. PROOF: Reconsider S_1 = SemiringProduct S as a subset of $2^{(\bigcup \bigcup S)^{\text{dom }S}}$. $S_1 \subseteq 2^{\prod X}$ by [3, (9)], (18), [7, (89)], (19). \square

(23) Let us consider a non-empty, 1-element finite sequence X. Then $\prod X =$ the set of all $\langle x \rangle$ where x is an element of X(1). The theorem is a consequence of (13).

One can check that $\prod \langle \emptyset \rangle$ is empty. Now we state the propositions:

- (24) Let us consider a non empty set x. Then $\prod \langle x \rangle$ = the set of all $\langle y \rangle$ where y is an element of x. The theorem is a consequence of (23).
- (25) Let us consider a non-empty, 1-element finite sequence X, and a semiring family S of X. Then SemiringProduct S = the set of all $\prod \langle s \rangle$ where s is an element of S(1). PROOF: S is non-empty by (18), [7, (3)]. $\prod S =$ the set of all $\langle s \rangle$ where s is an element of S(1). \square

Let us consider sets x, y. Now we state the propositions:

- (26) $\prod \langle x \rangle \cap \prod \langle y \rangle = \prod \langle x \cap y \rangle$. The theorem is a consequence of (24).
- (27) $\prod \langle x \rangle \setminus \prod \langle y \rangle = \prod \langle x \setminus y \rangle$. The theorem is a consequence of (24).

Let us consider a non-empty, 1-element finite sequence X and a semiring family S of X. Now we state the propositions:

- (28) the set of all $\prod \langle s \rangle$ where s is an element of S(1) is a semiring of sets of the set of all $\langle x \rangle$ where x is an element of X(1). The theorem is a consequence of (24), (26), and (27).
- (29) SemiringProduct S is a semiring of sets of $\prod X$. The theorem is a consequence of (23), (25), and (28).
- (30) Let us consider sets X_1 , X_2 , a semiring S_1 of sets of X_1 , and a semiring S_2 of sets of X_2 . Then the set of all $s_1 \times s_2$ where s_1 is an element of S_1 , s_2 is an element of S_2 is a semiring of sets of $X_1 \times X_2$.
- (31) Let us consider a non-empty, n-element finite sequence X₃, a non-empty, 1-element finite sequence X₁, a semiring family S₃ of X₃, and a semiring family S₁ of X₁. Suppose SemiringProduct S₃ is a semiring of sets of ∏ X₃ and SemiringProduct S₁ is a semiring of sets of ∏ X₁. Let us consider a family S₄ of subsets of ∏ X₃ × ∏ X₁. Suppose S₄ = the set of all s₁ × s₂ where s₁ is an element of SemiringProduct S₃, s₂ is an element of SemiringProduct S₁. Then there exists a function I from ∏ X₃ × ∏ X₁ into ∏(X₃ ^ X₁) such that
 - (i) I is one-to-one and onto, and
 - (ii) for every finite sequences x, y such that $x \in \prod X_3$ and $y \in \prod X_1$ holds $I(x, y) = x \cap y$, and
 - (iii) $I^{\circ}S_4 = \text{SemiringProduct}(S_3 \cap S_1).$

PROOF: $\bigcup (S_1(1)) \subseteq X_1(1)$. Consider *I* being a function from $\prod X_3 \times \prod X_1$ into $\prod (X_3 \cap X_1)$ such that *I* is one-to-one and *I* is onto and for every finite

sequences x, y such that $x \in \prod X_3$ and $y \in \prod X_1$ holds $I(x, y) = x \land y$. $I^{\circ}S_4 = \text{SemiringProduct}(S_3 \land S_1)$ by (25), (20), [7, (89)], [24, (153)]. \Box

- (32) Let us consider a non-empty, *n*-element finite sequence X_3 , a non-empty, 1-element finite sequence X_1 , a semiring family S_3 of X_3 , and a semiring family S_1 of X_1 . Suppose SemiringProduct S_3 is a semiring of sets of $\prod X_3$ and SemiringProduct S_1 is a semiring of sets of $\prod X_1$. Then SemiringProduct $(S_3 \cap S_1)$ is a semiring of sets of $\prod (X_3 \cap X_1)$. The theorem is a consequence of (30), (31), (9), and (10).
- (33) Let us consider a semiring family S of X. Then SemiringProduct S is a semiring of sets of $\prod X$. PROOF: Define $\mathcal{P}[\text{non zero natural number}] \equiv \text{for every non-empty}$, $\$_1$ -element finite sequence X for every semiring family S of X, SemiringProduct S is a semiring of sets of $\prod X$. $\mathcal{P}[1]$. For every non zero natural number n, $\mathcal{P}[n]$ from [5, Sch. 10]. \Box

Let n be a non zero natural number, X be a non-empty, n-element finite sequence, and S be a semiring family of X. We say that S is \cap -closed yielding if and only if

(Def. 5) for every natural number i such that $i \in \text{Seg } n$ holds S(i) is \cap -closed. Note that there exists a semiring family of X which is \cap -closed yielding.

6. The Finite Product of Classical Semirings of Sets

Let X be a set. Note that there exists a semiring of sets of X which is \cap -closed.

Let us consider a non-empty, 1-element finite sequence X and a \cap -closed yielding semiring family S of X. Now we state the propositions:

- (34) the set of all $\prod \langle s \rangle$ where s is an element of S(1) is a \cap -closed semiring of sets of the set of all $\langle x \rangle$ where x is an element of X(1). The theorem is a consequence of (26) and (28).
- (35) SemiringProduct S is a \cap -closed semiring of sets of $\prod X$. The theorem is a consequence of (23), (25), and (34).

Now we state the propositions:

- (36) Let us consider sets X_1, X_2 , a \cap -closed semiring S_1 of sets of X_1 , and a \cap -closed semiring S_2 of sets of X_2 . Then the set of all $s_1 \times s_2$ where s_1 is an element of S_1, s_2 is an element of S_2 is a \cap -closed semiring of sets of $X_1 \times X_2$.
- (37) Let us consider a non-empty, *n*-element finite sequence X_3 , a non-empty, 1-element finite sequence X_1 , a \cap -closed yielding semiring family S_3 of X_3 , and a \cap -closed yielding semiring family S_1 of X_1 . Suppose SemiringProduct

 S_3 is a \cap -closed semiring of sets of $\prod X_3$ and SemiringProduct S_1 is a \cap -closed semiring of sets of $\prod X_1$. Then SemiringProduct $(S_3 \cap S_1)$ is a \cap -closed semiring of sets of $\prod (X_3 \cap X_1)$. The theorem is a consequence of (30), (31), (36), (8), and (10).

Let us consider n and X. Let S be a \cap -closed yielding semiring family of X. One can check that SemiringProduct S is \cap -closed.

(38) Let us consider a \cap -closed yielding semiring family S of X.

Then SemiringProduct S is a \cap -closed semiring of sets of $\prod X$.

7. Measurable Rectangle

Let n be a non-zero natural number and X be a non-empty, n-element finite sequence.

A classical semiring family of X is an n-element finite sequence and is defined by

(Def. 6) for every natural number i such that $i \in \text{Seg } n$ holds it(i) is a semi-diffclosed, \cap -closed family of subsets of X(i) with the empty element.

Let X be an *n*-element finite sequence. We introduce MeasurableRectangle X as a synonym of SemiringProduct X. Now we state the propositions:

- (39) Every classical semiring family of X is a \cap -closed yielding semiring family of X.
- (40) Let us consider a classical semiring family S of X.
 - Then MeasurableRectangle S is a semi-diff-closed, \cap -closed family of subsets of $\prod X$ with the empty element. The theorem is a consequence of (39) and (33).

ACKNOWLEDGEMENT: I would like to thank Artur Korniłowicz for suggestions.

References

- Charalambos D. Aliprantis and Kim C. Border. Infinite dimensional analysis. Springer-Verlag, Berlin, Heidelberg, 2006.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [4] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
- [5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.

ROLAND COGHETTO

- [8] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.
- [9] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [14] Roland Coghetto. Semiring of sets. Formalized Mathematics, 22(1):79–84, 2014. doi:10.2478/forma-2014-0008.
- [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [16] Noboru Endou, Kazuhisa Nakasho, and Yasunari Shidama. σ -ring and σ -algebra of sets. Formalized Mathematics, 23(1):51–57, 2015. doi:10.2478/forma-2015-0004.
- [17] D.F. Goguadze. About the notion of semiring of sets. *Mathematical Notes*, 74:346–351, 2003. ISSN 0001-4346. doi:10.1023/A:1026102701631.
- [18] Zbigniew Karno. On discrete and almost discrete topological spaces. Formalized Mathematics, 3(2):305–310, 1992.
- [19] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [21] Jean Schmets. Théorie de la mesure. Notes de cours, Université de Liège, 146 pages, 2004.
- [22] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [23] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187–190, 1990.
- [24] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received April 19, 2015