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Summary. We are inspired by the work of Henri Cartan [16], Bourbaki
[10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image
filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des
sections).
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1. FILTERS — SET-THEORETICAL APPROACH

From now on X denotes a non empty set, F denotes a filter of X, and S
denotes a family of subsets of X.

Let X be a set and S be a family of subsets of X. We say that S is upper if
and only if

(Def. 1) for every subsets Y71, Y5 of X such that Y7 € S and Y7 C Y5 holds Y, € S.

Let us note that there exists a N-closed family of subsets of X which is non
empty and there exists a non empty, N-closed family of subsets of X which is
upper.

Let X be a non empty set. Let us note that there exists a non empty, upper,
N-closed family of subsets of X which has non empty elements.

Now we state the propositions:
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190 ROLAND COGHETTO

(1) S is anon empty, upper, N-closed family of subsets of X with non empty
elements if and only if .S is a filter of X.

(2) Let us consider non empty sets X1, Xo, a filter 7} of Xj, and a filter
Fo of Xs. Then the set of all fi x fo where f1 is an element of Fi, fo is
an element of F5 is a non empty family of subsets of X7 x Xs.

Let X be a non empty set. We say that X is N-finite closed if and only if
(Def. 2) for every finite, non empty subset S; of X, NS; € X.

One can check that there exists a non empty set which is N-finite closed.

Now we state the proposition:

(3) Let us consider a non empty set X. If X is N-finite closed, then X is
N-closed.

Note that every non empty set which is N-finite closed is also N-closed.

(4) Let us consider a set X, and a family S of subsets of X. Then S is
N-closed and X € S if and only if FinMeetC1(S) C S.

(5) Let us consider a non empty set X, and a non empty subset A of X.
Then {B, where B is a subset of X : A C B} is a filter of X.

Let X be a non empty set. Note that every filter of X is N-closed.

(6) Let us consider a set X, and a family B of subsets of X. If B = {X},
then B is upper.
(7) Let us consider a non empty set X, and a filter 7 of X. Then F’ # 2%,
Let X be a non empty set. The functor Filt(X) yielding a non empty set is
defined by the term
(Def. 3) the set of all 7 where F' is a filter of X.

Let I be a non empty set and M be a (Filt(X))-valued many sorted set
indexed by I. The intersection of the family of filters M yielding a filter of X is
defined by the term

(Def. 4) Nrng M.
Let Fi, F5 be filters of X. We say that Fi is coarser than F5 if and only if
(Def. 5) Fi C Fo.
One can verify that the predicate is reflexive. We say that Fj is finer than Fy if
and only if
(Def. 6) Fo C F.
Observe that the predicate is reflexive.
Now we state the propositions:

(8) Let us consider a non empty set X, a filter ' of X, and a filter F of X.
Suppose F = {X}. Then F is coarser than F'.
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(9) Let us consider a non empty set X, a non empty set I, a (Filt(X))-valued
many sorted set M indexed by I, an element 4 of I, and a filter F’ of X.
Suppose F' = M (i). Then the intersection of the family of filters M is
coarser than F'.

(10) Let us consider a set X, and a family S of subsets of X. Suppose
FinMeetCl(S) has non empty elements. Then S has non empty elements.

(11) Let us consider a non empty set X, a family G of subsets of X, and
a filter 7' of X. Suppose G C F'. Then
(i) FinMeetCl(G) C F', and
(ii) FinMeetCl(G) has non empty elements.

The theorem is a consequence of (4).
Let X be a non empty set, 7’ be a filter of X, and B be a non empty subset
of F'. We say that B is filter basis if and only if
(Def. 7) for every element f of F’, there exists an element b of B such that b C f.
Now we state the proposition:
(12) Let us consider a non empty set X, a filter 7’ of X, and a non empty
subset B of F'. Then F’ is coarser than B if and only if B is filter basis.

Let X be a non empty set and F’ be a filter of X. Observe that there exists
a non empty subset of 7’ which is filter basis.

A generalized basis of F is a filter basis, non empty subset of F’. Now we
state the proposition:

(13) Let us consider a non empty set X. Then every filter of X is a generalized
basis of F.

Let X be a set and B be a family of subsets of X. The functor [B] yielding

a family of subsets of X is defined by

(Def. 8) for every subset x of X, x € it iff there exists an element b of B such
that b C z.
Now we state the propositions:

(14) Let us consider a set X, and a family S of subsets of X. Then [S] =
{z, where x is a subset of X : there exists an element b of S such that
bC x}.

(15) Let us consider a set X, and an empty family B of subsets of X. Then
[B] = 2¥.

(16) Let us consider a set X, and a family B of subsets of X. If ) € B, then
[B] = 2X.
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2. FILTERS — LATTICE-THEORETICAL APPROACH

Now we state the propositions:
(17) Let us consider a set X, a non empty family B of subsets of X, and
a subset L of 2X. If B = L, then [B] = L.
(18) Let us consider a set X, and a family B of subsets of X. Then B C [B].
Let X be a set and By, By be families of subsets of X. We say that B; and
By are equivalent generators if and only if
(Def. 9) for every element by of Bj, there exists an element by of By such that
ba C by and for every element by of Bs, there exists an element by of By
such that b; C bs.
Let us note that the predicate is reflexive and symmetric.
Let us consider a set X and families By, By of subsets of X.
Let us assume that B; and By are equivalent generators. Now we state the
propositions:
(19)  [B1] € [Ba].
(20) [B1] = [Ba].
Let X be a non empty set, F’ be a filter of X, and B be a non empty subset

of F'. The functor # B yielding a non empty family of subsets of X is defined
by the term

(Def. 10) B.
Now we state the propositions:
(21) Let us consider a non empty set X, a filter 7’ of X, and a generalized
basis B of F'. Then F' = [# BJ.
(22) Let us consider a non empty set X, a filter ' of X, and a family B of
subsets of X. If 7/ = [B], then B is a generalized basis of F’.

(23) Let us consider a non empty set X, a filter F’ of X, a generalized basis
B of F', a family S of subsets of X, and a subset S; of F’. Suppose S = S}
and # B and S are equivalent generators. Then 5] is a generalized basis
of F'. The theorem is a consequence of (19), (21), and (22).

(24) Let us consider a non empty set X, a filter 7' of X, and generalized
bases By, By of F'. Then # By and # B, are equivalent generators. The
theorem is a consequence of (21).

Let X be a set and B be a family of subsets of X. We say that B is quasi
basis if and only if

(Def. 11) for every elements by, be of B, there exists an element b of B such that
b C by N by.
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Let X be a non empty set. Let us note that there exists a non empty family
of subsets of X which is quasi basis and there exists a non empty, quasi basis
family of subsets of X which has non empty elements.

A filter base of X is a non empty, quasi basis family of subsets of X with
non empty elements. Now we state the proposition:

(25) Let us consider a non empty set X, and a filter base B of X. Then [B]
is a filter of X.

Let X be a non empty set and B be a filter base of X. The functor [B)

yielding a filter of X is defined by the term

(Def. 12) [B].
Now we state the propositions:

(26) Let us consider a non empty set X, and filter bases By, By of X. Suppose
[B1) = [B2). Then B; and Bs are equivalent generators.

(27) Let us consider a non empty set X, a filter base F of X, and a filter F
of X. Suppose F C F'. Then [F) is coarser than F'.

(28) Let us consider a non empty set X, and a family G of subsets of X.
Suppose FinMeetCl(G) has non empty elements. Then
(i) FinMeetCl(G) is a filter base of X, and
(ii) there exists a filter ' of X such that FinMeetCl(G) C F'.

The theorem is a consequence of (4).

(29) Let us consider a non empty set X, and a filter 7' of X. Then every
generalized basis of F’ is a filter base of X.

(30) Let us consider a non empty set X. Then every filter base of X is a ge-
neralized basis of [B).

(31) Let us consider a non empty set X, a filter 7’ of X, a generalized basis
B of 7/, and a subset L of 2&. If L = # B, then 7' = L. The theorem is
a consequence of (21) and (17).

(32) Let us consider a non empty set X, a filter base B of X, and a subset L
of 2X. If L = B, then [B) = TL.

(33) Let us consider a non empty set X, filters Fi, F2 of X, a generalized
basis B1 of F1, and a generalized basis By of F5. Then Fi is coarser than
Fo if and only if By is coarser than Bs. The theorem is a consequence of
(21).

(34) Let us consider non empty sets X, Y, a function f from X into Y, a filter
F' of X, and a generalized basis B of F’'. Then

(i) f°(# B) is a filter base of Y, and
(ii) [f°(# B)] is a filter of Y, and
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(iii) [f°(# B)] = {M, where M is a subset of Y : f~1(M) € F'}.

PROOF: Set F = f°(# B). F is a quasi basis, non empty family of subsets

of Y by (29), [35, (123), (121)]. F has non empty elements by [35, (118)].

[F] = {M, where M is a subset of Y : f~Y(M) € F'} by [35, (143)], [12}

(42)], (21), [35 (123)]. O

Let X, Y be non empty sets, f be a function from X into Y, and F’ be

a filter of X. The image of filter ' under f yielding a filter of Y is defined by
the term

(Def. 13) {M, where M is a subset of Y : f~1(M) € F'}.
Now we state the propositions:

(35) Let us consider non empty sets X, Y, a function f from X into Y, and
a filter 7' of X. Then

(i) f°F'is a filter base of Y, and
(i) [f°F’] = the image of filter F’ under f.
The theorem is a consequence of (13) and (34).

(36) Let us consider a non empty set X, and a filter base B of X. If B = [B),
then B is a filter of X.

(37) Let us consider non empty sets X, Y, a function f from X into Y, a filter
F' of X, and a generalized basis B of F’. Then

(i) f°(# B) is a generalized basis of the image of filter 7’ under f, and
(i) [f°(# B)] = the image of filter " under f.
The theorem is a consequence of (34) and (30).

(38) Let us consider non empty sets X, Y, a function f from X into Y, and
filter bases By, B2 of X. Suppose B is coarser than Bs. Then [Bj) is coarser
than [Bz). The theorem is a consequence of (30) and (33).

(39) Let us consider non empty sets X, Y, a function f from X into Y, and
a filter 7/ of X. Then f°F’ is a filter of Y if and only if Y = rng f.
PROOF: Reconsider f3 = f°F’ as a filter base of Y. [f3) C f3 by [35], (143)],
[11, (76), (77)]. O

(40) Let us consider a non empty set X, a non empty subset A of X, a filter
F' of A, and a generalized basis B of F'. Then

(1) (i)o(# B) is a filter base of X, and
(ii) [(2)°(# B)] is a filter of X, and
(iii) [(2)°(# B)] = {M, where M is a subset of X : (A)~"}(M) € F'}.

Let L be a non empty relational structure. The functor Tails(L) yielding
a non empty family of subsets of L is defined by the term
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(Def. 14) the set of all ¢ where i is an element of L.
Now we state the proposition:

(41) Let us consider a non empty, transitive, reflexive relational structure L.
Suppose 2, is directed. Then [Tails(L)] is a filter of Q.
PRroOF: Tails(L) is non empty family of subsets of L and quasi basis and
has non empty elements by [6, (22)]. O

Let L be a non empty, transitive, reflexive relational structure. Assume 2,
is directed. The functor TailsFilter L yielding a filter of €2; is defined by the
term

(Def. 15) [Tails(L)].
Now we state the proposition:

(42) Let us consider a non empty, transitive, reflexive relational structu-
re L. Suppose 1, is directed. Then Tails(L) is a generalized basis of
TailsFilter L. The theorem is a consequence of (22).

Let L be a relational structure and « be a family of subsets of L. The functor
# x yielding a family of subsets of ), is defined by the term

(Def. 16) .
Now we state the proposition:

(43) Let us consider a non empty set X, a non empty, transitive, reflexive
relational structure L, and a function f from Qf into X. Suppose 2, is
directed. Then f°(# Tails(L)) is a generalized basis of the image of filter
TailsFilter L under f. The theorem is a consequence of (42) and (37).

Let us consider a non empty set X, a non empty, transitive, reflexive rela-
tional structure L, a function f from 2; into X, and a subset z of X. Now we
state the propositions:

(44) Suppose Qy, is directed and = € f°(# Tails(L)). Then there exists an ele-
ment j of L such that for every element ¢ of L such that ¢ > j holds
f@@) € x.

(45) Suppose €, is directed and there exists an element j of L such that for
every element i of L such that ¢ > j holds f(i) € z. Then there exists
an element b of Tails(L) such that f°b C x.

(46) Let us consider a non empty set X, a non empty, transitive, reflexive
relational structure L, a function f from Qj into X, a filter 7’ of X, and
a generalized basis B of F’. Suppose €, is directed. Then F’ is coarser
than the image of filter TailsFilter L under f if and only if B is coarser
than f°(# Tails(L)). The theorem is a consequence of (43) and (33).

(47) Let us consider a non empty set X, a non empty, transitive, reflexive
relational structure L, a function f from €7, into X, and a filter base B of
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X. Suppose Q, is directed. Then B is coarser than f°(# Tails(L)) if and
only if for every element b of B, there exists an element ¢ of L such that
for every element j of L such that ¢ < j holds f(j) € b. The theorem is a
consequence of (44) and (45).

Let X be a non empty set and s be a sequence of X. The elementary filter
of s yielding a filter of X is defined by the term

(Def. 17) the image of filter FrechetFilter(N) under s.
Now we state the propositions:

(48) There exists a sequence F’ of 2V such that for every element x of N,
F'(x) = {y, where y is an element of N : x < y}.
PROOF: Define F(object) = {y, where y is an element of N : there exists
an element xg of N such that o = $; and z¢ < y}. There exists a function
f from N into 2N such that for every object x such that z € N holds
f(z) = F(z) from [12, Sch. 2]. Consider F’ being a function from N into
2N such that for every object z such that 2 € N holds F'(x) = F(x). For
every element x of N, F'(z) = {y, where y is an element of N: z < y}. O

(49) Let us consider a natural number n. Then N\ {¢, where ¢ is an element
of N:n <t} is finite.
PROOF: N\ {¢, where t is an element of N: n <t} Cn+1 by [8 (3), (5)],
B2, (4)]. O

(50) Let us consider an element p of the ordered N. Then {z, where z is
an element of N : there exists an element py of N such that p = py and

<z} =1p.
PROOF: For every element p of the carrier of the ordered N, {z, where
x is an element of the carrier of the ordered N : p <z} = Tp by [0, (18)].
]
Observe that Qtphe ordered N 18 directed and the ordered N is reflexive.
Now we state the proposition:

(51) Let us consider a denumerable set X. Then FrechetFilter(X) =
the set of all X \ A where A is a finite subset of X.

Let us consider a sequence F’ of 2N,
Let us assume that for every element = of N, F/(x) = {y, where y is an element
of N: z < y}. Now we state the propositions:

(52) rngF’ is a generalized basis of FrechetFilter(N).
PROOF: FrechetFilter(N) = the set of all N\ A where A is a finite subset
of N. For every object t such that ¢t € rng F’ holds ¢ € FrechetFilter(N).
Reconsider F; = rng F’ as a non empty subset of FrechetFilter(N). F; is
filter basis by [211, (2)], [4, (44)], [11}, (3)]. O
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(53) # Tails(the ordered N) = rng F’. The theorem is a consequence of (50).

Now we state the proposition:
(54) (i) # Tails(the ordered N) is a generalized basis of FrechetFilter(N),

and
(ii) TailsFilter the ordered N = FrechetFilter(N).
The theorem is a consequence of (48), (53), (52), and (21).
The base of Frechet filter yielding a filter base of N is defined by the term
(Def. 18) # Tails(the ordered N).

Now we state the propositions:
(55) N € the base of Frechet filter.
(56) The base of Frechet filter is a generalized basis of FrechetFilter(N).

(57) Let us consider a non empty set X, filters Fy, F» of X, and a filter F
of X. Suppose F' is finer than F; and F’ is finer than F>. Let us consider
an element M7 of Fi, and an element My of Fo. Then M7 N My is not
empty.

(58) Let us consider a non empty set X, and filters F;, F2 of X. Suppose
for every element M; of F; for every element Ms of Fo, My N My is not
empty. Then there exists a filter 7’ of X such that

(i) F'is finer than Fy, and
(i1) F' is finer than F».
Let X be a set and x be a subset of X. The functor SubsetToBooleSubset x
yielding an element of Qé is defined by the term
(Def. 19) =
Now we state the propositions:

(59) Let us consider an infinite set X. Then X € the set of all X \ A where
A is a finite subset of X.

(60) Let us consider a set X, and a subset A of X. Then {B, where B is
an element of 2% : A C B} = {B, where B is a subset of X : A C B}.
(61) Let us consider a set X, and an element a of 2X. Then Ta = {Y, where

Y is a subset of X :a CY}. -

(62) Let us consider a set X, and a subset A of X. Then {B, where B is
an element of 2% : A C B} = 1SubsetToBooleSubset A. The theorem is a
consequence of (60).

(63) Let us consider a non empty set X, and a filter /' of X. Then J F’' = X.

(64) Let us consider an infinite set X. Then the set of all X \ A where A is
a finite subset of X is a filter of X. The theorem is a consequence of (59).
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Let us consider a set X. Now we state the propositions:

(65) 2% is a filter of 2.

(66) {X} is a filter of 2.

(67) Let us consider a non empty set X. Then {X} is a filter of X.

Let us consider an element A of 2%. Now we state the propositions:

(68) {Y, where Y is a subset of X : A C Y} is a filter of 2.

(69) {B, where B is an element of 2% : A C B} is a filter of 2. The theorem
is a consequence of (60) and (68). -

Now we state the proposition:

(70) Let us consider a non empty set X, and a non empty subset B of 2&.
Then for every elements z, y of B, there exists an element z of B such
that z C x Ny if and only if B is filtered.

PROOF: For every elements z, y of B, there exists an element z of B such
that z Cz Ny by [19, (2)]. O
Let us consider a non empty set X and a non empty subset F’ of the lattice
of subsets of X. Now we state the propositions:

(71) F'is afilter of the lattice of subsets of X if and only if for every elements
p, q of 7', pNq € F' and for every element p of 7' and for every element
q of the lattice of subsets of X such that p C ¢ holds q € F.

(72) F'is a filter of the lattice of subsets of X if and only if for every subsets
Y, Yoof X,if Y7, Y5 € f’, then YiNYs € Fandif Y1 € F and Y] C Yo,
then Y2 € F'. The theorem is a consequence of (71).

Now we state the propositions:

(73) Let us consider a non empty set X, and a non empty family F of subsets
of X. Suppose F is a filter of the lattice of subsets of X. Then F is a filter
of 2&. The theorem is a consequence of (71).

(74) Let us consider a non empty set X. Then every filter of 2¥ is a filter of
the lattice of subsets of X. The theorem is a consequence of (72).

(75) Let us consider a non empty set X, and a non empty subset F’ of
the lattice of subsets of X. Then F' is filter of the lattice of subsets of X
and has non empty elements if and only if F’ is a filter of X. The theorem
is a consequence of (72).

(76) Let us consider a non empty set X. Then every proper filter of Z)é is
a filter of X. -
PROOF: F’ has non empty elements by [19, (18)], [7, (4)]. O

(77) Let us consider a non empty topological space T', and a point = of T.
Then the neighborhood system of x is a filter of the carrier of 7.
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Let T be a non empty topological space and F’ be a proper filter of ZgT. The
functor BooleanFilterToFilter(F') yielding a filter of the carrier of T is defined
by the term

(Def. 20) F'.

Let F; be a filter of the carrier of T" and F» be a proper filter of 28? We

say that Fi is finer than F3 if and only if -

(Def. 21) BooleanFilterToFilter(Fs) C Fj.

3. LiIMIT OF A FILTER

Let T be a non empty topological space and F’ be a filter of the carrier of
T. The functor LimFilter(F’) yielding a subset of T" is defined by the term
(Def. 22) {z, where z is a point of T : F' is finer than the neighborhood system
of z}.
Let B be a filter base of the carrier of T'. The functor Lim B yielding a subset
of T is defined by the term
(Def. 23) LimFilter([B)).
Now we state the proposition:
(78) Let us consider a non empty topological space T, and a filter F’ of
the carrier of 7. Then there exists a proper filter F; of 2& such that
F' = Fi, where a is the carrier of T'. The theorem is a consequence of (73)
and (75).
Let T be a non empty topological space and F’ be a filter of the carrier of
T. The functor FilterToBooleanFilter(F’,T') yielding a proper filter of 22T is
defined by the term -
(Def. 24) F'.
Let us consider a non empty topological space T, a point x of T, and a filter
F’ of the carrier of T. Now we state the propositions:

(79) =« is a convergence point of 7' and T if and only if x is a convergence
point of FilterToBooleanFilter(F',T) and T.

(80) z is a convergence point of F' and T if and only if z € LimFilter(F").
The theorem is a consequence of (78).

Let T be a non empty topological space and F’ be a filter of ZZT. The functor
LimFilterB(F’) yielding a subset of T' is defined by the term

(Def. 25) {z, where z is a point of T : the neighborhood system of x C F'}.

Let us consider a non empty topological space T" and a filter F’ of the carrier
of T'. Now we state the propositions:
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(81) LimFilter(F’) = LimFilterB(FilterToBooleanFilter(F’, T)).
(82) Lim(the net of FilterToBooleanFilter(F’,T)) = LimFilter(F").

(83) Let us consider a Hausdorff, non empty topological space T, a filter 7’ of
the carrier of T', and points p, ¢ of T. If p, ¢ € LimFilter(F’), then p = q.

Let T be a Hausdorff, non empty topological space and F’ be a filter of
the carrier of T. Note that LimFilter(F’) is trivial.
Let X be a non empty set, T' be a non empty topological space, f be a func-
tion from X into the carrier of T', and F’ be a filter of X. The functor limz f
yielding a subset of Qr is defined by the term
(Def. 26) LimFilter(the image of filter 7" under f).
Let L be a non empty, transitive, reflexive relational structure and f be
a function from €y, into the carrier of 7. The functor LimF(f) yielding a subset
of Qr is defined by the term
(Def. 27) LimFilter(the image of filter TailsFilter L under f).
Now we state the proposition:
(84) Let us consider a non empty topological space T', a non empty, transitive,
reflexive relational structure L, a function f from 2y, into the carrier of T,
a point z of T', and a generalized basis B of BooleanFilterToFilter(the neigh-
borhood system of ). Suppose €, is directed. Then € LimF(f) if and
only if for every element b of B, there exists an element ¢ of L such that
for every element j of L such that ¢ < j holds f(j) € b. The theorem is a
consequence of (46), (29), and (47).
Let T be a non empty topological space and s be a sequence of T. The
functor LimF(s) yielding a subset of T" is defined by the term

(Def. 28) LimFilter(the elementary filter of s).
Now we state the proposition:
(85) Let us consider a non empty topological space T', and a sequence s of T'.
Then limpyechetrilter(y) 8 = LimF(s).
Let us consider a non empty topological space T and a point x of T.
(86) The neighborhood system of x is a filter base of Q7. The theorem is a
consequence of (76), (13), and (29).

(87) Every generalized basis of BooleanFilterToFilter(the neighborhood sys-
tem of z) is a filter base of Q7.

(88) Let us consider a non empty set X, a sequence s of X, and a filter base
B of X. Then B is coarser than s°(the base of Frechet filter) if and only
if for every element b of B, there exists an element ¢ of the ordered N such
that for every element j of the ordered N such that ¢ < j holds s(j) € b.
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(89) Let us consider a non empty topological space T', a sequence s of T', a po-
int z of T, and a generalized basis B of BooleanFilterToFilter(the neigh-
borhood system of x). Then € limpyechetritter(n) 8 if and only if B is co-
arser than s°(the base of Frechet filter). The theorem is a consequence of
(46) and (54).

(90) Let us consider a non empty topological space T, a sequence s of Qp,
a point x of T', and a generalized basis B of BooleanFilterToFilter(the neigh-
borhood system of ). Then B is coarser than s°(the base of Frechet filter)
if and only if for every element b of B, there exists an element ¢ of the or-
dered N such that for every element j of the ordered N such that i < j
holds s(j) € b. The theorem is a consequence of (29) and (47).

Let us consider a non empty topological space T', a sequence s of the carrier of
T, a point x of T, and a generalized basis B of BooleanFilterToFilter(the neigh-
borhood system of x).

(91)  z € limpyechetrilter(y) S if and only if for every element b of B, there exists
an element ¢ of the ordered N such that for every element j of the ordered
N such that ¢ < j holds s(j) € b. The theorem is a consequence of (89)
and (90).

(92) =« € LimF(s) if and only if for every element b of B, there exists an ele-
ment ¢ of the ordered N such that for every element j of the ordered N
such that ¢ < j holds s(j) € b. The theorem is a consequence of (91).

4. NETS

Let L be a 1-sorted structure and s be a sequence of the carrier of L. The net
of s yielding a non empty, strict net structure over L is defined by the term
(Def. 29) (N, <y, s).
Let L be a non empty 1l-sorted structure. Let us note that the net of s is
non empty.
Now we state the proposition:

(93) Let us consider a non empty 1-sorted structure L, a set B, and a sequence
s of the carrier of L. Then the net of s is eventually in B if and only if
there exists an element ¢ of the net of s such that for every element j of
the net of s such that ¢ < j holds (the net of s)(j) € B.

Let us consider a non empty topological space T, a sequence s of the carrier of
T, a point x of T, and a generalized basis B of BooleanFilterToFilter(the neigh-
borhood system of x). Now we state the propositions:

(94) for every element b of B, there exists an element i of the ordered N such
that for every element j of the ordered N such that ¢ < j holds s(j) € b if
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and only if for every element b of B, there exists an element ¢ of the net
of s such that for every element j of the net of s such that ¢ < j holds
(the net of s)(j) € b.

(95) =z € LimF(s) if and only if for every element b of B, the net of s is
eventually in b. The theorem is a consequence of (92), (94), and (93).

(96) =z € LimF(s) if and only if for every element b of B, there exists an ele-
ment ¢ of N such that for every element j of N such that ¢ < j holds
s(j) € b. The theorem is a consequence of (91).

(97) x € LimF(s) if and only if for every element b of B, there exists a natural
number ¢ such that for every natural number j such that ¢ < j holds
s(j) € b. The theorem is a consequence of (96).
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