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Summary. In this article, we deal with weak convergence on sequences in
real normed spaces, and weak* convergence on sequences in dual spaces of real
normed spaces. In the first section, we proved some topological properties of dual
spaces of real normed spaces. We used these theorems for proofs of Section 3.
In Section 2, we defined weak convergence and weak* convergence, and proved
some properties. By RNS_Real Mizar functor, real normed spaces as real number
spaces already defined in the article [18], we regarded sequences of real numbers
as sequences of RNS_Real. So we proved the last theorem in this section using
the theorem (8) from [25]. In Section 3, we defined weak sequential compactness
of real normed spaces. We showed some lemmas for the proof and proved the
theorem of weak sequential compactness of reflexive real Banach spaces. We
referred to [36], [23], [24] and [3] in the formalization.
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1. Some Properties about Dual Spaces of Real Normed Spaces

Let X be a non empty set, F be a sequence of XN, and k be a natural
number. One can check that the functor F (k) yields a sequence of X. Now we
state the propositions:

(1) Let us consider a strict real normed space X, and a non empty subset
A of X. Suppose for every point f of DualSpX such that for every point
x of X such that x ∈ A holds (Bound2Lipschitz(f,X))(x) = 0 holds
Bound2Lipschitz(f,X) = 0DualSpX . Then ClNLin(A) = X.
Proof: Set M = ClNLin(A). Consider Z being a subset of X such that
Z = the carrier of Lin(A) andM = 〈Z,Zero(Z,X),Add(Z,X),Mult(Z,X),
the norm of Z induced by X〉. Reconsider Y = the carrier of M as a non
empty subset of X. Y = the carrier of X by [18, (2)], [32, (15)], [16, (4)],
[17, (25)]. �

(2) Let us consider a strict real normed space X. If DualSpX is separable,
then X is separable.
Proof: Set Y = DualSpX. Consider Y1 being a sequence of Y such that
rng Y1 is dense. Define P[natural number, point of X] ≡ ‖Y1($1)‖/2 ¬
|Y1($1)($2)| and ‖$2‖ ¬ 1. For every element n of N, there exists a point x
of X such that P[n, x] by [4, (46)], [15, (45)], [17, (24)]. Consider X2 being
a function from N into the carrier of X such that for every element n of
N, P[n,X2(n)] from [6, Sch. 3]. For every natural number n, ‖Y1(n)‖/2 ¬
|Y1(n)(X2(n))| and ‖X2(n)‖ ¬ 1. Consider X2 being a sequence of X
such that for every natural number n, ‖Y1(n)‖/2 ¬ |Y1(n)(X2(n))| and
‖X2(n)‖ ¬ 1. Set X1 = rngX2. For every point f of Y such that for every
point x of X such that x ∈ X1 holds (Bound2Lipschitz(f,X))(x) = 0
holds Bound2Lipschitz(f,X) = 0Y by [17, (23)], [16, (14)], [22, (24)], [26,
(20)]. M = X. �

(3) Let us consider a real number x, and a point x1 of the real normed space
of R. If x = x1, then −x = −x1.

(4) Let us consider real numbers x, y, and points x1, y1 of the real normed
space of R. If x = x1 and y = y1, then x− y = x1 − y1. The theorem is a
consequence of (3).

Let us consider a sequence s2 of real numbers and a sequence s3 of the real
normed space of R. Now we state the propositions:

(5) If s2 = s3, then s2 is convergent iff s3 is convergent. The theorem is a
consequence of (4).

(6) If s2 = s3 and s2 is convergent, then lim s2 = lim s3. The theorem is a
consequence of (5) and (4).
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(7) Let us consider a sequence s3 of the real normed space of R. If s3 is
Cauchy sequence by norm, then s3 is convergent.
Proof: Reconsider s2 = s3 as a sequence of real numbers. For every real
number s such that 0 < s there exists a natural number n such that for
every natural number m such that n ¬ m holds |s2(m) − s2(n)| < s by
[27, (8)], (4). �

Let us note that the real normed space of R is complete.
Let X be a real normed space, g be a sequence of DualSpX, and x be a point

of X. The functor g#x yielding a sequence of real numbers is defined by

(Def. 1) for every natural number i, it(i) = g(i)(x).

2. Weak Convergence and Weak* Convergence

Let X be a real normed space and x be a sequence of X. We say that x is
weakly convergent if and only if

(Def. 2) there exists a point x0 of X such that for every Lipschitzian linear func-
tional f in X, f · x is convergent and lim(f · x) = f(x0).

Now we state the proposition:

(8) Let us consider a real normed space X, and a sequence x of X. If rng x ⊆
{0X}, then x is weakly convergent.
Proof: Reconsider x0 = 0X as a point of X. For every Lipschitzian linear
functional f in X, f · x is convergent and lim(f · x) = f(x0) by [6, (4),
(15)], [4, (44)]. �

Let X be a real normed space and x be a sequence of X. Assume x is weakly
convergent. The functor w-lim(x) yielding a point of X is defined by

(Def. 3) for every Lipschitzian linear functional f in X, f · x is convergent and
lim(f · x) = f(it).

Let us consider a real normed space X and a sequence x of X. Now we state
the propositions:

(9) If x is convergent, then x is weakly convergent and w-lim(x) = limx.
Proof: Reconsider x0 = limx as a point of X. For every Lipschitzian
linear functional f in X, f · x is convergent and lim(f · x) = f(x0) by [21,
(19)], [20, (46)]. �

(10) Suppose X is not trivial and x is weakly convergent. Then

(i) ‖x‖ is bounded, and

(ii) ‖w-lim(x)‖ ¬ lim inf‖x‖, and

(iii) w-lim(x) ∈ ClNLin(rng x).



234 keiko narita, noboru endou, and yasunari shidama

Proof: Reconsider x0 = w-lim(x) as a point of X. For every point f
of DualSpX, there exists a real number K1 such that 0 ¬ K1 and for
every point y of X such that y ∈ rng x holds |f(y)| ¬ K1 by [14, (3)],
[20, (6)], [6, (15)]. Consider K being a real number such that 0 ¬ K and
for every point y of X such that y ∈ rng x holds ‖y‖ ¬ K. For every
natural number n, ‖x‖(n) ¬ K by [6, (4)]. For every natural number n,
|‖x‖(n)| < K+1. For every point f of DualSpX, |f(x0)| ¬ lim inf‖x‖·‖f‖
by [17, (26)], [6, (15)], [13, (12), (9)]. Consider Y being a non empty subset
of R such that Y = {|(Bound2Lipschitz(F,X))(x0)|, where F is a point
of DualSpX : ‖F‖ ¬ 1} and ‖x0‖ = supY. x0 ∈ ClNLin(rng x) by [16,
(29)], [18, (2)], [17, (23)], [32, (15)]. �

Let X be a real normed space and g be a sequence of DualSpX. We say
that g is weakly* convergent if and only if

(Def. 4) there exists a point g0 of DualSpX such that for every point x of X,
g#x is convergent and lim(g#x) = g0(x).

Assume g is weakly* convergent. The functor w*-lim(g) yielding a point of
DualSpX is defined by

(Def. 5) for every point x of X, g#x is convergent and lim(g#x) = it(x).
Now we state the proposition:

(11) Let us consider a real normed space X, and a sequence g of DualSpX.
Suppose g is convergent. Then

(i) g is weakly* convergent, and

(ii) w*-lim(g) = lim g.

Proof: Reconsider g0 = lim g as a point of DualSpX. For every point x
of X, g#x is convergent and lim(g#x) = g0(x) by [17, (33), (26)]. �

Let us consider a real normed space X and a sequence f of DualSpX. Now
we state the propositions:

(12) If f is weakly convergent, then f is weakly* convergent.
Proof: Reconsider f0 = w-lim(f) as a point of DualSpX. For every point
x of X, f#x is convergent and lim(f#x) = f0(x) by [6, (15)]. �

(13) If X is reflexive, then f is weakly convergent iff f is weakly* convergent.
Proof: If f is weakly* convergent, then f is weakly convergent by [18,
(21)], [6, (15)]. �

(14) Let us consider a real Banach space X, and a subset T of DualSpX.
Suppose for every point x of X, there exists a real number K such that
0 ¬ K and for every point f of DualSpX such that f ∈ T holds |f(x)| ¬
K. Then there exists a real number L such that

(i) 0 ¬ L, and
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(ii) for every point f of DualSpX such that f ∈ T holds ‖f‖ ¬ L.

Proof: Reconsider T1 = T as a subset of the real norm space of bounded
linear operators from X into the real normed space of R. For every point
x of X, there exists a real number K such that 0 ¬ K and for every point
f of the real norm space of bounded linear operators from X into the real
normed space of R such that f ∈ T1 holds ‖f(x)‖ ¬ K. Consider L being
a real number such that 0 ¬ L and for every point f of the real norm
space of bounded linear operators from X into the real normed space of
R such that f ∈ T1 holds ‖f‖ ¬ L. For every point f of DualSpX such
that f ∈ T holds ‖f‖ ¬ L by [18, (18)]. �

(15) Let us consider a real Banach space X, and a sequence f of DualSpX.
Suppose f is weakly* convergent. Then

(i) ‖f‖ is bounded, and

(ii) ‖w*-lim(f)‖ ¬ lim inf‖f‖.

Proof: Reconsider f0 = w*-lim(f) as a point of DualSpX. For every
point x of X, there exists a real number K such that 0 ¬ K and for every
point g of DualSpX such that g ∈ rng f holds |g(x)| ¬ K by [6, (11)], [13,
(12)], [4, (46)]. Consider L being a real number such that 0 ¬ L and for
every point g of DualSpX such that g ∈ rng f holds ‖g‖ ¬ L. For every
natural number n, |‖f‖(n)| < L + 1 by [6, (4)]. For every point x of X,
|f0(x)| ¬ lim inf‖f‖ · ‖x‖ by [13, (12), (9)], [17, (26)], [25, (1)]. �

(16) Let us consider a real normed space X, a point x of X, a sequence
v of DualSpX, and a sequence v1 of the real norm space of bounded
linear operators from X into the real normed space of R. If v = v1, then
v#x = v1#x.

(17) Let us consider a real Banach space X, a subset X1 of X, and a sequence
v of DualSpX. Suppose ‖v‖ is bounded andX1 is dense and for every point
x of X such that x ∈ X1 holds v#x is convergent. Then v is weakly*
convergent.
Proof: Reconsider v1 = v as a sequence of the real norm space of bounded
linear operators from X into the real normed space of R. Reconsider X2 =
X1 as a subset of LinearTopSpaceNormX. For every point x of X such
that x ∈ X2 holds v1#x is convergent. For every point x of X, there
exists a real number K such that 0 ¬ K and for every natural number n,
‖(v1#x)(n)‖ ¬ K by [14, (3)], [17, (26)], (16). Consider t being a point
of the real norm space of bounded linear operators from X into the real
normed space of R such that for every point x of X, v1#x is convergent
and t(x) = lim(v1#x) and ‖t(x)‖ ¬ lim inf‖v1‖·‖x‖ and ‖t‖ ¬ lim inf‖v1‖.
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Reconsider g0 = t as a point of DualSpX. For every point x of X, v#x is
convergent and lim(v#x) = g0(x). �

(18) Let us consider a real Banach space X, and a sequence f of DualSpX.
Then f is weakly* convergent if and only if ‖f‖ is bounded and there
exists a subset X1 of X such that X1 is dense and for every point x of X
such that x ∈ X1 holds f#x is convergent. The theorem is a consequence
of (15) and (17).

3. Weak Sequential Compactness of Real Banach Spaces

Let X be a real normed space and X1 be a non empty subset of X. We say
that X1 is weakly sequentially compact if and only if

(Def. 6) for every sequence s2 of X1, there exists a sequence s3 of X such that s3
is subsequence of s2 and weakly convergent and w-lim(s3) ∈ X.

Now we state the proposition:

(19) Let us consider a real normed space X, and a sequence x of X. Suppose
X is reflexive. Then x is weakly convergent if and only if BidualFuncX ·x
is weakly* convergent.
Proof: Set f = BidualFuncX · x. Consider f0 being a point of DualSp
DualSpX such that for every point h of DualSpX, f#h is convergent
and lim(f#h) = f0(h). Consider x0 being a point of X such that for
every point g of DualSpX, f0(g) = g(x0). For every Lipschitzian linear
functional g in X, g · x is convergent and lim(g · x) = g(x0) by [6, (15)]. �

Let us consider a real normed space X, a sequence f of DualSpX, and
a point x of X.

Let us assume that ‖f‖ is bounded. Now we state the propositions:

(20) There exists a sequence f0 of DualSpX such that

(i) f0 is a subsequence of f , and

(ii) ‖f0‖ is bounded, and

(iii) f0#x is convergent.

Proof: Consider r0 being a real number such that 0 < r0 and for every
natural number m, |‖f‖(m)| < r0. Set r = r0 · ‖x‖+ 1. For every natural
number m, |(f#x)(m)| < r by [17, (26)]. Reconsider s2 = f#x as a sequ-
ence of real numbers. Consider s3 being a sequence of real numbers such
that s3 is subsequence of s2 and convergent. Consider N being an incre-
asing sequence of N such that s3 = s2 ·N . Set f0 = f ·N . For every natural
number k, (f0#x)(k) = s3(k) by [6, (15)]. For every natural number n,
|‖f0‖(n)| < r0 by [6, (15)]. �
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(21) There exists a sequence f0 of DualSpX such that

(i) f0 is a subsequence of f , and

(ii) ‖f0‖ is bounded, and

(iii) f0#x is convergent and subsequence of f#x.

Proof: Consider r0 being a real number such that 0 < r0 and for every
natural number m, |‖f‖(m)| < r0. Set r = r0 · ‖x‖ + 1. For every na-
tural number m, |(f#x)(m)| < r by [17, (26)]. Reconsider s2 = f#x as
a sequence of real numbers. Consider s3 being a sequence of real numbers
such that s3 is subsequence of s2 and convergent. Consider N being an in-
creasing sequence of N such that s3 = s2 · N . Reconsider f0 = f · N as
a sequence of DualSpX. For every natural number n, |‖f0‖(n)| < r0 by
[6, (15)]. �

(22) There exists a sequence f0 of DualSpX and there exists an increasing
sequence N of N such that f0 is a subsequence of f and ‖f0‖ is bounded
and f0#x is convergent and subsequence of f#x and f0 = f · N . The
theorem is a consequence of (21).

Let us consider a real normed space X, a sequence f of DualSpX, and
a sequence x of X.

Let us assume that ‖f‖ is bounded. Now we state the propositions:

(23) There exists a sequence F of (the carrier of DualSpX)N such that

(i) F (0) is a subsequence of f , and

(ii) F (0)#x(0) is convergent, and

(iii) for every natural number k, F (k + 1) is a subsequence of F (k), and

(iv) for every natural number k, F (k + 1)#x(k + 1) is convergent.

Proof: Set D = (the carrier of DualSpX)N. Consider f0 being a sequ-
ence of DualSpX such that f0 is a subsequence of f and ‖f0‖ is bounded
and f0#x(0) is convergent. Reconsider A = f0 as an element of D. Defi-
ne P[natural number, sequence of DualSpX, sequence of DualSpX] ≡ if
‖$2‖ is bounded, then $3 is a subsequence of $2 and ‖$3‖ is bounded and
$3#x($1+ 1) is convergent. For every natural number n and for every ele-
ment z of D, there exists an element y of D such that P[n, z, y] by (20), [6,
(8)]. Consider F being a sequence of D such that F (0) = A and for every
natural number n, P[n, F (n), F (n+1)] from [10, Sch. 2]. Define Q[natural
number] ≡ F ($1+1) is a subsequence of F ($1) and ‖F ($1+1)‖ is bounded
and F ($1+ 1)#x($1+ 1) is convergent. For every natural number n, Q[n]
from [1, Sch. 2]. �
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(24) There exists a sequence F of (the carrier of DualSpX)N and there exists
a sequence N of NN such that F (0) is a subsequence of f and F (0)#x(0)
is convergent and N(0) is an increasing sequence of N and F (0) = f ·N(0)
and for every natural number k, F (k+1) is a subsequence of F (k) and for
every natural number k, F (k + 1)#x(k + 1) is convergent and for every
natural number k, F (k + 1)#x(k + 1) is a subsequence of F (k)#x(k + 1)
and for every natural number k, N(k + 1) is an increasing sequence of N
and for every natural number k, F (k + 1) = F (k) ·N(k + 1).
Proof: Consider f0 being a sequence of DualSpX such that f0 is a subse-
quence of f and ‖f0‖ is bounded and f0#x(0) is convergent and subsequ-
ence of f#x(0). Consider N0 being an increasing sequence of N such that
f0 = f ·N0. SetD1 = (the carrier of DualSpX)N. SetD2 = NN. Reconsider
A = f0 as an element of D1. Reconsider B = N0 as an element of D2. De-
fine P[natural number, sequence of DualSpX, sequence of N, sequence of
DualSpX, sequence of N] ≡ if ‖$2‖ is bounded, then $4 is a subsequence of
$2 and ‖$4‖ is bounded and $4#x($1+1) is convergent and subsequence of
$2#x($1+1) and $5 is an increasing sequence of N and $4 = $2 ·$5. For eve-
ry natural number n and for every element z of D1 and for every element
y of D2, there exists an element z1 of D1 and there exists an element y1 of
D2 such that P[n, z, y, z1, y1] by (22), [6, (8)]. Consider F being a sequence
of D1, N being a sequence of D2 such that F (0) = A and N(0) = B and
for every natural number n, P[n, F (n), N(n), F (n+1), N(n+1)] from [11,
Sch. 3]. Define Q[natural number] ≡ F ($1 + 1) is a subsequence of F ($1)
and ‖F ($1 + 1)‖ is bounded and F ($1 + 1)#x($1 + 1) is convergent and
subsequence of F ($1)#x($1 + 1) and N($1 + 1) is an increasing sequence
of N and F ($1+ 1) = F ($1) ·N($1+ 1). For every natural number n, Q[n]
from [1, Sch. 2]. �

(25) There exists a sequence M of DualSpX such that

(i) M is a subsequence of f , and

(ii) for every natural number k, M#x(k) is convergent.

Proof: Consider F being a sequence of (the carrier of DualSpX)N, N
being a sequence of NN such that F (0) is a subsequence of f and F (0)#x(0)
is convergent and N(0) is an increasing sequence of N and F (0) = f ·N(0)
and for every natural number k, F (k+1) is a subsequence of F (k) and for
every natural number k, F (k + 1)#x(k + 1) is convergent and for every
natural number k, F (k + 1)#x(k + 1) is a subsequence of F (k)#x(k + 1)
and for every natural number k, N(k + 1) is an increasing sequence of
N and for every natural number k, F (k + 1) = F (k) · N(k + 1). Define
F(element of N) = F ($1)($1). Consider M being a function from N into
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DualSpX such that for every element k of N,M(k) = F(k) from [6, Sch. 4].
For every natural number k, M(k) = F (k)(k). Set D = NN. Reconsider
A = N(0) as an element of D. Define P[natural number, sequence of
N, sequence of N] ≡ $3 = $2 · N($1 + 1). For every natural number n
and for every element x of D, there exists an element y of D such that
P[n, x, y] by [6, (8)]. Consider J being a sequence of D such that J(0) = A
and for every natural number n, P[n, J(n), J(n + 1)] from [10, Sch. 2].
DefineQ[natural number] ≡ J($1) is an increasing sequence of N. For every
natural number n such that Q[n] holds Q[n+1]. For every natural number
n, Q[n] from [1, Sch. 2]. Define R[natural number] ≡ F ($1) = f ·J($1). For
every natural number n such that R[n] holds R[n + 1] by [34, (36)]. For
every natural number n, R[n] from [1, Sch. 2]. Define H(element of N) =
J($1)($1). Consider L being a function from N into N such that for every
element k of N, L(k) = H(k) from [6, Sch. 4]. For every natural number
k, L(k) = J(k)(k). Reconsider L0 = L as a sequence of real numbers. For
every natural number k, L0(k) < L0(k + 1) by [6, (7), (15)], [12, (14),
(1)]. For every natural number k, M(k) = (f ·L)(k) by [6, (15)]. For every
natural number k, M#x(k) is convergent by [1, (6), (11)], [12, (14)], [30,
(3)]. �

Now we state the propositions:

(26) Let us consider a real Banach space X, and a sequence f of DualSpX.
Suppose X is separable and ‖f‖ is bounded. Then there exists a sequence
f0 of DualSpX such that f0 is subsequence of f and weakly* convergent.
Proof: Consider x0 being a sequence of X such that rng x0 is dense.
Consider f0 being a sequence of DualSpX such that f0 is a subsequence
of f and for every natural number n, f0#x0(n) is convergent. For every
point x of X, there exists a real number K such that 0 ¬ K and for every
natural number n, |(f#x)(n)| ¬ K by [14, (3)], [17, (26)]. Set T = rng f0.
Consider N being an increasing sequence of N such that f0 = f · N . For
every point x of X, there exists a real number K such that 0 ¬ K and
for every point g of DualSpX such that g ∈ T holds |g(x)| ¬ K by [6,
(15), (11)]. Consider L being a real number such that 0 ¬ L and for every
point g of DualSpX such that g ∈ T holds ‖g‖ ¬ L. Set M = L + 1.
For every Lipschitzian linear functional g in X such that g ∈ T for every
points x, y of X, |g(x) − g(y)| ¬ M · ‖x − y‖ by [31, (16)], [17, (26)].
For every point x of X, f0#x is convergent by [9, (8), (16)], [22, (6)], [16,
(17)]. Define X [element of the carrier of X, object] ≡ $2 = lim(f0#$1).
For every element x of the carrier of X, there exists an element y of R
such that X [x, y]. Consider f1 being a function from the carrier of X into
R such that for every element x of the carrier of X, X [x, f1(x)] from [6,
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Sch. 3]. f1 is additive by [13, (7)], [14, (6)]. f1 is homogeneous by [13, (9)],
[14, (8)]. Consider M being a real number such that 0 < M and for every
natural number n, |‖f‖(n)| < M . �

(27) Let us consider a real Banach space X, and a sequence x of X. Suppose
X is reflexive and ‖x‖ is bounded. Then there exists a sequence x0 of X
such that x0 is subsequence of x and weakly convergent.

Proof: Set L = ClNLin(rng x). For every object z such that z ∈ rng x
holds z ∈ the carrier of L by [32, (15)], [16, (4)]. �

(28) Let us consider a real Banach space X, and a non empty subset X1 of
X. Suppose X is non trivial and reflexive. Then X1 is weakly sequentially
compact if and only if there exists a non empty subset S of R such that
S = {‖x‖, where x is a point of X : x ∈ X1} and S is upper bounded.

Proof: For every sequence s2 of X1, there exists a sequence s3 of X such
that s3 is subsequence of s2 and weakly convergent and w-lim(s3) ∈ X by
[6, (7)], (27). �
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