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Fermat’s Little Theorem via Divisibility of
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Summary. Solving equations in integers is an important part of the num-
ber theory [29]. In many cases it can be conducted by the factorization of equ-
ation’s elements, such as the Newton’s binomial. The article introduces several
simple formulas, which may facilitate this process. Some of them are taken from
relevant books [28], [14].

In the second section of the article, Fermat’s Little Theorem is proved in a
classical way, on the basis of divisibility of Newton’s binomial. Although slightly
redundant in its content (another proof of the theorem has earlier been included
in [12]), the article provides a good example, how the application of registrations
could shorten the length of Mizar proofs [9], [17].
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1. Divisibility of Newton’s Binomial

From now on a, b, c, d, m, x, n, j, k, l denote natural numbers, t, u, v, z
denote integers, f , F denote finite sequences of elements of N, p, q, r, s denote
real numbers.

Let a be a complex. Note that 1 · a0 reduces to 1.
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Let n be a non zero natural number. One can check that 0n reduces to 0.
Let a be a natural number. Let us observe that |a| reduces to a.
Let us note that gcd(a, 0) reduces to a.
Let us consider t and z. Let us note that (t mod z) mod z reduces to t mod z.
Observe that 0 mod t reduces to 0.
Let us consider u and z. One can check that 0 + u · z mod z reduces to 0.
Let r be a non zero real number and n be an even, natural number. One can

verify that rn is positive.
Now we state the propositions:

(1) gcd(t, z) = gcd(−t, z).
(2) If t | z and u | v, then t · u | z · v.
(3) t | z if and only if gcd(t, z) = |t|.
(4) t · u | z · u if and only if |u| · (gcd(t, z)) = |u| · |t|. The theorem is a

consequence of (3).

(5) (i) gcd(t+ u · z, z) = gcd(t, z), and

(ii) gcd(t− u · z, z) = gcd(t, z).

(6) If n > 0, then t | tn.
(7) gcd(an, bn) = (gcd(a, b))n.
Proof: If gcd(a, b) = k, then gcd(an, bn) = kn by [22, (21)], [16, (12)],
[11, (15)], [21, (7), (11), (4)]. �

(8) If a > b and a and b are relatively prime, then gcd(a+ b, a− b) ¬ 2. The
theorem is a consequence of (5).

(9) gcd(t, z) is even if and only if t is even and z is even.
Proof: If gcd(t, z) is even, then t is even and z is even by [22, (21)]. �

(10) (i) t | (t+ z)n − zn, and

(ii) z | (t+ z)n − tn.
Proof: Define P[natural number] ≡ t | (t+ z)$1 − z$1 and z | (t+ z)$1 −
t$1 . P[0] by [21, (4)], [30, (11)]. If P[x], then P[x+1] by [16, (4)], [21, (8)].
For every m, P[m] from [2, Sch. 2]. �

(11) u | (u+ z)n if and only if u | zn. The theorem is a consequence of (10).

(12) If t | (t+ z)n, then t | (t+ z)n + zn. The theorem is a consequence of
(11).

(13) t+ u | (t+ 2 · u)n − un. The theorem is a consequence of (10).

(14) If l > 0 and t | z, then t | zl.
(15) If t | z, then tn | zn. The theorem is a consequence of (7) and (3).

(16) If n > 0 and t - (t+ z)n, then t - z. The theorem is a consequence of
(14).
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(17) If m > 0, then t · z | (t+ z)m − (tm + zm).
Proof: Consider n such that m = 1 + n. t · z | (t+ z)n+1 − (tn+1 + zn+1)
by [22, (12), (2)], [21, (6)], [22, (1)]. �

(18) t− z | tm − zm. The theorem is a consequence of (11) and (10).

(19) If n > 0, then t ·z | (t− z)n−(tn+(−z)n). The theorem is a consequence
of (17).

(20) t · z | (t+ z)n − (t− z)n + ((−z)n − zn). The theorem is a consequence
of (17) and (19).

(21) If n > 0, then t | (t+ z)n + (tn − zn). The theorem is a consequence of
(6) and (10).

(22) If u | t+ z and u | t− z, then u | 2 · t and u | 2 · z.
(23) t · z | (t+ z)2·n − (t− z)2·n. The theorem is a consequence of (20).

(24) If n > 0, then t·z | (t− z)2·n−(t2·n+z2·n). The theorem is a consequence
of (19).

(25) t · z | (t− z)2·n+1 − (t2·n+1 − z2·n+1). The theorem is a consequence of
(19).

(26) If k > 0 and x | a + k and x | a − k, then x ¬ 2 · k. The theorem is a
consequence of (22).

(27) If k > 0, then gcd(a, b) ¬ gcd(a, b · k).
(28) If n > 0, then gcd(gcd(a, b), bn) = gcd(a, b).

(29) t + z and t are relatively prime if and only if t + z and z are relatively
prime.

(30) If a and b are relatively prime and a · b = cn, then there exists k such
that kn = a. The theorem is a consequence of (7).

(31) If a and b are relatively prime and a + b > 2, then a + b | an + bn iff
a+ b - an − bn.
Proof: b > 0. If a+ b | an − bn, then a+ b - an + bn by [16, (4)]. �

(32) If a and b are relatively prime and a + b > 2 and n is odd, then a + b -
an − bn. The theorem is a consequence of (31).

(33) If a and b are relatively prime and a+ b > 2 and n is even, then a+ b -
an + bn. The theorem is a consequence of (31).

Let us assume that a and b are relatively prime. Now we state the proposi-
tions:

(34) a · b and an+1+ bn+1 are relatively prime. The theorem is a consequence
of (5).

(35) a · b and an+1− bn+1 are relatively prime. The theorem is a consequence
of (5).
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(36) If q > 0 and n > 0, then there exists r such that q = rn.

(37) If k > 0 and a + b > k and a + b | k · a, then a and b are not relatively
prime.

(38) If k > 1, then k - (k + 1)n. The theorem is a consequence of (11).

(39) If a > 1 and b > 0 and gcd(a, b) = 1, then a - (a+ b)n. The theorem is a
consequence of (11).

(40) If c > 0, then for every non negative real numbers r, s, r < s iff rc < sc.
Proof: if r < s, then rc < sc and if rc < sc, then r < s by [24, (6)], [2,
(14)], [21, (11)], [25, (37)]. �

(41) Let us consider non negative real numbers r, s. If r ­ s, then rn ­ sn.
The theorem is a consequence of (40).

(42) If a > 0 and n > 0, then there exists r such that an + bn = rn.

(43) There exists b such that bn+1 ¬ a < (b+ 1)n+1.
Proof: Define P[natural number] ≡ there exists b such that bn+1 ¬ $1 <
(b+ 1)n+1. P[0]. If P[k], then P[k+ 1] by [2, (13)], (40). For every x, P[x]
from [2, Sch. 2]. �

(44) If n > 0 and a > b and a and b are relatively prime, then gcd(an +
bn, an − bn) ¬ 2. The theorem is a consequence of (40) and (8).

(45) If a+ b | c and a and c are relatively prime, then a and b are relatively
prime. The theorem is a consequence of (5).

(46) If t and z are relatively prime and t and u are relatively prime and t is
even, then u+ z is even and u− z is even and u · z is odd.

(47) If a and b are relatively prime and c is even and an+ bn = cn, then a+ b
is even and a− b is even.

(48) If a is even and a and b are relatively prime, then a − b and a + b are
relatively prime. The theorem is a consequence of (9), (8), and (1).

(49) If a and b are relatively prime, then a+ b and a · b are relatively prime.
The theorem is a consequence of (5).

(50) If 3 - a · b, then 3 | (a+ b) · (a− b). The theorem is a consequence of (3).

(51) 3 | (a+ b) · (a− b) + a · b if and only if 3 | a and 3 | b.
(52) If b2 = a · (a− b), then 3 | a and 3 | b. The theorem is a consequence of

(51).

(53) If a and b are relatively prime, then 3 - (a+b) ·(a−b)+a ·b. The theorem
is a consequence of (51).

(54) If a > b and a+ b ­ 2n+1, then a > 2n.

(55) If a 6= b, then 2 · a · b < a2 + b2.
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(56) If n > 0 and a 6= b, then 2 · an · bn < a2·n + b2·n. The theorem is a
consequence of (55).

(57) If b > 0, then there exists n such that b ­ 2n and b < 2n+1.
Proof: Consider a such that b = 1+a. There exists n such that a+1 ­ 2n

and a+ 1 < 2n+1 by [21, (6)]. �

(58) Let us consider odd natural numbers a, b. Then 4 | a + b if and only if
4 - a− b.
Proof: Consider t, z such that a+ b = 2 · t and a− b = 2 · z. t is odd iff
z is even. If 2 · 2 | a+ b, then 2 · 2 - a− b by (3), [27, (16)]. If 2 · 2 - a+ b,
then 2 · 2 | a− b by (3), [27, (16)]. �

(59) If gcd(b+ c, b) = 1 and c is odd, then gcd(2 · b+ c, c) = 1.

(60) If a+ b = k · a+ k · b and a · b > 0, then k = 1.

(61) If t · z = t+ z, then t = z.

(62) (2 · n+ 1)2 = 4 · n · (n+ 1) + 1.

(63) If a is odd and b is odd, then 8 | a2 − b2. The theorem is a consequence
of (62).

(64) Let us consider odd natural numbers a, b. If 4 | a− b, then 4 | an − bn.
(65) Let us consider odd natural numbers a, b, and an even natural number
m. Then 4 | am − bm.
Proof: Consider n such that m = 2 · n. If 4 | a+ b, then 4 | am − bm by
[34, (36)], [22, (9)]. If 4 | a− b, then 4 | am − bm. �

(66) If t is even and 4 - t, then there exists u such that u = t/2 and u is odd.

(67) If a is odd and 2n | a · b, then 2n | b.
Let us consider odd natural numbers a, b, m. Now we state the propositions:

(68) 4 | am + bm if and only if 4 | a+ b.
Proof: Consider n such that m = 2 · n + 1. If 4 | a2·n+1 + b2·n+1, then
4 | a+ b by [21, (81)], (65), [22, (2)], (58). �

(69) 4 | a− b if and only if 4 - am+ bm. The theorem is a consequence of (58)
and (68).

Now we state the propositions:

(70) If a2 + b2 = c2, then there exists t such that b2 = (2 · a+ t) · t.
(71) If b2 = (2 · a+ t) · t, then there exists c such that a2 + b2 = c2.

(72) If a is odd and b is odd and m is even, then am + bm 6= cm.
Proof: If a is odd and b is odd, then a2·n + b2·n 6= c2·n by [21, (9)]. �

(73) If t and zn are relatively prime and n > 0, then t and z are relatively
prime. The theorem is a consequence of (6).
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Let us assume that a and b are relatively prime. Now we state the proposi-
tions:

(74) gcd((a+ b)2, a2 + b2 − (n − 2) · a · b) = gcd(a2 + b2 − (n − 2) · a · b, n).
The theorem is a consequence of (34) and (5).

(75) a+b and a2+b2+a ·b are relatively prime. The theorem is a consequence
of (74) and (73).

(76) gcd((a− b)2, a2 + b2 + (n − 2) · a · b) = gcd(a2 + b2 + (n − 2) · a · b, n).
The theorem is a consequence of (35), (5), and (1).

Now we state the propositions:

(77) a | k · (a · n+ 1) if and only if a | k.
Proof: If a | k · (a · n+ 1), then a | k by [22, (1)]. �

(78) Let us consider a positive natural number n. Then a | k · (an + 1) if and
only if a | k. The theorem is a consequence of (77).

(79) Let us consider positive natural numbers a, b. If a mod b = b mod a,
then a = b.

(80) k · (a · n+ 1) mod a = k mod a.

Let us consider a positive natural number n. Now we state the propositions:

(81) k · (an + 1) mod a = k mod a. The theorem is a consequence of (80).

(82) k · (an + 1)m mod a = k mod a. The theorem is a consequence of (81).

(83) b · (an + 1)m + c · (an + 1)l mod a = b + c mod a. The theorem is a
consequence of (82).

Now we state the propositions:

(84) Let us consider positive natural numbers a, n. Then a | b · (an + 1)m +
c · (an + 1)l if and only if a | b+ c. The theorem is a consequence of (83).

(85) If |t| < a, then t mod a = |t| or t mod a = a− |t|.
(86) −t mod a = u · a− (t mod a) mod a.

(87) Let us consider an odd natural number n. Then tn mod 3 = t mod 3.

(88) t+ (u mod z) mod z = t+ u mod z.

(89) Let us consider an odd natural number n. Then a + b − c mod 3 =
an + bn − cn mod 3. The theorem is a consequence of (87).

(90) Let us consider a positive natural number k. Then t mod k = k − 1 if
and only if t+ 1 mod k = 0. The theorem is a consequence of (88).

(91) If a2 + b2 = c2, then 3 | a · b · c. The theorem is a consequence of (14)
and (50).

(92) Let us consider non zero natural numbers a, n. Suppose t mod a =
z mod a. Then tn mod a = zn mod a.

(93) If 3 | t− z, then 3 | tn − zn. The theorem is a consequence of (18).
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(94) Let us consider an odd natural number n. Then 3 | a+ b− c if and only
if 3 | an + bn − cn.
Proof: If 3 | a + b − c, then 3 | an + bn − cn by [30, (62)], (89). a + b −
c mod 3 = 0. �

(95) (t+ u− z)2 ≡ t2 + u2 + z2 (mod 2).

(96) (t+ u− z)3 ≡ t3 + u3 − z3 (mod 3).

(97) 6 | a3 − a. The theorem is a consequence of (50).

(98) Let us consider odd natural numbers a, b, c. Then 3 | ta + tb + tc. The
theorem is a consequence of (87) and (88).

(99) (i) 2m − 1 | 22·m+1 − 2, and

(ii) 2m + 1 | 22·m+1 − 2.

(100) If u+ t+ z is even, then u · t · z is even.

(101) If tn + un = zn, then 2n | (t · u · z)n. The theorem is a consequence of
(100) and (15).

(102) tn ≡ tm (mod t− 1). The theorem is a consequence of (18).

2. Fermat’s Little Theorem Revisited

In the sequel a, b, c, d, m, x, n, k, l denote natural numbers, t, z denote
integers, f , F , G denote finite sequences of elements of R, q, r, s denote real
numbers, and D denotes a set.

Now we state the propositions:

(103) Let us consider a finite sequence f . Then f is D-valued if and only if f
is a finite sequence of elements of D.

(104) k + 1 ∈ Seg n if and only if k < n.
Proof: If k + 1 ∈ Seg n, then k < n by [4, (1)], [2, (13)]. �

(105) n+ 1 ¬ len f if and only if n+ 1 ∈ dom f .
Proof: If n+ 1 ¬ len f , then n+ 1 ∈ dom f by [2, (13)], (104). n < len f .
�

(106) k ∈ Zn if and only if k + 1 ∈ Seg n.

(107) If n ∈ dom f and 1 ¬ m ¬ n, then f(m) = (f�n)(m).

(108) Suppose f is a finite sequence of elements of D. Then

(i) f�n is a finite sequence of elements of D, and

(ii) f�n is a finite sequence of elements of D.

(109) If n ∈ dom f , then (f�n)(1) = f(1). The theorem is a consequence of
(107).
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(110) Let us consider a finite sequence f of elements of R. If n ∈ dom f , then
len(f�n) = n.

Let us consider s. Observe that 〈s〉 is R-valued.
Let us consider D. Let f be a D-valued finite sequence. Let us consider n.

Let us note that f�n is D-valued.
Let f be a finite sequence of elements of D. Observe that f�n is D-valued.
Now we state the proposition:

(111) Let us consider a finite sequence f of elements of C. If k ∈ dom(f�n),
then k ∈ dom f .

Let us consider n. Note that ∅�n is empty.
Let us consider f . One can check that (f�n)�n is empty.
Let us consider D. Let f be a D-valued finite sequence. One can verify that

f�n is D-valued.
Let f be a finite sequence of elements of N. Observe that f(n) is natural.
Let us consider k. One can verify that (f�n)(k) is natural and (f�n)�1(k) is

natural.
Now we state the propositions:

(112)
∑

(f a F ) =
∑
f +

∑
F .

(113) Let us consider a finite sequence f of elements of R. Suppose k ∈ dom f�n
and n ∈ dom f . Then n + k ∈ dom f . The theorem is a consequence of
(110).

(114) Let us consider a positive natural number k. If n + k ∈ dom f , then
k ∈ dom f�n.

(115) Let us consider a positive natural number n. Suppose n + 1 = len f .
Then

∑
f =

∑
(f�n)�1 + f(1) + f(n + 1). The theorem is a consequence

of (112) and (109).

(116) If n+ 1 = len f , then f�n = 〈f(n+ 1)〉.
Let us assume that (f�n)�1 is not empty. Now we state the propositions:

(117) len(f�n)�1 ¬ len f − 1. The theorem is a consequence of (110).

(118) len(f�n)�1 < n. The theorem is a consequence of (110).

Now we state the propositions:

(119) If n is prime and k 6= 0 and k 6= n, then n |
(n
k

)
.

(120) If b ­ 2, then (b+ 1)! > 2b.
Proof: Define P[natural number] ≡ ($1 + 1)! > 2$1 . P[2] by [21, (14),
(15), (81)]. For every natural number k such that k ­ 2 and P[k] holds
P[k + 1] by [21, (6), (15)]. For every natural number x such that x ­ 2
holds P[x] from [2, Sch. 8]. �
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(121) b > 1 if and only if b! > 1.
Proof: If b > 1, then b! > 1 by [2, (13)], [20, (55)]. �

(122) If b ­ 2, then b! < bb.
Proof: Define P[natural number] ≡ $1! < $1

$1 . P[2] by [21, (81), (14)].
For every natural number k such that k ­ 2 and P[k] holds P[k + 1] by
[24, (10)], [21, (15), (6)]. For every natural number x such that x ­ 2 holds
P[x] from [2, Sch. 8]. �

(123) (b+ 1)! ­ 2b. The theorem is a consequence of (120).

(124) b! ¬ bb. The theorem is a consequence of (122).

(125) If b > 0 and a and b! are relatively prime, then a and b are relatively
prime. The theorem is a consequence of (121).

(126) If a and (a+ b)! are relatively prime, then a = 1 or a = 0 and (b = 0 or
b = 1). The theorem is a consequence of (121).

(127) If n ∈ dom f and m ∈ dom(f�n)�1, then (f�n)�1(m) = f(m + 1). The
theorem is a consequence of (113), (105), (110), and (107).

Let us consider n. One can verify that 〈
(n
0

)
, . . . ,

(n
n

)
〉 is non empty.

Let us consider m. One can check that 〈
(n
0

)
, . . . ,

(n
n

)
〉(m) is natural and

〈
(n
0

)
, . . . ,

(n
n

)
〉 is N-valued.

Let h be a finite sequence of elements of N. One can verify that
∑
h is

natural.
Now we state the propositions:

(128) If n > 0, then n ∈ dom〈
(n
0

)
, . . . ,

(n
n

)
〉.

(129) 〈
(n
0

)
, . . . ,

(n
n

)
〉 is a finite sequence of elements of N.

(130) 〈
(n
0

)
, . . . ,

(n
n

)
〉(n+ 1) = 1. The theorem is a consequence of (105).

(131) 〈
(k
0

)
, . . . ,

(k
k

)
〉(1) = 1.

Proof: 〈
(k
0

)
101k, . . . ,

(k
k

)
1k10〉(1) = 1 by [21, (28)]. �

Let us consider a positive natural number n. Now we state the propositions:

(132)
∑
〈
(n
0

)
, . . . ,

(n
n

)
〉 =

∑
(〈
(n
0

)
, . . . ,

(n
n

)
〉�n)�1 + 〈

(n
0

)
, . . . ,

(n
n

)
〉(1) + 〈

(n
0

)
, . . . ,(n

n

)
〉(n+ 1). The theorem is a consequence of (128), (112), and (109).

(133)
∑
〈
(n
0

)
, . . . ,

(n
n

)
〉 =

∑
(〈
(n
0

)
, . . . ,

(n
n

)
〉�n)�1 + 2. The theorem is a consequ-

ence of (132), (130), and (131).

Now we state the propositions:

(134)
∑
〈
(n
0

)
, . . . ,

(n
n

)
〉 =

∑
(〈
(n
0

)
, . . . ,

(n
n

)
〉�n)+1. The theorem is a consequence

of (103).

(135) len(〈
(n
0

)
, . . . ,

(n
n

)
〉�n) = n.

(136) Suppose m ∈ dom(〈
(n
0

)
, . . . ,

(n
n

)
〉�n)�1. Then (〈

(n
0

)
, . . . ,

(n
n

)
〉�n)�1(m) =

〈
(n
0

)
, . . . ,

(n
n

)
〉(m+ 1). The theorem is a consequence of (128) and (127).
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(137) If n is prime, then n | (〈
(n
0

)
, . . . ,

(n
n

)
〉�n)�1(k).

Proof: If n is prime and k ­ n, then n | (〈
(n
0

)
, . . . ,

(n
n

)
〉�n)�1(k) by

(128), (110), [2, (13)], [31, (25)]. If n is prime and k < n, then n |
(〈
(n
0

)
, . . . ,

(n
n

)
〉�n)�1(k) by [31, (25)], (128), (110), [2, (13)]. �

(138) Let us consider a prime natural number n. Then n | 2n−2. The theorem
is a consequence of (103), (137), and (133).

Let k be a positive natural number. Let us consider n. Let us note that
nk − n is natural.

Now we state the propositions:

(139) Let us consider prime natural numbers k, n. Then n·k | (2n−2)·(2k−2).
The theorem is a consequence of (138).

(140) Let us consider an odd prime number n. If n = 2 · k + 1, then n | 2k − 1
iff n - 2k + 1.
Proof: n | 2k − 1 or n | 2k + 1 by (138), [21, (6)], [33, (7)], [21, (9)]. �

Let n be a natural number. The functor n \ yielding a finite sequence of
elements of R is defined by the term

(Def. 1) 〈
(n
0

)
101n, . . . ,

(n
n

)
1n10〉.

Let us consider n. We identify 〈
(n
0

)
, . . . ,

(n
n

)
〉 with n \. We identify n \ with

〈
(n
0

)
, . . . ,

(n
n

)
〉. Now we state the proposition:

(141) If n > 0, then n ∈ dom〈
(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉.

Let us consider a, b, n, and m. Let us observe that 〈
(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉(m)

is natural and 〈
(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉 is N-valued.

Now we state the propositions:

(142) If k + l is prime and k > 0 and l > 0, then k + l | 〈
(k+l
0

)
a0bk+l, . . . ,(k+l

k+l

)
ak+lb0〉(k + 1). The theorem is a consequence of (119).

(143) If a 6= 0, then 〈
(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉(1) 6= 0.

(144) Let us consider a non zero natural number m. Then a = 0 if and only if
〈
(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉(1) = 0.

Proof: For every non zero natural number m such that a = 0 holds
〈
(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉(1) = 0 by [21, (28)]. �

(145) If 〈
(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉(1) = 0, then m 6= 0.

(146) Let us consider a positive natural number m. Then
∑
〈
(m
0

)
a0bm, . . . ,(m

m

)
amb0〉 = am+ bm+

∑
(〈
(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉�m)�1. The theorem is a

consequence of (115).

(147)
∑
〈
(m+n
0

)
a0bm+n, . . . ,

(m+n
m+n

)
am+nb0〉 =

∑
〈
(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉·∑

〈
(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉.
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(148) If l > 0, then there exists x such that 〈
(k+l
0

)
a0bk+l, . . . ,

(k+l
k+l

)
ak+lb0〉(k +

1) = a · x.
(149) Ifm > 0, then there exists k such that 〈

(m
0

)
a0bm, . . . ,

(m
m

)
amb0〉(1) = a·k.

The theorem is a consequence of (148).

(150) If l > 0, then there exists x such that 〈
(k+l
0

)
a0bk+l, . . . ,

(k+l
k+l

)
ak+lb0〉(l) =

a · x.
(151) If n = 〈

(k+l
0

)
a0bk+l, . . . ,

(k+l
k+l

)
ak+lb0〉(k + 1) and l > 0, then a | n. The

theorem is a consequence of (148).

Let us consider a prime natural number n and positive natural numbers a,
b. Now we state the propositions:

(152) n · a · b | (〈
(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉�n)�1(k).

Proof: If k /∈ dom(〈
(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉�n)�1, then n·a·b | (〈

(n
0

)
a0bn, . . . ,(n

n

)
anb0〉�n)�1(k). If n is prime and k ∈ dom(〈

(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉�n)�1,

then n · a · b | (〈
(n
0

)
a0bn, . . . ,

(n
n

)
anb0〉�n)�1(k) by [31, (25)], (118), [2, (13),

(10)]. �

(153) n · a · b | (a+ b)n − (an + bn). The theorem is a consequence of (103),
(152), and (146).

Now we state the propositions:

(154) Let us consider a prime natural number n. Then n·a | (a+ 1)n−(an+1).
The theorem is a consequence of (153).

(155) Let us consider positive natural numbers a, b. Then 2 · a · b | (a+ b)2 −
(a2 + b2).

(156) Let us consider a prime natural number n. Then n | an − a.
Proof: Define P[natural number] ≡ n | $1

n − $1. If P[k], then P[k + 1]
by (154), [22, (2)], [16, (4)]. For every natural number x, P[x] from [2,
Sch. 2]. �

(157) Let us consider a natural number k. If k+ 1 is prime and k+ 1 - a, then
k + 1 | ak − 1. The theorem is a consequence of (156).

(158) Let us consider a prime natural number n. Then n | a+ b if and only if
n | an + bn. The theorem is a consequence of (156).

(159) 163 | a+ b if and only if 163 | a163 + b163.

Let us consider a prime natural number n. Now we state the propositions:

(160) n | a if and only if n | an.
(161) n | an+ 1 if and only if n | a+ 1. The theorem is a consequence of (158).

(162) n | an + bn if and only if n | (a+ b)n.

Now we state the propositions:

(163) 7 | a7 + 1 if and only if 7 | a+ 1.
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(164) If 7 - a, then 7 | a6 − 1. The theorem is a consequence of (156).

Let us consider a prime natural number n and positive natural numbers a,
b. Now we state the propositions:

(165) n · a · b | (a+ b)k·n − (an + bn)k. The theorem is a consequence of (153).

(166) If n · a · b | (a+ t)n − (an + bn), then n · a · b | (a+ b)n − (a+ t)n. The
theorem is a consequence of (153).

Now we state the proposition:

(167) Let us consider a prime natural number n, and positive natural numbers
a, b, c. If n · a · b | c− b, then n · a · b | an + bn − (a+ c)n. The theorem is
a consequence of (153).

Let us consider a prime natural number p. Now we state the propositions:

(168) If p = 2 · n + 1, then p | a or p | an − 1 or p | an + 1. The theorem is a
consequence of (156).

(169) If p - a, then there exists n such that p | an − 1 and 0 < n < p. The
theorem is a consequence of (157).

Now we state the propositions:

(170) 5 | a3 − 1 if and only if 5 | a− 1.
Proof: If 5 | a3− 1, then 5 | a− 1 by [13, (59)], (156), [22, (13)], [18, (3)].
�

(171) If k + 1 is prime, then k + 1 | an·k+1 − a. The theorem is a consequence
of (157).

(172) 2 | an+1 − a. The theorem is a consequence of (171).

(173) 3 | a2·n+1 − a. The theorem is a consequence of (171).

(174) 5 | a4·n+1 − a. The theorem is a consequence of (171).

(175) 7 | a6·n+1 − a. The theorem is a consequence of (171).

(176) If k 6= l and k + 1 is odd and prime and l + 1 is odd and prime, then
2 · (k + 1) · (l+ 1) | ak·l+1 − a. The theorem is a consequence of (171) and
(172).

(177) 154 | a61 − a. The theorem is a consequence of (176).

(178) 6 | a2·n+1 − a. The theorem is a consequence of (172) and (173).

(179) 30 | a4·n+1− a. The theorem is a consequence of (172), (173), and (174).

(180) 42 | a6·n+1− a. The theorem is a consequence of (172), (173), and (175).

(181) Let us consider a prime natural number n. Then n | an+k − ak+1. The
theorem is a consequence of (156).

(182) If 2 · n + 1 is prime, then for every k such that 2 · n > k > 1 holds
2 · n + 1 - an − k and 2 · n + 1 - an + k. The theorem is a consequence of
(168).
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(183) (i) 5 - a2 − 2, and

(ii) 5 - a2 + 2, and

(iii) 5 - a2 − 3, and

(iv) 5 - a2 + 3.
The theorem is a consequence of (182).

(184) If a2 + b2 = c2, then 5 | a or 5 | b or 5 | c. The theorem is a consequence
of (168) and (183).

(185) (i) 7 - a3 − 2, and

(ii) 7 - a3 + 2, and

(iii) 7 - a3 − 3, and

(iv) 7 - a3 + 3, and

(v) 7 - a3 − 4, and

(vi) 7 - a3 + 4, and

(vii) 7 - a3 − 5, and

(viii) 7 - a3 + 5.
The theorem is a consequence of (182).

(186) 2 | 2n − 1 if and only if n = 0.
Proof: If 2 | 2n − 1, then n = 0 by [18, (3)], [22, (13)]. �

(187) If 2k+l | 2n+k − 2k, then l = 0 or n = 0. The theorem is a consequence
of (186).

(188) (i) 3 | b, or

(ii) 3 | b− 1, or

(iii) 3 | b+ 1.
The theorem is a consequence of (168).

(189) If 3 - b, then 3 - b2 + c2.
Proof: If 3 - b and 3 - c, then 3 - b2+ c2 by (157), [13, (41)], [16, (4)], [22,
(1), (27)]. If 3 - b and 3 | c, then 3 - b2 + c2 by [18, (3)], [22, (9)], [18, (5)],
[13, (41)]. �

(190) (i) 3 - b2 + 1, and

(ii) 3 - b2 − 2.
The theorem is a consequence of (189).

(191) 3 - b3 + b2 − b+ 1. The theorem is a consequence of (190) and (156).

(192) Let us consider a positive natural number a. If b and c are relatively
prime and a+ 1 | b, then a+ 1 - c.

(193) If b and c are relatively prime, then 3 - b2 + c2. The theorem is a conse-
quence of (192) and (189).
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(194) Let us consider a prime natural number p. If p | a, then p | an+1.
(195) If b and c are relatively prime and b2 + c2 = a2, then 3 - a. The theorem

is a consequence of (193) and (194).

Let us consider a prime natural number p. Now we state the propositions:

(196) If p | a+ b, then p | a2·n+1 + b2·n+1.

(197) If p - a2·n+1 + b2·n+1 and p | a2 − b2, then p | a − b. The theorem is a
consequence of (196).

Now we state the propositions:

(198) (i) 3 | a · b, or

(ii) 3 | a+ b, or

(iii) 3 | a− b.
The theorem is a consequence of (188).

(199) If 3 - a and 3 - b, then 3 | a2·n+1 + b2·n+1 or 3 | a2·n+1 − b2·n+1. The
theorem is a consequence of (188).

(200) If a3 + b3 = c3, then 7 | a or 7 | b or 7 | c. The theorem is a consequence
of (168) and (185).
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