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Summary. In this article we formalize negligible functions that play an
essential role in cryptology [10], [2]. Generally, a cryptosystem is secure if the pro-
bability of succeeding any attacks against the cryptosystem is negligible. First,
we formalize the algebra of polynomially bounded sequences [20]. Next, we for-
malize negligible functions and prove the set of negligible functions is a subset
of the algebra of polynomially bounded sequences. Moreover, we then introduce
equivalence relation between polynomially bounded sequences, using negligible
functions.
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The notation and terminology used in this paper have been introduced in the
following articles: [29], [16], [17], [20], [4], [19], [9], [24], [21], [5], [6], [26], [25],
[1], [7], [13], [22], [12], [3], [11], [30], [27], [14], [15], [23], [28], [18], and [8].

1. Preliminaries

Let us consider a real number r. Now we state the propositions:

(1) r < |r|+ 1.

(2) There exists a natural number N such that for every natural number n
such that N ¬ n holds r < n

log2 n
.

Let us consider a natural number k. Now we state the propositions:

(3) There exists a natural number N such that for every natural number x
such that N ¬ x holds xk < 2x. The theorem is a consequence of (2).
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(4) There exists a natural number N such that for every natural number x
such that N ¬ x holds 12x <

1
xk

. The theorem is a consequence of (3).

Now we state the proposition:

(5) Let us consider a natural number z. Suppose 2 ¬ z. Let us consider
a natural number k. Then there exists a natural number N such that for
every natural number x such that N ¬ x holds 1zx <

1
xk

. The theorem is
a consequence of (4).

Observe that there exists a finite 0-sequence of R which is positive yielding
and there exists a positive yielding finite 0-sequence of R which is non empty.

Now we state the proposition:

(6) Let us consider a finite 0-sequence c of R, and a real number a. Then
a · c is a finite 0-sequence of R.

Let c be a finite 0-sequence of R and a be a real number. Observe that a · c
is finite as a transfinite sequence of elements of R.

Now we state the proposition:

(7) Let us consider a non empty, positive yielding finite 0-sequence c of R,
and a real number a. Suppose 0 < a. Then a · c is a non empty, positive
yielding finite 0-sequence of R. The theorem is a consequence of (6).

Let c be a non empty, positive yielding finite 0-sequence of R and a be
a positive real number. Observe that a · c is non empty and positive yielding as
a finite 0-sequence of R.

Let c be a finite 0-sequence of R. We introduce the notation polynom c as a
synonym of Seqpoly(c).

Now we state the propositions:

(8) Let us consider a non empty, positive yielding finite 0-sequence c of R,
and a natural number x. Then 0 < (polynom c)(x).
Proof: Define P[natural number] ≡ for every non empty, positive yielding
finite 0-sequence c of R such that len c = $1 for every natural number x,
0 < (polynom c)(x). For every natural number k such that P[k] holds
P[k + 1] by [20, (28), (29)], [1, (44)], [5, (3), (47)]. For every natural
number k, P[k] from [1, Sch. 2]. �

(9) Let us consider non empty, positive yielding finite 0-sequences c, c1 of R,
and a real number a. Suppose c1 = a · c. Let us consider a natural number
x. Then (polynom c1)(x) = a · (polynom c)(x).
Proof: For every object i such that i ∈ dom(c1 · {x1·n+0}n∈N) holds
(c1 · {x1·n+0}n∈N)(i) = (a · (c · {x1·n+0}n∈N))(i) by [20, (26)]. �
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2. Algebra of Polynomially Bounded Sequences

Let p be a sequence of real numbers. We say that p is absolutely polynomially
bounded if and only if

(Def. 1) there exists a natural number k such that |p| ∈ O({nk}n∈N).

One can verify that every sequence of real numbers which is polynomially
bounded is also absolutely polynomially bounded.

Now we state the proposition:

(10) Let us consider an element r of N, and a sequence s of real numbers. If
s = N 7−→ r, then s is absolutely polynomially bounded.

One can check that there exists a function from N into R which is absolutely
polynomially bounded.

Let f , g be absolutely polynomially bounded functions from N into R. One
can verify that f + g is absolutely polynomially bounded as a function from N
into R and f · g is absolutely polynomially bounded as a function from N into
R.

Let f be an absolutely polynomially bounded function from N into R and a
be an element of R. Observe that a · f is absolutely polynomially bounded as
a function from N into R.

The functor Opoly yielding a subset of RAlgebra N is defined by

(Def. 2) for every object x, x ∈ it iff x is an absolutely polynomially bounded
function from N into R.

Note that Opoly is non empty.
The functor RAlgebraOpoly yielding a strict algebra structure is defined by

(Def. 3) the carrier of it = Opoly and the multiplication of it = ·RN � Opoly and
the addition of it = +RN � Opoly and the external multiplication of it =
·RRN�(R×Opoly) and the one of it = 1RN and the zero of it = 0RN .

One can verify that RAlgebraOpoly is non empty.
Now we state the propositions:

(11) The carrier of RAlgebraOpoly ⊆ the carrier of RAlgebra N.

(12) Let us consider an object f . Then f ∈ RAlgebraOpoly if and only if f is
an absolutely polynomially bounded function from N into R.

Let us consider points f , g of RAlgebraOpoly and points f1, g1 of RAlgebra N.
Let us assume that f = f1 and g = g1. Now we state the propositions:

(13) f · g = f1 · g1.
(14) f + g = f1 + g1.

Now we state the propositions:



374 hiroyuki okazaki

(15) Let us consider a point f of RAlgebraOpoly, a point f1 of RAlgebra N,
and an element a of R. If f = f1, then a · f = a · f1.

(16) 0RAlgebraOpoly = 0RAlgebraN.

(17) 1RAlgebraOpoly = 1RAlgebraN.

One can check that RAlgebraOpoly is strict, Abelian, add-associative, right
zeroed, right complementable, commutative, associative, right unital, right di-
stributive, vector associative, scalar associative, vector distributive, and scalar
distributive.

Now we state the proposition:

(18) RAlgebraOpoly is an algebra.

Let us consider vectors f , g, h of RAlgebraOpoly and functions f ′, g′, h′ from
N into R.

Let us assume that f ′ = f and g′ = g and h′ = h. Now we state the
propositions:

(19) h = f+g if and only if for every natural number x, h′(x) = f ′(x)+g′(x).
The theorem is a consequence of (11) and (14).

(20) h = f · g if and only if for every natural number x, h′(x) = f ′(x) · g′(x).
The theorem is a consequence of (11) and (13).

Now we state the proposition:

(21) Let us consider vectors f , h of RAlgebraOpoly, and functions f ′, h′ from
N into R. Suppose f ′ = f and h′ = h. Let us consider a real number a.
Then h = a · f if and only if for every natural number x, h′(x) = a · f ′(x).
The theorem is a consequence of (11) and (15).

3. Negligible Functions

Definition 1.3.5 of [10], p.16: Let f be a function from N into R. We say
that f is negligible if and only if

(Def. 4) for every non empty, positive yielding finite 0-sequence c of R, there
exists a natural number N such that for every natural number x such that
N ¬ x holds |f(x)| < 1

(polynom c)(x) .

Now we state the propositions:

(22) Let us consider a real number r. Suppose 0 < r. Then there exists a non
empty, positive yielding finite 0-sequence c of R such that for every natural
number x, (polynom c)(x) = r.

(23) Let us consider a function f from N into R. Suppose f is negligible. Let
us consider a real number r. Suppose 0 < r. Then there exists a natural
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number N such that for every natural number x such that N ¬ x holds
|f(x)| < r. The theorem is a consequence of (22).

(24) Let us consider a function f from N into R. If f is negligible, then f is
convergent and lim f = 0. The theorem is a consequence of (23).

Let us observe that {0}n∈N is negligible and there exists a function from N
into R which is negligible.

Let f be a negligible function from N into R. Let us observe that |f | is
negligible as a function from N into R.

Let a be a real number. One can verify that a · f is negligible as a function
from N into R.

Let f , g be negligible functions from N into R. One can check that f + g is
negligible as a function from N into R and f · g is negligible as a function from
N into R.

Now we state the propositions:

(25) Inverse of Power of 2 is negligible:
Let us consider a function f from N into R. If for every natural number
x, f(x) = 1

2x , then f is negligible.
Proof: Set k = len c. Define F(natural number) = 1·$k1. Consider y being
a sequence of real numbers such that for every natural number x, y(x) =
F(x) from [14, Sch. 1]. Consider N1 being a natural number such that for
every natural number x such that N1 ¬ x holds |(Seqpoly(c))(x)| ¬ y(x).
Consider N2 being a natural number such that for every natural number
x such that N2 ¬ x holds 12x <

1
xk

. Set N = N1 + N2. For every natural
number x such that N ¬ x holds |f(x)| < 1

(polynom c)(x) by [1, (12)], (8). �

(26) Let us consider functions f , g from N into R. Suppose f is negligible and
for every natural number x, |g(x)| ¬ |f(x)|. Then g is negligible.

One can check that every function from N into R which is negligible is also
absolutely polynomially bounded.

The functor negligible-Funcs yielding a subset of Opoly is defined by

(Def. 5) for every object x, x ∈ it iff x is a negligible function from N into R.

Let us observe that negligible-Funcs is non empty.
Let us consider vectors v, w of RAlgebraOpoly and functions v1, w1 from N

into R.
Let us assume that v = v1 and w1 = w. Now we state the propositions:

(27) v + w = v1 + w1. The theorem is a consequence of (19).

(28) v · w = v1 · w1. The theorem is a consequence of (20).

Now we state the propositions:
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(29) Let us consider a real number a, a vector v of RAlgebraOpoly, and a func-
tion v1 from N into R. If v = v1, then a · v = a · v1. The theorem is
a consequence of (21).

(30) Let us consider a real number a, and a vector v of RAlgebraOpoly. Sup-
pose v ∈ negligible-Funcs. Then a · v ∈ negligible-Funcs. The theorem is
a consequence of (29).

Let us consider vectors v, u of RAlgebraOpoly.
Let us assume that v, u ∈ negligible-Funcs. Now we state the propositions:

(31) v + u ∈ negligible-Funcs. The theorem is a consequence of (27).

(32) v · u ∈ negligible-Funcs. The theorem is a consequence of (28).

Let f , g be functions from N into R. We say that f≈neg g if and only if

(Def. 6) there exists a function h from N into R such that h is negligible and for
every natural number x, |f(x)− g(x)| ¬ |h(x)|.

One can verify that the predicate is reflexive and symmetric.
Now we state the propositions:

(33) Let us consider functions f , g, h from N into R. Suppose f≈neg g and
g≈neg h. Then f≈neg h.

(34) Let us consider functions f , g from N into R. Then f≈neg g if and only
if f − g is negligible. The theorem is a consequence of (26).

(35) Let us consider a non empty, positive yielding finite 0-sequence c of R.
Then there exists a real number a and there exist natural numbers k, N
such that 0 < a and 0 < k and for every natural number x such that
N ¬ x holds (polynom c)(x) ¬ a ·xk. The theorem is a consequence of (8).

Let a be a non-negative yielding finite 0-sequence of R and b be a non-
negative yielding sequence of real numbers. Let us observe that a · b is non-
negative yielding.

Let a, b be non-negative yielding finite 0-sequences of R. One can check that
a a b is non-negative yielding.

Let a, b, c be non negative real numbers. Let us note that {ab·n+c}n∈N is
non-negative yielding.

Now we state the propositions:

(36) Let us consider a real number a, and a natural number k. Then there
exists a non empty, positive yielding finite 0-sequence c of R such that for
every natural number x, a · xk ¬ (polynom c)(x).
Proof: Reconsider c = Zk+1 7−→ |a| + 1 as a finite 0-sequence of R. For
every natural number x, a · xk ¬ (polynom c)(x) by [14, (1)], [24, (13),
(7)], [1, (44)]. �
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(37) Let us consider non empty, positive yielding finite 0-sequences c, s of R.
Then there exists a non empty, positive yielding finite 0-sequence d of R
and there exists a natural number N such that for every natural number x
such that N ¬ x holds (polynom c)(x) · (polynom s)(x) ¬ (polynom d)(x).
Proof: Consider a1 being a real number, k1, N1 being natural numbers
such that 0 < a1 and 0 < k1 and for every natural number x such that
N1 ¬ x holds (polynom c)(x) ¬ a1 · xk1 . Consider a2 being a real number,
k2, N2 being natural numbers such that 0 < a2 and 0 < k2 and for every
natural number x such that N2 ¬ x holds (polynom s)(x) ¬ a2 · xk2 .
Consider d being a non empty, positive yielding finite 0-sequence of R
such that for every natural number x, a1 · a2 · xk1+k2 ¬ (polynom d)(x).
0 < (polynom c)(x). 0 < (polynom s)(x). a1 ·xk1 ·(a2 ·xk2) = (a1 ·a2)·xk1+k2
by [22, (27)]. �

Let f be a negligible function from N into R and c be a non empty, positive
yielding finite 0-sequence of R. Let us observe that polynom c · f is negligible as
a function from N into R.

Now we state the proposition:

(38) Let us consider an absolutely polynomially bounded function g from N
into R. Then there exists a non empty, positive yielding finite 0-sequence
d of R and there exists a natural number N such that for every natural
number x such that N ¬ x holds |g(x)| ¬ (polynom d)(x). The theorem is
a consequence of (36).

Let f be a negligible function from N into R and g be an absolutely poly-
nomially bounded function from N into R. Let us note that g · f is negligible as
a function from N into R.

Now we state the proposition:

(39) Let us consider vectors v, w of RAlgebraOpoly.
Suppose w ∈ negligible-Funcs. Then v ·w ∈ negligible-Funcs. The theorem
is a consequence of (12) and (28).
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