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Summary. Representation of a non zero integer as a signed product of
primes is unique similarly to its representations in various types of positional
notations [4], [3]. The study focuses on counting the prime factors of integers in
the form of sums or differences of two equal powers (thus being represented by 1
and a series of zeroes in respective digital bases).

Although the introduced theorems are not particularly important, they pro-
vide a couple of shortcuts useful for integer factorization, which could serve in
further development of Mizar projects [2]. This could be regarded as one of the
important benefits of proof formalization [9].

MSC: 11A51 03B35

Keywords: integers; factorization; primes

MML identifier: NEWTON03, version: 8.1.05 5.37.1275

From now on a, b, c, d, x, j, k, l, m, n, o denote natural numbers, p, q, t, z,
u, v denote integers, and a1, b1, c1, d1 denote complexes.

Now we state the propositions:

(1) a1n+k + b1n+k = a1n · (a1k + b1k) + b1k · (b1n − a1n).
(2) a1n+k − b1n+k = a1n · (a1k − b1k) + b1k · (a1n − b1n).
(3) a1m+2 + b1m+2 = (a1 + b1) · (a1m+1 + b1m+1)− a1 · b1 · (a1m + b1m).

Let a be a natural number. Let us note that a is trivial if and only if the
condition (Def. 1) is satisfied.

(Def. 1) a ¬ 1.

Let a be a complex. Let us note that the functor a2 yields a set and is defined
by the term
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(Def. 2) a2.

Let a, b be integers. The functors: gcd(a, b) and lcm(a, b) yielding natural
numbers are defined by terms

(Def. 3) gcd(|a|, |b|),
(Def. 4) lcm(|a|, |b|),

respectively. Let a, b be positive real numbers. Note that max(a, b) is positive
and min(a, b) is positive.

Let a be a non zero integer and b be an integer. One can check that gcd(a, b)
is non zero.

Let a be a non zero complex and n be a natural number. Let us observe that
an is non zero.

Let a be a non trivial natural number and n be a non zero natural number.
Note that an is non trivial.

Let a be an integer. One can check that |a| is natural.
Let a be an even integer. Note that |a| is even.
Let a be a natural number. Let us note that lcm(a, a) reduces to a and

gcd(a, a) reduces to a.
Let a be a non zero integer and b be an integer. Note that gcd(a, b) is positive.
Let a, b be integers. One can check that gcd(a, gcd(a, b)) reduces to gcd(a, b)

and lcm(a, lcm(a, b)) reduces to lcm(a, b).
Let a be an integer. Observe that gcd(a, 1) reduces to 1 and gcd(a + 1, a)

reduces to 1.
Now we state the proposition:

(4) Let us consider integers t, z. Then gcd(tn, zn) = (gcd(t, z))n.

Let a be an integer and n be a natural number.
One can verify that gcd((a+ 1)n, an) reduces to 1.
Let us consider a1 and b1. One can verify that a10 − b10 reduces to 0.
Let a be a non negative real number and n be a natural number. One can

verify that an is non negative and there exists an odd natural number which is
non trivial and there exists an even natural number which is non trivial.

Let a be a positive real number and n be a natural number. One can verify
that an is positive.

Let a be an integer. One can verify that a · a is square and aa is square and
there exists an element of N which is non square and every element of N which
is prime is also non square and there exists a prime natural number which is
even and there exists a prime natural number which is odd and every integer
which is prime is also non square.

Let a be a square element of N. Observe that
√
a is natural.
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Let a be an integer. Let us note that a2 is square and a · a is square and
there exists an integer which is non square and every natural number which is
zero is also trivial and there exists a natural number which is square and there
exists an element of N which is non zero and there exists a square element of
N which is non trivial and every natural number which is trivial is also square
and every integer which is non square is also non zero.

Now we state the propositions:

(5) Let us consider integers a, b, c, d. If a | b and c | d, then a · c | b · d.
(6) Let us consider integers a, b. Then a | b if and only if lcm(a, b) = |b|.
Proof: If a | b, then lcm(a, b) = |b| by [8, (16)], [7, (44)]. �

Let a be an integer. Observe that lcm(a, 0) reduces to 0.
Let a be a natural number. Note that lcm(a, 1) reduces to a.
Let us consider a and b. Let us observe that lcm(a · b, a) reduces to a · b and

lcm(gcd(a, b), b) reduces to b and gcd(a, lcm(a, b)) reduces to a.
Let us consider integers a, b. Now we state the propositions:

(7) |a · b| = (gcd(a, b)) · lcm(a, b).

(8) lcm(an, bn) = lcm(a, b)n. The theorem is a consequence of (4) and (7).

Let a be a square element of N and b be a square element of N. One can
check that gcd(a, b) is square and lcm(a, b) is square.

Let a, b be square integers. One can verify that gcd(a, b) is square and
lcm(a, b) is square.

Now we state the proposition:

(9) Let us consider an integer t. Then t is odd if and only if gcd(t, 2) = 1.
Proof: If t is odd, then gcd(t, 2) = 1 by [13, (1)], [14, (5)]. �

Let t be an integer. One can check that t is odd if and only if the condition
(Def. 5) is satisfied.

(Def. 5) gcd(t, 2) = 1.

Let a be an odd integer. Let us observe that |a| is odd and −a is odd.
Let a, b be even integers. Note that gcd(a, b) is even.
Let a be an integer and b be an odd integer. Note that gcd(a, b) is odd.
Let a be a natural number. One can check that |−a| reduces to a.
Let t, z be even integers. One can check that t+ z is even and t− z is even

and t · z is even.
Let t, z be odd integers. Note that t+ z is even and t− z is even and t · z is

odd.
Let t be an odd integer and z be an even integer. Let us observe that t+ z

is odd and t− z is odd and t · z is even.
Now we state the proposition:
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(10) Let us consider a non zero, square integer a, and an integer b. If a · b is
square, then b is square.

Let a be a square element of N and n be a natural number. Let us observe
that an is square.

Let a be a square integer. Note that an is square.
Let a be a non zero, square integer and b be a non square integer. Let us

note that a · b is non square.
Let a be an element of N and b be an even natural number. Note that ab is

square.
Let a be a non square element of N and b be an odd natural number. Note

that ab is non square.
Let a be a non zero, square integer. Note that a+ 1 is non square.
Let a be a non zero, square element of N. Let us observe that a + 1 is non

square.
Let a be a non zero, square object and b be a non square element of N. Let

us observe that a · b is non square.
Let a be a non zero, square integer and n, m be natural numbers. Let us

observe that an + am is non square.
Let a be a non zero, square element of N. Let us note that an + am is non

square.
Let a be a non zero, square integer and p be a prime natural number. Note

that p · a is non square.
Let a be a non trivial element of N. One can verify that a− 1 is non zero.
Let q be a square integer. Let us observe that |q| is square.
Let x be a non zero integer. Let us observe that |x| is non zero.
Let a be a non trivial, square element of N. Let us observe that a− 1 is non

square.
Let a be a non trivial element of N. Let us note that a · (a−1) is non square.
Let a, b be integers and n, m be natural numbers. One can verify that

(an + bn) · (am − bm) + (am + bm) · (an − bn) is even and (an + bn) · (am + bm) +
(am − bm) · (an − bn) is even.

Let a be an even integer. Let us note that a2 is integer.
Let a, b be non zero natural numbers. Note that a+ b is non trivial.
Let b be a non zero natural number and a, c be non trivial natural numbers.

Let us observe that c-count(ca-count(b)) reduces to a-count(b).
Let a, b be non zero integers. Let us note that a

gcd(a,b) is integer and lcm(a,b)
b

is integer and lcm(a,b)
gcd(a,b) is integer.

Let a be an even integer. One can verify that gcd(a, 2) reduces to 2.
Let us observe that there exists an even natural number which is non zero.
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Let a be an even integer and n be a non zero natural number. Let us observe
that a · n is even and an is even.

Let a be an integer and n be a zero natural number. One can check that a ·n
is even and an is odd.

Let a be an element of N. Note that |a| reduces to a.
One can check that every integer which is non negative is also natural.
Let a be a non negative real number and n be a non zero natural number.

Let us note that n
√
an reduces to a and (n

√
a )n reduces to a.

Now we state the propositions:

(11) If a - b, then a · c - b.
(12) Let us consider non negative real numbers a, b, and a positive natural

number n. Then an = bn if and only if a = b.

Let a be a real number and n be an even natural number. One can verify
that an is non negative.

Let a be a negative real number and n be an odd natural number. One can
verify that an is negative.

Now we state the propositions:

(13) Let us consider real numbers a, b, and an odd natural number n. Then
an = bn if and only if a = b. The theorem is a consequence of (12).

(14) If a and b are relatively prime, then for every non zero natural number
n, a · b = cn iff n

√
a, n
√
b ∈ N and c = n

√
a · n
√
b.

Proof: If a · b = cn, then n
√
a, n
√
b ∈ N and c = n

√
a · n
√
b by [14, (30)], [11,

(11)], [1, (14)]. �

(15) Let us consider a non zero natural number n, an integer a, and an integer
b. Then bn | an if and only if b | a.
Proof: If bn | an, then b | a by [10, (1)], [14, (3)], (4), [5, (3)]. �

(16) Let us consider an integer a, and natural numbers m, n. If m ­ n, then
an | am.

(17) Let us consider integers a, b. If a | b and bm | c, then am | c. The theorem
is a consequence of (4).

(18) Let us consider integers a, p. If p2·n+k | a2, then pn | a. The theorem is
a consequence of (16), (4), and (12).

(19) Let us consider odd, square elements a, b of N. Then 8 | a− b.
Let us consider odd natural numbers a, b. Now we state the propositions:

(20) If 4 | a− b, then 4 - an + bn.

(21) If 4 | an + bn, then 4 - a2·n + b2·n.

(22) If 4 | an − bn, then 4 - a2·n + b2·n.
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(23) Let us consider odd natural numbers a, b. If 2m | an − bn, then 2m+1 |
a2·n − b2·n.

(24) a13− b13 = (a1− b1) · (a12 + b12 + a1 · b1). The theorem is a consequence
of (2).

(25) Let us consider an odd natural number n. Then 3 | an + bn if and only
if 3 | a+ b.
Proof: Consider k such that n = 2 · k+ 1. If 3 | an+ bn, then 3 | a+ b by
[14, (173)], [5, (4)], [8, (1), (10)]. �

(26) Let us consider an integer c. If c | a− b, then c | an − bn.
(27) Let us consider an odd natural number n. Then 3 | an − bn if and only

if 3 | a− b.
Proof: Consider k such that n = 2 · k+ 1. If 3 | an− bn, then 3 | a− b by
[14, (173)], [8, (10)], [5, (4)], [8, (1)]. �

(28) Let us consider a natural number n. Then an ≡ (a− b)n (mod b).

(29) Let us consider a non trivial natural number a. Then there exists a prime
natural number n such that n | a.

(30) Let us consider a prime natural number p. If p | (p+(k+1))·(p−(k+1)),
then k + 1 ­ p.

(31) Let us consider a prime natural number p, and a non zero natural number
k. If k < p, then p - p2 − k2. The theorem is a consequence of (30).

(32) Let us consider integers a, b, and an odd, prime natural number p. If
p - b, then if p | a− b, then p - a+ b.

(33) Let us consider a non zero, square element a of N, and a prime natural
number p. If p | a, then a+ p is not square.

(34) Let us consider a non zero, square element a of N, and a prime natural
number p. If a+ p is square, then p = 2 ·

√
a+ 1.

(35) Let us consider integers a, b, c. Suppose a and b are relatively prime.
Then gcd(c, a · b) = (gcd(c, a)) · (gcd(c, b)).

(36) Let us consider a prime natural number p. If a | pn, then there exists k
such that a = pk.

Let us consider non zero natural numbers a, b and a prime natural number
p. Now we state the propositions:

(37) If a+ b = p, then a and b are relatively prime.

(38) If an + bn = pn, then a and b are relatively prime.

(39) Let us consider non zero natural numbers a, b. If c ­ a + b, then ck+1 ·
(a+ b) > ak+2 + bk+2.
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(40) Let us consider natural numbers a, c, and a non zero natural number b.
If a · b < c < a · (b+ 1), then a - c and c - a.

(41) Let us consider real numbers a, b. Then a+ b = min(a, b) + max(a, b).

(42) Let us consider non negative real numbers a, b. Then

(i) max(an, bn) = (max(a, b))n, and

(ii) min(an, bn) = (min(a, b))n.

(43) Let us consider a prime natural number p. Suppose a ·b = pn. Then there
exist natural numbers k, l such that

(i) a = pk, and

(ii) b = pl, and

(iii) k + l = n.

(44) Let us consider non trivial natural numbers a, b. If a and b are relatively
prime, then a - b and b - a.

(45) Let us consider a non trivial natural number a, and a prime natural
number p. If p > a, then p - a and a - p. The theorem is a consequence of
(44).

(46) Let us consider a prime natural number p. Then

(i) gcd(a, p) = 1, or

(ii) gcd(a, p) = p.

(47) Let us consider a non trivial natural number a, and a prime natural
number p. If a | pn, then p | a. The theorem is a consequence of (46).

(48) Let us consider odd natural numbers a, b, and an even natural number
m. Then 2-count(am + bm) = 1.

(49) Let us consider a non zero natural number a. Then there exists an odd
natural number k such that a = 22-count(a) · k.

(50) Let us consider a non zero natural number b. Suppose a > b. Then there
exists a prime natural number p such that p-count(a) > p-count(b).
Proof: If for every prime natural number p, p-count(a) ¬ p-count(b),
then a ¬ b by [12, (20)], [1, (14)]. �

(51) Let us consider natural numbers a, b, c. Suppose a 6= 1 and b 6= 0 and
c 6= 0 and b > a-count(c). Then ab - c. The theorem is a consequence of
(11).

Let us consider a non zero integer b and an integer a. Now we state the
propositions:

(52) If |a| 6= 1, then a|a|-count(|b|) | b and a(|a|-count(|b|))+1 - b.
(53) If |a| 6= 1, then if an | b and an+1 - b, then n = |a|-count(|b|).
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(54) Let us consider a non zero natural number b, and a non trivial natural
number a. Then a | b if and only if a-count(gcd(a, b)) = 1.
Proof: If a | b, then a-count(gcd(a, b)) = 1 by [14, (3)], [6, (22)]. �

(55) Let us consider non zero natural numbers b, n, and a non trivial natural
number a. Then a-count(gcd(a, b)) = 1 if and only if an-count((gcd(a, b))n)
= 1. The theorem is a consequence of (15), (54), and (4).

(56) Let us consider a non zero natural number b, and a non trivial natural
number a. Then a-count(gcd(a, b)) = 0 if and only if a-count(gcd(a, b)) 6=
1. The theorem is a consequence of (54).

Let a, b be integers. The functor a-count(b) yielding a natural number is
defined by the term

(Def. 6) |a|-count(|b|).
Let a be an integer. Assume |a| 6= 1. Let b be a non zero integer. One can

check that the functor a-count(b) is defined by

(Def. 7) ait | b and ait+1 - b.
Now we state the propositions:

(57) Let us consider a prime natural number p, and non zero integers a, b.
Then p-count(a · b) = (p-count(a)) + (p-count(b)).

(58) Let us consider a non trivial natural number a, and a non zero natural
number b. Then aa-count(b) ¬ b.

(59) Let us consider a non trivial natural number a, and a non zero integer
b. Then an | b if and only if n ¬ a-count(b).
Proof: If an | b, then n ¬ a-count(b) by [8, (9)], [7, (89)], [1, (13)]. If
an - b, then a-count(b) < n by [8, (9)], [7, (89)]. �

(60) Let us consider a non trivial natural number a, a non zero integer b,
and a non zero natural number n. Then n · (a-count(b)) ¬ a-count(bn) <
n · ((a-count(b)) + 1). The theorem is a consequence of (4) and (59).

(61) Let us consider a non trivial natural number a, and non zero natural
numbers b, n. If b < a, then a-count(bn) < n. The theorem is a consequence
of (60).

(62) Let us consider a non trivial natural number a, and a non zero natural
number b. If b < an, then a-count(b) < n. The theorem is a consequence
of (59).

(63) Let us consider non zero natural numbers a, b, and a non trivial natural
number n. Then a+ b-count(an + bn) < n. The theorem is a consequence
of (62).

(64) Let us consider non zero natural numbers a, b. Then gcd(a, b) = 1 if and
only if for every non trivial natural number c, (c-count(a))·(c-count(b)) = 0.
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Proof: If gcd(a, b) = 1, then for every non trivial natural number c,
(c-count(a)) · (c-count(b)) = 0 by [6, (27)]. If for every prime natural
number c, (c-count(a)) · (c-count(b)) = 0, then gcd(a, b) = 1 by [6, (27)].
�

Let us consider a non zero, even natural numberm and odd natural numbers
a, b. Now we state the propositions:

(65) If a 6= b, then 2-count(a2·m−b2·m) ­ (2-count(am−bm))+1. The theorem
is a consequence of (12), (23), and (59).

(66) If a 6= b, then 2-count(a2·m−b2·m) = (2-count(am−bm))+1. The theorem
is a consequence of (12), (57), and (48).

Let us consider a prime natural number p and integers a, b. Now we state
the propositions:

(67) If |a| 6= |b|, then p-count(a2 − b2) = (p-count(a− b)) + (p-count(a+ b)).

(68) If |a| 6= |b|, then p-count(a3 − b3) = (p-count(a− b)) + (p-count(a2 + a ·
b+ b2)). The theorem is a consequence of (24).

(69) Let us consider non zero natural numbers a, b. Then a
gcd(a,b) = lcm(a,b)

b .

Let us consider a non zero natural number b. Now we state the propositions:

(70) lcm(a, a · n + b) = ((a·nb ) + 1) · lcm(a, b). The theorem is a consequence
of (69).

(71) lcm(a, (n ·a+1) ·b) = (n ·a+1) · lcm(a, b). The theorem is a consequence
of (70).

(72) Let us consider a non trivial natural number a, and non zero natural
numbers n, b. Then a-count(b) ­ n · (an-count(b)). The theorem is a con-
sequence of (51).

Let us consider odd integers a, b. Now we state the propositions:

(73) 4 | a− b if and only if 4 - a+ b.

(74) 2-count(a2 + b2) = 1. The theorem is a consequence of (5) and (73).

(75) Let us consider a prime natural number p, and natural numbers a, b.
Suppose a 6= b. Then p-count(a+ b) ­ p-count(gcd(a, b)).

(76) Let us consider a non zero integer a, a non trivial natural number b, and
an integer c. If a = bb-count(a) · c, then b - c.

Let a be a non zero integer and b be a non trivial natural number. Let us
note that a

bb-count(a) is integer and a
22-count(a) is integer and a

22-count(a) is odd.
Now we state the proposition:

(77) Let us consider a non zero integer a, and a non trivial natural number
b. Then b-count(a) = 0 if and only if b - a.

Let a be an odd integer. Observe that 2-count(a) is zero.
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Observe that a
22-count(a) reduces to a.

Now we state the propositions:

(78) Let us consider a prime natural number a, a non zero integer b, and
a natural number c. Then a-count(bc) = c · (a-count(b)).

(79) Let us consider non zero natural numbers a, b, and an odd natural num-
ber n. Then an+2+bn+2

a+b = an+1 + bn+1 − a · b · (an+bn
a+b ). The theorem is

a consequence of (3).

(80) Let us consider odd integers a, b, and a natural number n.
Then 2-count(a2·n+1 − b2·n+1) = 2-count(a − b). The theorem is a conse-
quence of (13), (2), and (57).

(81) Let us consider odd integers a, b, and an odd natural number m. Then
2-count(am+ bm) = 2-count(a+ b). The theorem is a consequence of (80).

(82) Let us consider odd natural numbers a, b. Suppose a 6= b. Then 1 =
min(2-count(a− b), 2-count(a+ b)).

Let us consider a non trivial natural number a and non zero integers b, c.
Now we state the propositions:

(83) If a-count(b) > a-count(c), then aa-count(c) | b and aa-count(b) - c.
(84) If aa-count(b) | c and aa-count(c) | b, then a-count(b) = a-count(c). The

theorem is a consequence of (83).

(85) Let us consider integers a, b, and natural numbers m, n. If an | b and
am - b, then m > n. The theorem is a consequence of (16).

Let us consider a non trivial natural number a and non zero integers b, c.
Now we state the propositions:

(86) If a-count(b) = a-count(c) and an | b, then an | c. The theorem is
a consequence of (85).

(87) a-count(b) = a-count(c) if and only if for every natural number n, an | b
iff an | c.
Proof: If a-count(b) 6= a-count(c), then there exists a natural number n
such that an | b and an - c or an | c and an - b by (83), [1, (13)], [7, (89)],
[8, (9)]. �

(88) Let us consider odd integers a, b. Suppose |a| 6= |b|. Then

(i) 2-count((a− b)2) 6= 2-count((a+ b)2), and

(ii) 2-count((a− b)2) 6= (2-count(a2))− b2.

The theorem is a consequence of (78), (73), and (87).

(89) Let us consider a non trivial natural number b, and a non zero integer
a. Then b-count(a) 6= 0 if and only if b | a.
Proof: b-count(|a|) 6= 0 iff b | |a| by [6, (27)]. �
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(90) Let us consider a non trivial natural number b, and a non zero natural
number a. Then b-count(a) = 0 if and only if a mod b 6= 0. The theorem
is a consequence of (89).

(91) Let us consider a prime natural number p, and a non trivial natural
number a. Then a-count(p) ¬ 1.

(92) Let us consider non trivial natural numbers a, b, and a non zero natural
number c. Then a(a-count(b))·(b-count(c)) ¬ c. The theorem is a consequence
of (58).

(93) Let us consider a prime natural number p, a non trivial natural number
a, and a non zero natural number b. Then a-count(pb) ¬ b. The theorem
is a consequence of (89) and (59).

(94) Let us consider a prime natural number p, and a non trivial natural num-
ber a. Then (p-count(a))·(a-count(pn)) ¬ n. The theorem is a consequence
of (92).

(95) Let us consider non trivial natural numbers a, b, and a non zero natural
number c. Then (a-count(b)) · (b-count(c)) ¬ a-count(c). The theorem is
a consequence of (17).

(96) Let us consider a non zero natural number a, and an odd natural number
b. Then 2-count(a · b) = 2-count(a).

Let us consider a non trivial natural number a. Now we state the proposi-
tions:

(97) an+1 + an < an+2.

(98) (a+ 1)n + (a+ 1)n < (a+ 1)n+1.

(99) Let us consider a non trivial, odd natural number a. Then an+an < an+1.
The theorem is a consequence of (98).

(100) Let us consider a non trivial natural number p. If a - b, then (pa)c 6= pb.
(101) Let us consider non zero integers a, b, and a non zero natural number n.

Suppose there exists a prime natural number p such that n - p-count(a).
Then a 6= bn.

(102) Let us consider non zero integers a, b, and a non zero natural number
n. Suppose a = bn. Let us consider a prime natural number p. Then
n | p-count(a).

(103) Let us consider positive real numbers a, b, and a non trivial natural
number n. Then (a+ b)n > an+ bn. The theorem is a consequence of (42)
and (41).

(104) Let us consider non zero integers a, b, and an odd, prime natural number
p. Suppose |a| 6= |b| and p - b. Then p-count(a2 − b2) = max(p-count(a −
b), p-count(a+ b)). The theorem is a consequence of (32), (77), and (57).
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(105) Let us consider a non trivial natural number a, and a non zero integer
b. Then a-count(an · b) = n+ (a-count(b)).
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[3] Paul Erdős and János Surányi. Topics in the Theory of Numbers, chapter Divisibility,
the Fundamental Theorem of Number Theory, pages 1–37. Springer New York, 2003.
doi:10.1007/978-1-4613-0015-1 1.

[4] Jacek Gancarzewicz. Arytmetyka. Wydawnictwo UJ, Kraków, 2000. In Polish.
[5] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):

573–577, 1997.
[6] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized
Mathematics, 12(2):179–186, 2004.

[7] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,
1990.

[8] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively
primes. Formalized Mathematics, 1(5):829–832, 1990.

[9] Adam Naumowicz. An example of formalizing recent mathematical results in Mizar.
Journal of Applied Logic, 4(4):396–413, 2006. doi:10.1016/j.jal.2005.10.003. Towards
Computer Aided Mathematics.

[10] Akira Nishino and Yasunari Shidama. The Maclaurin expansions. Formalized Mathema-
tics, 13(3):421–425, 2005.

[11] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized
Mathematics, 2(2):213–216, 1991.

[12] Marco Riccardi. Pocklington’s theorem and Bertrand’s postulate. Formalized Mathema-
tics, 14(2):47–52, 2006. doi:10.2478/v10037-006-0007-y.

[13] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[14] Rafał Ziobro. Fermat’s Little Theorem via divisibility of Newton’s binomial. Formalized
Mathematics, 23(3):215–229, 2015. doi:10.1515/forma-2015-0018.

Received June 30, 2016

The English version of this volume of Formalized Mathematics was financed
under agreement 548/P-DUN/2016 with the funds from the Polish Minister
of Science and Higher Education for the dissemination of science.

http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-1-4613-0015-1_1
http://fm.mizar.org/1997-6/pdf6-4/wsierp_1.pdf
http://fm.mizar.org/2004-12/pdf12-2/nat_3.pdf
http://fm.mizar.org/1990-1/pdf1-5/newton.pdf
http://fm.mizar.org/1990-1/pdf1-5/int_2.pdf
http://fm.mizar.org/1990-1/pdf1-5/int_2.pdf
http://www.sciencedirect.com/science/article/pii/S1570868305000686
http://dx.doi.org/10.1016/j.jal.2005.10.003
http://fm.mizar.org/2005-13/pdf13-3/taylor_2.pdf
http://fm.mizar.org/1991-2/pdf2-2/power.pdf
http://dx.doi.org/10.2478/v10037-006-0007-y
http://fm.mizar.org/1997-6/pdf6-3/abian.pdf
http://dx.doi.org/10.1515/forma-2015-0018

	=0pt Prime Factorization of Sums and Differences of Two Like Powers  By Rafał Ziobro  

