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Summary. Representation of a non zero integer as a signed product of
primes is unique similarly to its representations in various types of positional
notations [4], [3]. The study focuses on counting the prime factors of integers in
the form of sums or differences of two equal powers (thus being represented by 1
and a series of zeroes in respective digital bases).

Although the introduced theorems are not particularly important, they pro-
vide a couple of shortcuts useful for integer factorization, which could serve in
further development of Mizar projects [2]. This could be regarded as one of the
important benefits of proof formalization [9].
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From now on a, b, ¢, d, x, j, k, [, m, n, o denote natural numbers, p, q, t, z,
u, v denote integers, and ap, b1, c1, di denote complexes.
Now we state the propositions:
(1) a™* + byt = qym - (ar* + blk) + bk (0" —a1™).
(2) a"tF — bR = a7 (@ — b ) + 8 (@ = 7).
(3) a2 4 b2 = (a1 +b1) - (a1m+1 + b1m+1) —ay-by-(a™+b™).
Let a be a natural number. Let us note that a is trivial if and only if the
condition (Def. 1) is satisfied.
(Def. 1) a < 1.
Let a be a complex. Let us note that the functor a? yields a set and is defined
by the term
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(Def. 2) a?.
Let a, b be integers. The functors: ged(a,b) and lem(a,b) yielding natural
numbers are defined by terms

(Def. 3)  ged(|al, [b]),
(Def. 4) lem(|al, |b]),

respectively. Let a, b be positive real numbers. Note that max(a,b) is positive
and min(a, b) is positive.

Let a be a non zero integer and b be an integer. One can check that ged(a, b)
is non zero.

Let a be a non zero complex and n be a natural number. Let us observe that
a™ is non zero.

Let a be a non trivial natural number and n be a non zero natural number.
Note that a™ is non trivial.

Let a be an integer. One can check that |a| is natural.

Let a be an even integer. Note that |a| is even.

Let a be a natural number. Let us note that lem(a,a) reduces to a and
ged(a, a) reduces to a.

Let a be a non zero integer and b be an integer. Note that ged(a, b) is positive.

Let a, b be integers. One can check that ged(a, ged(a, b)) reduces to ged(a, b)
and lem(a,lem(a, b)) reduces to lem(a, b).

Let a be an integer. Observe that ged(a, 1) reduces to 1 and ged(a + 1,a)
reduces to 1.

Now we state the proposition:

(4) Let us consider integers ¢, z. Then ged(t", 2™) = (ged(t, 2))".

Let a be an integer and n be a natural number.

One can verify that ged((a + 1)", a™) reduces to 1.

Let us consider a; and b;. One can verify that a;? — b;° reduces to 0.

Let a be a non negative real number and n be a natural number. One can
verify that a™ is non negative and there exists an odd natural number which is
non trivial and there exists an even natural number which is non trivial.

Let a be a positive real number and n be a natural number. One can verify
that a™ is positive.

Let a be an integer. One can verify that a - a is square and £ is square and
there exists an element of N which is non square and every element of N which
is prime is also non square and there exists a prime natural number which is
even and there exists a prime natural number which is odd and every integer
which is prime is also non square.

Let a be a square element of N. Observe that /a is natural.
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Let a be an integer. Let us note that a? is square and a - a is square and
there exists an integer which is non square and every natural number which is
zero is also trivial and there exists a natural number which is square and there
exists an element of N which is non zero and there exists a square element of
N which is non trivial and every natural number which is trivial is also square
and every integer which is non square is also non zero.

Now we state the propositions:

(5) Let us consider integers a, b, ¢, d. If a|band ¢ | d, thena-c|b-d.
(6) Let us consider integers a, b. Then a | b if and only if lem(a,b) = |b|.
PRrROOF: If a | b, then lem(a,b) = |b| by [8, (16)], [7, (44)]. O

Let a be an integer. Observe that lcm(a, 0) reduces to 0.

Let a be a natural number. Note that lem(a, 1) reduces to a.

Let us consider a and b. Let us observe that lem(a - b, a) reduces to a - b and
lem(ged(a, b),b) reduces to b and ged(a,lem(a, b)) reduces to a.

Let us consider integers a, b. Now we state the propositions:

(7) l|a-bl = (ged(a,b)) - lem(a, b).
(8) lem(a™, b™) =lem(a,b)”. The theorem is a consequence of (4) and (7).

Let a be a square element of N and b be a square element of N. One can
check that ged(a, b) is square and lem(a, b) is square.

Let a, b be square integers. One can verify that ged(a,b) is square and
lem(a, b) is square.

Now we state the proposition:

(9) Let us consider an integer ¢. Then ¢ is odd if and only if ged(t,2) = 1.
ProOF: If t is odd, then ged(t,2) =1 by [13] (1)], [14, (5)]. O

Let ¢t be an integer. One can check that ¢ is odd if and only if the condition

(Def. 5) is satisfied.
(Def. 5) ged(t,2) = 1.

Let a be an odd integer. Let us observe that |a| is odd and —a is odd.

Let a, b be even integers. Note that ged(a,b) is even.

Let a be an integer and b be an odd integer. Note that gcd(a, b) is odd.

Let a be a natural number. One can check that |—a| reduces to a.

Let ¢, z be even integers. One can check that ¢t + z is even and t — z is even
and ¢ - z is even.

Let ¢, z be odd integers. Note that ¢t + z is even and ¢ — 7 is even and ¢ - 2 is
odd.

Let t be an odd integer and z be an even integer. Let us observe that ¢ + z
is odd and t — z is odd and ¢ - z is even.

Now we state the proposition:
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(10) Let us consider a non zero, square integer a, and an integer b. If a - b is
square, then b is square.

Let a be a square element of N and n be a natural number. Let us observe
that a™ is square.

Let a be a square integer. Note that a™ is square.

Let a be a non zero, square integer and b be a non square integer. Let us
note that a - b is non square.

Let a be an element of N and b be an even natural number. Note that a® is
square.

Let a be a non square element of N and b be an odd natural number. Note
that a® is non square.

Let a be a non zero, square integer. Note that a + 1 is non square.

Let a be a non zero, square element of N. Let us observe that a 4+ 1 is non
square.

Let a be a non zero, square object and b be a non square element of N. Let
us observe that a - b is non square.

Let a be a non zero, square integer and n, m be natural numbers. Let us
observe that a™ + o' is non square.

Let a be a non zero, square element of N. Let us note that a™ + a™ is non
square.

Let a be a non zero, square integer and p be a prime natural number. Note
that p - a is non square.

Let a be a non trivial element of N. One can verify that a — 1 is non zero.

Let g be a square integer. Let us observe that |g| is square.

Let = be a non zero integer. Let us observe that |z| is non zero.

Let a be a non trivial, square element of N. Let us observe that a — 1 is non
square.

Let a be a non trivial element of N. Let us note that a- (a —1) is non square.

Let a, b be integers and n, m be natural numbers. One can verify that
(@ +0b") - (a™=b")+ (a™+b™) - (a™ —b") is even and (a” +b") - (™ + ™) +
(@™ —=b™) - (a™ —b") is even.

Let a be an even integer. Let us note that § is integer.

Let a, b be non zero natural numbers. Note that a + b is non trivial.

Let b be a non zero natural number and a, ¢ be non trivial natural numbers.
Let us observe that c-count(c?"t(®)) reduces to a-count(b).

Let a, b be non zero integers. Let us note that —%— is integer and

ged(a,b)
lcm(a,b)

ged(a,b)
Let a be an even integer. One can verify that ged(a,2) reduces to 2.

lem(a,b)
b

is integer and is integer.

Let us observe that there exists an even natural number which is non zero.
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Let a be an even integer and n be a non zero natural number. Let us observe
that a - n is even and a” is even.
Let a be an integer and n be a zero natural number. One can check that a-n
is even and a' is odd.
Let a be an element of N. Note that |a| reduces to a.
One can check that every integer which is non negative is also natural.
Let a be a non negative real number and n be a non zero natural number.
Let us note that {/a™ reduces to a and ({/a)" reduces to a.
Now we state the propositions:
(11) Ifatb, then a-ctb.
(12) Let us consider non negative real numbers a, b, and a positive natural
number n. Then o™ = b™ if and only if a = b.
Let a be a real number and n be an even natural number. One can verify
that a™ is non negative.
Let a be a negative real number and n be an odd natural number. One can
verify that a™ is negative.
Now we state the propositions:
(13) Let us consider real numbers a, b, and an odd natural number n. Then
a™ = b" if and only if @ = b. The theorem is a consequence of (12).
(14) 1If a and b are relatively prime, then for every non zero natural number
n,a-b=c"iff Ya, YbeNand c = /a - Vb.
PROOF: If a-b = ¢, then {/a, Vb€ Nand ¢ = {/a- ¥/b by [14] (30)], [11,
(11)], [1L (14)]. O
(15) Let us consider a non zero natural number n, an integer a, and an integer
b. Then 0" | a™ if and only if b | a.
PRrOOF: If b" | a™, then b | a by [10] (1)], [14, (3)], (4), [5, (3)]. O
(16) Let us consider an integer a, and natural numbers m, n. If m > n, then
a | a™.
(17) Let us consider integers a, b. If a | b and b™ | ¢, then a" | ¢. The theorem
is a consequence of (4).
(18) Let us consider integers a, p. If p>*"** | a?, then p™ | a. The theorem is
a consequence of (16), (4), and (12).
(19) Let us consider odd, square elements a, b of N. Then 8 | a — b.
Let us consider odd natural numbers a, b. Now we state the propositions:
(20) If4|a—b, then 41a™+b"™.
(21) If4|a™+b", then 41 a%™ + b>".
(22) If4|a™ —b", then 41 a®™ + b>".
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(23) Let us consider odd natural numbers a, b. If 2™ | a® — b", then 2™+ |
2n 2-n
a“™ = bo".

(24) a1® - bi® = (ay — bi) - (a1? + b2+ a; -b1). The theorem is a consequence
of (2).

(25) Let us consider an odd natural number n. Then 3 | a™ + b™ if and only
if3|a+0.
PRrOOF: Consider k such that n =2-k+1. If 3| a™ + ", then 3 | a+ b by
14, (173)], [5 (4)], 8, (1), (10)]. O

(26) Let us consider an integer c. If ¢ | a — b, then ¢ | a™ — b™.

(27) Let us consider an odd natural number n. Then 3 | ™ — b™ if and only
if3|a—0.
PRrOOF: Consider k such that n =2-k+1. If 3| a™ — ", then 3 | a — b by
[14, (173)], [8, (10)], [55 (4)], [8, (1)]. O

(28) Let us consider a natural number n. Then a" = (a — b)" (modbd).

(29) Let us consider a non trivial natural number a. Then there exists a prime
natural number n such that n | a.

(30) Let us consider a prime natural number p. If p | (p+(k+1))-(p—(k+1)),
then k+1 > p.

(31) Let us consider a prime natural number p, and a non zero natural number
k. If k < p, then p{ p? — k2. The theorem is a consequence of (30).

(32) Let us consider integers a, b, and an odd, prime natural number p. If
p1b, then if p | a — b, then pta+b.

(33) Let us consider a non zero, square element a of N, and a prime natural
number p. If p | a, then a + p is not square.

(34) Let us consider a non zero, square element a of N, and a prime natural
number p. If a + p is square, then p =2 - \/a + 1.

(35) Let us consider integers a, b, c¢. Suppose a and b are relatively prime.
Then ged(c,a - b) = (ged(c, a)) - (ged(e, b)).

(36) Let us consider a prime natural number p. If a | p”, then there exists k

such that a = pF.

Let us consider non zero natural numbers a, b and a prime natural number
p. Now we state the propositions:

(37) If a+ b= p, then a and b are relatively prime.
(38) If a™ +b™ = p", then a and b are relatively prime.

(39) Let us consider non zero natural numbers a, b. If ¢ > a + b, then ¢*+! .
(a4 b) > "2 + pF+2,
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(40) Let us consider natural numbers a, ¢, and a non zero natural number b.
Ifa-b<c<a-(b+1),then atcandcta.

(41) Let us consider real numbers a, b. Then a + b = min(a, b) + max(a, b).
(42) Let us consider non negative real numbers a, b. Then
(i) max(a™,b") = (max(a,b))", and
(ii) min(a™,b") = (min(a,b))".
(43) Let us consider a prime natural number p. Suppose a-b = p™. Then there
exist natural numbers k, [ such that
(i) a =p", and
(ii) b= p', and
(iii) k+1=n.
(44) Let us consider non trivial natural numbers a, b. If a and b are relatively
prime, then a1 b and b1 a.

(45) Let us consider a non trivial natural number a, and a prime natural
number p. If p > a, then pta and a 1 p. The theorem is a consequence of
(44).

(46) Let us consider a prime natural number p. Then

(i) ged(a,p) =1, or
(i) ged(a,p) = p.

(47) Let us consider a non trivial natural number a, and a prime natural
number p. If a | p", then p | a. The theorem is a consequence of (46).
(48) Let us consider odd natural numbers a, b, and an even natural number

m. Then 2-count(a™ + ™) = 1.

(49) Let us consider a non zero natural number a. Then there exists an odd

natural number k such that g = 22-cownt(a) .

(50) Let us consider a non zero natural number b. Suppose a > b. Then there
exists a prime natural number p such that p-count(a) > p-count(b).
PRroor: If for every prime natural number p, p-count(a) < p-count(b),
then a < b by [12, (20)], [1, (14)]. O

(51) Let us consider natural numbers a, b, c. Suppose a # 1 and b # 0 and
c # 0 and b > a-count(c). Then a® { ¢. The theorem is a consequence of
(11).

Let us consider a non zero integer b and an integer a. Now we state the
propositions:

(52) If |a| # 1, then alab<ount(b) | b and qllelcomt(bD)+1 4 p,

(53) If |a| # 1, then if a™ | b and a™*! { b, then n = |a|-count(|b]).
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(54) Let us consider a non zero natural number b, and a non trivial natural
number a. Then a | b if and only if a-count(ged(a,b)) = 1.
PRrROOF: If a | b, then a-count(ged(a, b)) =1 by [14] (3)], [6, (22)]. O

(55) Let us consider non zero natural numbers b, n, and a non trivial natural
number a. Then a-count(ged(a, b)) = 1 if and only if a"-count((ged(a, b))™)
= 1. The theorem is a consequence of (15), (54), and (4).

(56) Let us consider a non zero natural number b, and a non trivial natural
number a. Then a-count(ged(a, b)) = 0 if and only if a-count(ged(a, b)) #
1. The theorem is a consequence of (54).

Let a, b be integers. The functor a-count(b) yielding a natural number is
defined by the term

(Def. 6) |a|-count(|b|).

Let a be an integer. Assume |a| # 1. Let b be a non zero integer. One can
check that the functor a-count(d) is defined by

(Def. 7) a® | b and a*!¢b.
Now we state the propositions:
(57) Let us consider a prime natural number p, and non zero integers a, b.
Then p-count(a - b) = (p-count(a)) + (p-count(b)).
(58) Let us consider a non trivial natural number a, and a non zero natural
number b. Then @ count(®) < p,

(59) Let us consider a non trivial natural number a, and a non zero integer
b. Then a™ | b if and only if n < a-count(b).
PRrOOF: If @™ | b, then n < a-count(b) by [8 (9)], [, (89)], [I, (13)]. If
a™ 1 b, then a-count(b) < n by [8 (9)], [7, (89)]. O

(60) Let us consider a non trivial natural number a, a non zero integer b,
and a non zero natural number n. Then n - (a-count(b)) < a-count(b™) <
n - ((a-count(b)) + 1). The theorem is a consequence of (4) and (59).

(61) Let us consider a non trivial natural number @, and non zero natural
numbers b, n. If b < a, then a-count(b™) < n. The theorem is a consequence
of (60).

(62) Let us consider a non trivial natural number a, and a non zero natural
number b. If b < a”, then a-count(b) < n. The theorem is a consequence
of (59).

(63) Let us consider non zero natural numbers a, b, and a non trivial natural
number n. Then a + b-count(a™ + b"™) < n. The theorem is a consequence
of (62).

(64) Let us consider non zero natural numbers a, b. Then ged(a,b) = 1 if and
only if for every non trivial natural number ¢, (c-count(a))-(c-count(b)) = 0.
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ProoF: If ged(a,b) = 1, then for every non trivial natural number ¢,
(c-count(a)) - (c-count(b)) = 0 by [6, (27)]. If for every prime natural
number ¢, (c-count(a)) - (c-count(b)) = 0, then ged(a,b) = 1 by [6, (27)].
O
Let us consider a non zero, even natural number m and odd natural numbers
a, b. Now we state the propositions:
(65) Ifa # b, then 2-count(a>™—b%™) > (2-count(a™—b"))+1. The theorem
is a consequence of (12), (23), and (59).
(66) If a # b, then 2-count(a®™—b*>™) = (2-count(a™—b"))+1. The theorem
is a consequence of (12), (57), and (48).
Let us consider a prime natural number p and integers a, b. Now we state
the propositions:
(67) If |a| # |b|, then p-count(a® — b?) = (p-count(a — b)) + (p-count(a + b)).
(68) If |a| # |b|, then p-count(a® — b3) = (p-count(a — b)) + (p-count(a® + a -

b+ b%)). The theorem is a consequence of (24).

a _ lem(a,b)
ged(a,b) b

Let us consider a non zero natural number b. Now we state the propositions:
(70) lem(a,a-n+b) = ((%*) + 1) -lem(a,b). The theorem is a consequence
of (69).
(71) lem(a,(n-a+1)-b) = (n-a+1)-lem(a,b). The theorem is a consequence
of (70).
(72) Let us consider a non trivial natural number a, and non zero natural
numbers n, b. Then a-count(b) > n - (a™-count(b)). The theorem is a con-
sequence of (51).

(69) Let us consider non zero natural numbers a, b. Then

Let us consider odd integers a, b. Now we state the propositions:
(73) 4|a—>bif and only if 4t a +b.
(74) 2-count(a® + b?) = 1. The theorem is a consequence of (5) and (73).
(75) Let us consider a prime natural number p, and natural numbers a, b.
Suppose a # b. Then p-count(a + b) > p-count(ged(a, b)).
(76) Let us consider a non zero integer a, a non trivial natural number b, and
an integer c. If @ = b>°°""@) . ¢ then b { c.
Let a be a non zero integer and b be a non trivial natural number. Let us
note that ;i is integer and iy 1s integer and iy is odd.
Now we state the proposition:
(77) Let us consider a non zero integer a, and a non trivial natural number
b. Then b-count(a) = 0 if and only if b1 a.

Let a be an odd integer. Observe that 2-count(a) is zero.
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Observe that o= immy reduces to a.
Now we state the propositions:

(78) Let us consider a prime natural number a, a non zero integer b, and
a natural number ¢. Then a-count(b¢) = ¢ - (a-count(b)).

(79) Let us consider non zero natural numbers a, b, and an odd natural num-

n+2 n+2 n (o .
ber n. Then % =a"t "t — b (“afg ). The theorem is

a consequence of (3).

(80) Let us consider odd integers a, b, and a natural number n.
Then 2-count(a?"! — p2"+1) = 2-count(a — b). The theorem is a conse-
quence of (13), (2), and (57).

(81) Let us consider odd integers a, b, and an odd natural number m. Then
2-count(a™ +b™) = 2-count(a + b). The theorem is a consequence of (80).

(82) Let us consider odd natural numbers a, b. Suppose a # b. Then 1 =
min(2-count(a — b), 2-count(a + b)).
Let us consider a non trivial natural number a¢ and non zero integers b, c.
Now we state the propositions:
(83) If a-count(b) > a-count(c), then a® ™€) | p and a®cot®) 4 ¢,
(84) If a@eowt®) | ¢ and q*°te) | b, then a-count(b) = a-count(c). The
theorem is a consequence of (83).

(85) Let us consider integers a, b, and natural numbers m, n. If a™ | b and
a™ 1 b, then m > n. The theorem is a consequence of (16).

Let us consider a non trivial natural number a¢ and non zero integers b, c.
Now we state the propositions:

(86) If a-count(b) = a-count(c) and a” | b, then a™ | c¢. The theorem is
a consequence of (85).

(87) a-count(b) = a-count(c) if and only if for every natural number n, a” | b
iff a™ | c.
PROOF: If a-count(b) # a-count(c), then there exists a natural number n
such that a | b and a™ { c or a™ | ¢ and a™ t b by (83), [1, (13)], [7, (89)],
8, (9)]. O
(88) Let us consider odd integers a, b. Suppose |a| # |b|. Then
(i) 2-count((a — b)?) # 2-count((a + b)?), and
(i) 2-count((a — b)?) # (2-count(a2)) — b2.
The theorem is a consequence of (78), (73), and (87).

(89) Let us consider a non trivial natural number b, and a non zero integer
a. Then b-count(a) # 0 if and only if b | a.
PROOF: b-count(|a|) # 0 iff b | |a| by [6, (27)]. O
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(90) Let us consider a non trivial natural number b, and a non zero natural
number a. Then b-count(a) = 0 if and only if @ mod b # 0. The theorem
is a consequence of (89).

(91) Let us consider a prime natural number p, and a non trivial natural
number a. Then a-count(p) < 1.

(92) Let us consider non trivial natural numbers a, b, and a non zero natural
number ¢. Then q(e-count(b))-(b-count(c)) . The theorem is a consequence
of (58).

(93) Let us consider a prime natural number p, a non trivial natural number
a, and a non zero natural number b. Then a-count(p®) < b. The theorem
is a consequence of (89) and (59).

(94) Let us consider a prime natural number p, and a non trivial natural num-
ber a. Then (p-count(a))-(a-count(p™)) < n. The theorem is a consequence
of (92).

(95) Let us consider non trivial natural numbers a, b, and a non zero natural
number ¢. Then (a-count(d)) - (b-count(c)) < a-count(c). The theorem is
a consequence of (17).

(96) Let us consider a non zero natural number a, and an odd natural number
b. Then 2-count(a - b) = 2-count(a).
Let us consider a non trivial natural number a. Now we state the proposi-
tions:

(97) a4 a" < a2,
98) (a+1)"+(a+1)" < (a+1)""
(99) Let us consider a non trivial, odd natural number a. Then a"+a" < a™*1.
The theorem is a consequence of (98).
(100) Let us consider a non trivial natural number p. If a { b, then (p®)¢ # p®.

(101) Let us consider non zero integers a, b, and a non zero natural number n.
Suppose there exists a prime natural number p such that n { p-count(a).
Then a # b".

(102) Let us consider non zero integers a, b, and a non zero natural number
n. Suppose a = b". Let us consider a prime natural number p. Then
n | p-count(a).

(103) Let us consider positive real numbers a, b, and a non trivial natural
number n. Then (a + b)" > a™ 4 b™. The theorem is a consequence of (42)
and (41).

(104) Let us consider non zero integers a, b, and an odd, prime natural number
p. Suppose |a| # |b| and p { b. Then p-count(a? — b?) = max(p-count(a —
b), p-count(a + b)). The theorem is a consequence of (32), (77), and (57).
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(105) Let us consider a non trivial natural number a, and a non zero integer
b. Then a-count(a” - b) = n + (a-count(b)).
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