

Prime Factorization of Sums and Differences of Two Like Powers

Rafał Ziobro Department of Carbohydrate Technology University of Agriculture Krakow, Poland

Summary. Representation of a non zero integer as a signed product of primes is unique similarly to its representations in various types of positional notations [4], [3]. The study focuses on counting the prime factors of integers in the form of sums or differences of two equal powers (thus being represented by 1 and a series of zeroes in respective digital bases).

Although the introduced theorems are not particularly important, they provide a couple of shortcuts useful for integer factorization, which could serve in further development of Mizar projects [2]. This could be regarded as one of the important benefits of proof formalization [9].

MSC: 11A51 03B35

Keywords: integers; factorization; primes

 MML identifier: NEWTON03, version: 8.1.05 5.37.1275

From now on a, b, c, d, x, j, k, l, m, n, o denote natural numbers, p, q, t, z, u, v denote integers, and a_1, b_1, c_1, d_1 denote complexes.

Now we state the propositions:

(1) $a_1^{n+k} + b_1^{n+k} = a_1^n \cdot (a_1^k + b_1^k) + b_1^k \cdot (b_1^n - a_1^n).$

(2) $a_1^{n+k} - b_1^{n+k} = a_1^n \cdot (a_1^k - b_1^k) + b_1^k \cdot (a_1^n - b_1^n).$

(3) $a_1^{m+2} + b_1^{m+2} = (a_1 + b_1) \cdot (a_1^{m+1} + b_1^{m+1}) - a_1 \cdot b_1 \cdot (a_1^m + b_1^m).$

Let a be a natural number. Let us note that a is trivial if and only if the condition (Def. 1) is satisfied.

(Def. 1) $a \leq 1$.

Let *a* be a complex. Let us note that the functor a^2 yields a set and is defined by the term

C 2016 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online) (Def. 2) a^2 .

Let a, b be integers. The functors: gcd(a, b) and lcm(a, b) yielding natural numbers are defined by terms

(Def. 3) gcd(|a|, |b|),

(Def. 4) lcm(|a|, |b|),

respectively. Let a, b be positive real numbers. Note that $\max(a, b)$ is positive and $\min(a, b)$ is positive.

Let a be a non zero integer and b be an integer. One can check that gcd(a, b) is non zero.

Let a be a non zero complex and n be a natural number. Let us observe that a^n is non zero.

Let a be a non trivial natural number and n be a non zero natural number. Note that a^n is non trivial.

Let a be an integer. One can check that |a| is natural.

Let a be an even integer. Note that |a| is even.

Let a be a natural number. Let us note that lcm(a, a) reduces to a and gcd(a, a) reduces to a.

Let a be a non zero integer and b be an integer. Note that gcd(a, b) is positive.

Let a, b be integers. One can check that gcd(a, gcd(a, b)) reduces to gcd(a, b)and lcm(a, lcm(a, b)) reduces to lcm(a, b).

Let a be an integer. Observe that gcd(a, 1) reduces to 1 and gcd(a + 1, a) reduces to 1.

Now we state the proposition:

(4) Let us consider integers t, z. Then $gcd(t^n, z^n) = (gcd(t, z))^n$.

Let a be an integer and n be a natural number.

One can verify that $gcd((a+1)^n, a^n)$ reduces to 1.

Let us consider a_1 and b_1 . One can verify that $a_1^0 - b_1^0$ reduces to 0.

Let a be a non negative real number and n be a natural number. One can verify that a^n is non negative and there exists an odd natural number which is non trivial and there exists an even natural number which is non trivial.

Let a be a positive real number and n be a natural number. One can verify that a^n is positive.

Let a be an integer. One can verify that $a \cdot a$ is square and $\frac{a}{a}$ is square and there exists an element of \mathbb{N} which is non square and every element of \mathbb{N} which is prime is also non square and there exists a prime natural number which is even and there exists a prime natural number which is odd and every integer which is prime is also non square.

Let a be a square element of N. Observe that \sqrt{a} is natural.

Let a be an integer. Let us note that a^2 is square and $a \cdot a$ is square and there exists an integer which is non square and every natural number which is zero is also trivial and there exists a natural number which is square and there exists an element of \mathbb{N} which is non zero and there exists a square element of \mathbb{N} which is non trivial and every natural number which is trivial is also square and every integer which is non square is also non zero.

Now we state the propositions:

- (5) Let us consider integers a, b, c, d. If $a \mid b$ and $c \mid d$, then $a \cdot c \mid b \cdot d$.
- (6) Let us consider integers a, b. Then $a \mid b$ if and only if lcm(a, b) = |b|. PROOF: If $a \mid b$, then lcm(a, b) = |b| by [8, (16)], [7, (44)]. \Box

Let a be an integer. Observe that lcm(a, 0) reduces to 0.

Let a be a natural number. Note that lcm(a, 1) reduces to a.

Let us consider a and b. Let us observe that $lcm(a \cdot b, a)$ reduces to $a \cdot b$ and lcm(gcd(a, b), b) reduces to b and gcd(a, lcm(a, b)) reduces to a.

Let us consider integers a, b. Now we state the propositions:

(7) $|a \cdot b| = (\gcd(a, b)) \cdot \operatorname{lcm}(a, b).$

(8) $\operatorname{lcm}(a^n, b^n) = \operatorname{lcm}(a, b)^n$. The theorem is a consequence of (4) and (7).

Let a be a square element of \mathbb{N} and b be a square element of \mathbb{N} . One can check that gcd(a, b) is square and lcm(a, b) is square.

Let a, b be square integers. One can verify that gcd(a, b) is square and lcm(a, b) is square.

Now we state the proposition:

(9) Let us consider an integer t. Then t is odd if and only if gcd(t, 2) = 1. PROOF: If t is odd, then gcd(t, 2) = 1 by [13, (1)], [14, (5)]. \Box

Let t be an integer. One can check that t is odd if and only if the condition (Def. 5) is satisfied.

(Def. 5) gcd(t, 2) = 1.

Let a be an odd integer. Let us observe that |a| is odd and -a is odd.

Let a, b be even integers. Note that gcd(a, b) is even.

Let a be an integer and b be an odd integer. Note that gcd(a, b) is odd.

Let a be a natural number. One can check that |-a| reduces to a.

Let t, z be even integers. One can check that t + z is even and t - z is even and $t \cdot z$ is even.

Let t, z be odd integers. Note that t + z is even and t - z is even and $t \cdot z$ is odd.

Let t be an odd integer and z be an even integer. Let us observe that t + z is odd and t - z is odd and $t \cdot z$ is even.

Now we state the proposition:

(10) Let us consider a non zero, square integer a, and an integer b. If $a \cdot b$ is square, then b is square.

Let a be a square element of \mathbb{N} and n be a natural number. Let us observe that a^n is square.

Let a be a square integer. Note that a^n is square.

Let a be a non zero, square integer and b be a non square integer. Let us note that $a \cdot b$ is non square.

Let a be an element of \mathbb{N} and b be an even natural number. Note that a^b is square.

Let a be a non square element of \mathbb{N} and b be an odd natural number. Note that a^b is non square.

Let a be a non zero, square integer. Note that a + 1 is non square.

Let a be a non zero, square element of \mathbb{N} . Let us observe that a + 1 is non square.

Let a be a non zero, square object and b be a non square element of N. Let us observe that $a \cdot b$ is non square.

Let a be a non zero, square integer and n, m be natural numbers. Let us observe that $a^n + a^m$ is non square.

Let a be a non zero, square element of N. Let us note that $a^n + a^m$ is non square.

Let a be a non zero, square integer and p be a prime natural number. Note that $p \cdot a$ is non square.

Let a be a non trivial element of N. One can verify that a - 1 is non zero.

Let q be a square integer. Let us observe that |q| is square.

Let x be a non zero integer. Let us observe that |x| is non zero.

Let a be a non trivial, square element of N. Let us observe that a - 1 is non square.

Let a be a non trivial element of N. Let us note that $a \cdot (a-1)$ is non square.

Let a, b be integers and n, m be natural numbers. One can verify that $(a^n + b^n) \cdot (a^m - b^m) + (a^m + b^m) \cdot (a^n - b^n)$ is even and $(a^n + b^n) \cdot (a^m + b^m) + (a^m - b^m) \cdot (a^n - b^n)$ is even.

Let a be an even integer. Let us note that $\frac{a}{2}$ is integer.

Let a, b be non zero natural numbers. Note that a + b is non trivial.

Let b be a non zero natural number and a, c be non trivial natural numbers. Let us observe that c-count $(c^{a-\text{count}(b)})$ reduces to a-count(b).

Let a, b be non zero integers. Let us note that $\frac{a}{\gcd(a,b)}$ is integer and $\frac{\operatorname{lcm}(a,b)}{b}$ is integer.

Let a be an even integer. One can verify that gcd(a, 2) reduces to 2.

Let us observe that there exists an even natural number which is non zero.

Let a be an even integer and n be a non zero natural number. Let us observe that $a \cdot n$ is even and a^n is even.

Let a be an integer and n be a zero natural number. One can check that $a \cdot n$ is even and a^n is odd.

Let a be an element of \mathbb{N} . Note that |a| reduces to a.

One can check that every integer which is non negative is also natural.

Let *a* be a non negative real number and *n* be a non zero natural number. Let us note that $\sqrt[n]{a^n}$ reduces to *a* and $(\sqrt[n]{a})^n$ reduces to *a*.

Now we state the propositions:

(11) If $a \nmid b$, then $a \cdot c \nmid b$.

(12) Let us consider non negative real numbers a, b, and a positive natural number n. Then $a^n = b^n$ if and only if a = b.

Let a be a real number and n be an even natural number. One can verify that a^n is non negative.

Let a be a negative real number and n be an odd natural number. One can verify that a^n is negative.

Now we state the propositions:

- (13) Let us consider real numbers a, b, and an odd natural number <math>n. Then $a^n = b^n$ if and only if a = b. The theorem is a consequence of (12).
- (14) If a and b are relatively prime, then for every non zero natural number $n, a \cdot b = c^n$ iff $\sqrt[n]{a}, \sqrt[n]{b} \in \mathbb{N}$ and $c = \sqrt[n]{a} \cdot \sqrt[n]{b}$. PROOF: If $a \cdot b = c^n$, then $\sqrt[n]{a}, \sqrt[n]{b} \in \mathbb{N}$ and $c = \sqrt[n]{a} \cdot \sqrt[n]{b}$ by [14, (30)], [11, (11)], [1, (14)]. \Box
- (15) Let us consider a non zero natural number n, an integer a, and an integer b. Then $b^n \mid a^n$ if and only if $b \mid a$. PROOF: If $b^n \mid a^n$, then $b \mid a$ by [10, (1)], [14, (3)], (4), [5, (3)]. \Box
- (16) Let us consider an integer a, and natural numbers m, n. If $m \ge n$, then $a^n \mid a^m$.
- (17) Let us consider integers a, b. If $a \mid b$ and $b^m \mid c$, then $a^m \mid c$. The theorem is a consequence of (4).
- (18) Let us consider integers a, p. If $p^{2 \cdot n+k} \mid a^2$, then $p^n \mid a$. The theorem is a consequence of (16), (4), and (12).
- (19) Let us consider odd, square elements a, b of \mathbb{N} . Then $8 \mid a b$.

Let us consider odd natural numbers a, b. Now we state the propositions:

- (20) If $4 \mid a b$, then $4 \nmid a^n + b^n$.
- (21) If $4 \mid a^n + b^n$, then $4 \nmid a^{2 \cdot n} + b^{2 \cdot n}$.
- (22) If $4 \mid a^n b^n$, then $4 \nmid a^{2 \cdot n} + b^{2 \cdot n}$.

- (23) Let us consider odd natural numbers a, b. If $2^m | a^n b^n$, then $2^{m+1} | a^{2 \cdot n} b^{2 \cdot n}$.
- (24) $a_1{}^3 b_1{}^3 = (a_1 b_1) \cdot (a_1{}^2 + b_1{}^2 + a_1 \cdot b_1)$. The theorem is a consequence of (2).
- (25) Let us consider an odd natural number n. Then $3 \mid a^n + b^n$ if and only if $3 \mid a + b$. PROOF: Consider k such that $n = 2 \cdot k + 1$. If $3 \mid a^n + b^n$, then $3 \mid a + b$ by [14, (173)], [5, (4)], [8, (1), (10)]. \Box
- (26) Let us consider an integer c. If $c \mid a b$, then $c \mid a^n b^n$.
- (27) Let us consider an odd natural number n. Then $3 \mid a^n b^n$ if and only if $3 \mid a b$. PROOF: Consider k such that $n = 2 \cdot k + 1$. If $3 \mid a^n - b^n$, then $3 \mid a - b$ by $[14, (173)], [8, (10)], [5, (4)], [8, (1)]. \square$
- (28) Let us consider a natural number *n*. Then $a^n \equiv (a-b)^n \pmod{b}$.
- (29) Let us consider a non trivial natural number a. Then there exists a prime natural number n such that $n \mid a$.
- (30) Let us consider a prime natural number p. If $p \mid (p+(k+1)) \cdot (p-(k+1))$, then $k+1 \ge p$.
- (31) Let us consider a prime natural number p, and a non zero natural number k. If k < p, then $p \nmid p^2 k^2$. The theorem is a consequence of (30).
- (32) Let us consider integers a, b, and an odd, prime natural number p. If $p \nmid b$, then if $p \mid a b$, then $p \nmid a + b$.
- (33) Let us consider a non zero, square element a of \mathbb{N} , and a prime natural number p. If $p \mid a$, then a + p is not square.
- (34) Let us consider a non zero, square element a of \mathbb{N} , and a prime natural number p. If a + p is square, then $p = 2 \cdot \sqrt{a} + 1$.
- (35) Let us consider integers a, b, c. Suppose a and b are relatively prime. Then $gcd(c, a \cdot b) = (gcd(c, a)) \cdot (gcd(c, b))$.
- (36) Let us consider a prime natural number p. If $a \mid p^n$, then there exists k such that $a = p^k$.

Let us consider non zero natural numbers a, b and a prime natural number p. Now we state the propositions:

- (37) If a + b = p, then a and b are relatively prime.
- (38) If $a^n + b^n = p^n$, then a and b are relatively prime.
- (39) Let us consider non zero natural numbers a, b. If $c \ge a + b$, then $c^{k+1} \cdot (a+b) > a^{k+2} + b^{k+2}$.

- (40) Let us consider natural numbers a, c, and a non zero natural number b. If $a \cdot b < c < a \cdot (b+1)$, then $a \nmid c$ and $c \nmid a$.
- (41) Let us consider real numbers a, b. Then $a + b = \min(a, b) + \max(a, b)$.
- (42) Let us consider non negative real numbers a, b. Then
 - (i) $\max(a^n, b^n) = (\max(a, b))^n$, and
 - (ii) $\min(a^n, b^n) = (\min(a, b))^n$.
- (43) Let us consider a prime natural number p. Suppose $a \cdot b = p^n$. Then there exist natural numbers k, l such that
 - (i) $a = p^k$, and
 - (ii) $b = p^l$, and
 - (iii) k+l=n.
- (44) Let us consider non trivial natural numbers a, b. If a and b are relatively prime, then $a \nmid b$ and $b \nmid a$.
- (45) Let us consider a non trivial natural number a, and a prime natural number p. If p > a, then $p \nmid a$ and $a \nmid p$. The theorem is a consequence of (44).
- (46) Let us consider a prime natural number p. Then
 - (i) gcd(a, p) = 1, or
 - (ii) gcd(a, p) = p.
- (47) Let us consider a non trivial natural number a, and a prime natural number p. If $a \mid p^n$, then $p \mid a$. The theorem is a consequence of (46).
- (48) Let us consider odd natural numbers a, b, and an even natural number <math>m. Then 2-count $(a^m + b^m) = 1$.
- (49) Let us consider a non zero natural number a. Then there exists an odd natural number k such that $a = 2^{2-\text{count}(a)} \cdot k$.
- (50) Let us consider a non zero natural number b. Suppose a > b. Then there exists a prime natural number p such that p-count(a) > p-count(b). PROOF: If for every prime natural number p, p-count $(a) \leq p$ -count(b), then $a \leq b$ by [12, (20)], [1, (14)]. \Box
- (51) Let us consider natural numbers a, b, c. Suppose $a \neq 1$ and $b \neq 0$ and $c \neq 0$ and b > a-count(c). Then $a^b \nmid c$. The theorem is a consequence of (11).

Let us consider a non zero integer b and an integer a. Now we state the propositions:

- (52) If $|a| \neq 1$, then $a^{|a|-\operatorname{count}(|b|)} \mid b$ and $a^{(|a|-\operatorname{count}(|b|))+1} \nmid b$.
- (53) If $|a| \neq 1$, then if $a^n \mid b$ and $a^{n+1} \nmid b$, then n = |a|-count(|b|).

- (54) Let us consider a non zero natural number b, and a non trivial natural number a. Then $a \mid b$ if and only if a-count(gcd(a, b)) = 1. PROOF: If $a \mid b$, then a-count(gcd(a, b)) = 1 by [14, (3)], [6, (22)]. \Box
- (55) Let us consider non zero natural numbers b, n, and a non trivial natural number a. Then a-count(gcd(a, b)) = 1 if and only if a^n -count((gcd(a, b))ⁿ) = 1. The theorem is a consequence of (15), (54), and (4).
- (56) Let us consider a non zero natural number b, and a non trivial natural number a. Then a-count $(\gcd(a, b)) = 0$ if and only if a-count $(\gcd(a, b)) \neq 1$. The theorem is a consequence of (54).

Let a, b be integers. The functor a-count(b) yielding a natural number is defined by the term

(Def. 6) |a|-count(|b|).

Let a be an integer. Assume $|a| \neq 1$. Let b be a non zero integer. One can check that the functor a-count(b) is defined by

(Def. 7) $a^{it} \mid b$ and $a^{it+1} \nmid b$.

Now we state the propositions:

- (57) Let us consider a prime natural number p, and non zero integers a, b. Then p-count $(a \cdot b) = (p$ -count(a)) + (p-count(b)).
- (58) Let us consider a non trivial natural number a, and a non zero natural number b. Then $a^{a-\operatorname{count}(b)} \leq b$.
- (59) Let us consider a non trivial natural number a, and a non zero integer b. Then $a^n \mid b$ if and only if $n \leq a$ -count(b). PROOF: If $a^n \mid b$, then $n \leq a$ -count(b) by [8, (9)], [7, (89)], [1, (13)]. If $a^n \nmid b$, then a-count(b) < n by [8, (9)], [7, (89)]. \Box
- (60) Let us consider a non trivial natural number a, a non zero integer b, and a non zero natural number n. Then $n \cdot (a - \operatorname{count}(b)) \leq a - \operatorname{count}(b^n) < n \cdot ((a - \operatorname{count}(b)) + 1)$. The theorem is a consequence of (4) and (59).
- (61) Let us consider a non trivial natural number a, and non zero natural numbers b, n. If b < a, then a-count $(b^n) < n$. The theorem is a consequence of (60).
- (62) Let us consider a non trivial natural number a, and a non zero natural number b. If $b < a^n$, then a-count(b) < n. The theorem is a consequence of (59).
- (63) Let us consider non zero natural numbers a, b, and a non trivial natural number n. Then a + b-count $(a^n + b^n) < n$. The theorem is a consequence of (62).
- (64) Let us consider non zero natural numbers a, b. Then gcd(a, b) = 1 if and only if for every non trivial natural number $c, (c-count(a)) \cdot (c-count(b)) = 0$.

PROOF: If gcd(a, b) = 1, then for every non trivial natural number c, $(c\text{-count}(a)) \cdot (c\text{-count}(b)) = 0$ by [6, (27)]. If for every prime natural number c, $(c\text{-count}(a)) \cdot (c\text{-count}(b)) = 0$, then gcd(a, b) = 1 by [6, (27)]. \Box

Let us consider a non zero, even natural number m and odd natural numbers a, b. Now we state the propositions:

- (65) If $a \neq b$, then 2-count $(a^{2 \cdot m} b^{2 \cdot m}) \ge (2$ -count $(a^m b^m)) + 1$. The theorem is a consequence of (12), (23), and (59).
- (66) If $a \neq b$, then 2-count $(a^{2 \cdot m} b^{2 \cdot m}) = (2$ -count $(a^m b^m)) + 1$. The theorem is a consequence of (12), (57), and (48).

Let us consider a prime natural number p and integers a, b. Now we state the propositions:

- (67) If $|a| \neq |b|$, then *p*-count $(a^2 b^2) = (p$ -count(a b)) + (p-count(a + b)).
- (68) If $|a| \neq |b|$, then p-count $(a^3 b^3) = (p$ -count(a b)) + (p-count $(a^2 + a \cdot b + b^2))$. The theorem is a consequence of (24).
- (69) Let us consider non zero natural numbers a, b. Then $\frac{a}{\gcd(a,b)} = \frac{\operatorname{lcm}(a,b)}{b}$. Let us consider a non zero natural number b. Now we state the propositions:
- (70) $\operatorname{lcm}(a, a \cdot n + b) = ((\frac{a \cdot n}{b}) + 1) \cdot \operatorname{lcm}(a, b)$. The theorem is a consequence of (69).
- (71) $\operatorname{lcm}(a, (n \cdot a + 1) \cdot b) = (n \cdot a + 1) \cdot \operatorname{lcm}(a, b)$. The theorem is a consequence of (70).
- (72) Let us consider a non trivial natural number a, and non zero natural numbers n, b. Then a-count $(b) \ge n \cdot (a^n$ -count(b)). The theorem is a consequence of (51).

Let us consider odd integers a, b. Now we state the propositions:

- (73) $4 \mid a b$ if and only if $4 \nmid a + b$.
- (74) 2-count $(a^2 + b^2) = 1$. The theorem is a consequence of (5) and (73).
- (75) Let us consider a prime natural number p, and natural numbers a, b. Suppose $a \neq b$. Then p-count $(a + b) \ge p$ -count $(\gcd(a, b))$.
- (76) Let us consider a non zero integer a, a non trivial natural number b, and an integer c. If $a = b^{b-\text{count}(a)} \cdot c$, then $b \nmid c$.

Let *a* be a non zero integer and *b* be a non trivial natural number. Let us note that $\frac{a}{b^{b-\operatorname{count}(a)}}$ is integer and $\frac{a}{2^{2-\operatorname{count}(a)}}$ is integer and $\frac{a}{2^{2-\operatorname{count}(a)}}$ is odd.

Now we state the proposition:

(77) Let us consider a non zero integer a, and a non trivial natural number b. Then b-count(a) = 0 if and only if $b \nmid a$.

Let a be an odd integer. Observe that 2-count(a) is zero.

Observe that $\frac{a}{2^{2-\text{count}(a)}}$ reduces to a. Now we state the propositions:

- (78) Let us consider a prime natural number a, a non zero integer b, and a natural number c. Then a-count $(b^c) = c \cdot (a$ -count(b)).
- (79) Let us consider non zero natural numbers a, b, and an odd natural number n. Then $\frac{a^{n+2}+b^{n+2}}{a+b} = a^{n+1} + b^{n+1} a \cdot b \cdot (\frac{a^n+b^n}{a+b})$. The theorem is a consequence of (3).
- (80) Let us consider odd integers a, b, and a natural number n. Then 2-count $(a^{2 \cdot n+1} - b^{2 \cdot n+1}) = 2$ -count(a - b). The theorem is a consequence of (13), (2), and (57).
- (81) Let us consider odd integers a, b, and an odd natural number <math>m. Then $2\operatorname{-count}(a^m + b^m) = 2\operatorname{-count}(a + b)$. The theorem is a consequence of (80).
- (82) Let us consider odd natural numbers a, b. Suppose $a \neq b$. Then $1 = \min(2\operatorname{-count}(a-b), 2\operatorname{-count}(a+b))$.

Let us consider a non trivial natural number a and non zero integers b, c. Now we state the propositions:

- (83) If a-count(b) > a-count(c), then a^{a -count $(c)} | b$ and a^{a -count $(b)} \nmid c$.
- (84) If $a^{a-\operatorname{count}(b)} \mid c$ and $a^{a-\operatorname{count}(c)} \mid b$, then $a\operatorname{-count}(b) = a\operatorname{-count}(c)$. The theorem is a consequence of (83).
- (85) Let us consider integers a, b, and natural numbers m, n. If $a^n \mid b$ and $a^m \nmid b$, then m > n. The theorem is a consequence of (16).

Let us consider a non trivial natural number a and non zero integers b, c. Now we state the propositions:

- (86) If a-count(b) = a-count(c) and $a^n \mid b$, then $a^n \mid c$. The theorem is a consequence of (85).
- (87) a-count(b) = a-count(c) if and only if for every natural number $n, a^n \mid b$ iff $a^n \mid c$.

PROOF: If a-count $(b) \neq a$ -count(c), then there exists a natural number n such that $a^n \mid b$ and $a^n \nmid c$ or $a^n \mid c$ and $a^n \nmid b$ by (83), [1, (13)], [7, (89)], [8, (9)]. \Box

- (88) Let us consider odd integers a, b. Suppose $|a| \neq |b|$. Then
 - (i) $2\text{-count}((a-b)^2) \neq 2\text{-count}((a+b)^2)$, and
 - (ii) 2-count $((a-b)^2) \neq (2$ -count $(a^2)) b^2$.

The theorem is a consequence of (78), (73), and (87).

(89) Let us consider a non trivial natural number b, and a non zero integer a. Then b-count $(a) \neq 0$ if and only if $b \mid a$. PROOF: b-count $(|a|) \neq 0$ iff $b \mid |a|$ by [6, (27)]. \Box

- (90) Let us consider a non trivial natural number b, and a non zero natural number a. Then b-count(a) = 0 if and only if $a \mod b \neq 0$. The theorem is a consequence of (89).
- (91) Let us consider a prime natural number p, and a non trivial natural number a. Then a-count $(p) \leq 1$.
- (92) Let us consider non trivial natural numbers a, b, and a non zero natural number c. Then $a^{(a-\operatorname{count}(b))\cdot(b-\operatorname{count}(c))} \leq c$. The theorem is a consequence of (58).
- (93) Let us consider a prime natural number p, a non trivial natural number a, and a non zero natural number b. Then a-count $(p^b) \leq b$. The theorem is a consequence of (89) and (59).
- (94) Let us consider a prime natural number p, and a non trivial natural number a. Then $(p-\operatorname{count}(a)) \cdot (a-\operatorname{count}(p^n)) \leq n$. The theorem is a consequence of (92).
- (95) Let us consider non trivial natural numbers a, b, and a non zero natural number c. Then $(a-\operatorname{count}(b)) \cdot (b-\operatorname{count}(c)) \leq a-\operatorname{count}(c)$. The theorem is a consequence of (17).
- (96) Let us consider a non zero natural number a, and an odd natural number b. Then 2-count $(a \cdot b) = 2$ -count(a).

Let us consider a non trivial natural number a. Now we state the propositions:

- $(97) \quad a^{n+1} + a^n < a^{n+2}.$
- (98) $(a+1)^n + (a+1)^n < (a+1)^{n+1}.$
- (99) Let us consider a non trivial, odd natural number a. Then $a^n + a^n < a^{n+1}$. The theorem is a consequence of (98).
- (100) Let us consider a non trivial natural number p. If $a \nmid b$, then $(p^a)^c \neq p^b$.
- (101) Let us consider non zero integers a, b, and a non zero natural number n. Suppose there exists a prime natural number p such that $n \nmid p$ -count(a). Then $a \neq b^n$.
- (102) Let us consider non zero integers a, b, and a non zero natural number n. Suppose $a = b^n$. Let us consider a prime natural number p. Then $n \mid p$ -count(a).
- (103) Let us consider positive real numbers a, b, and a non trivial natural number n. Then $(a + b)^n > a^n + b^n$. The theorem is a consequence of (42) and (41).
- (104) Let us consider non zero integers a, b, and an odd, prime natural number <math>p. Suppose $|a| \neq |b|$ and $p \nmid b$. Then p-count $(a^2 b^2) = \max(p$ -count(a b), p-count(a + b)). The theorem is a consequence of (32), (77), and (57).

(105) Let us consider a non trivial natural number a, and a non zero integer b. Then a-count $(a^n \cdot b) = n + (a$ -count(b)).

ACKNOWLEDGEMENT: Ad Maiorem Dei Gloriam

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [3] Paul Erdős and János Surányi. Topics in the Theory of Numbers, chapter Divisibility, the Fundamental Theorem of Number Theory, pages 1–37. Springer New York, 2003. doi:10.1007/978-1-4613-0015-1_1.
- [4] Jacek Gancarzewicz. Arytmetyka. Wydawnictwo UJ, Kraków, 2000. In Polish.
- [5] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4): 573–577, 1997.
- [6] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179–186, 2004.
- [7] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
- [8] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.
- [9] Adam Naumowicz. An example of formalizing recent mathematical results in Mizar. *Journal of Applied Logic*, 4(4):396–413, 2006. doi:10.1016/j.jal.2005.10.003. Towards Computer Aided Mathematics.
- [10] Akira Nishino and Yasunari Shidama. The Maclaurin expansions. Formalized Mathematics, 13(3):421-425, 2005.
- [11] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [12] Marco Riccardi. Pocklington's theorem and Bertrand's postulate. Formalized Mathematics, 14(2):47–52, 2006. doi:10.2478/v10037-006-0007-y.
- [13] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
- [14] Rafał Ziobro. Fermat's Little Theorem via divisibility of Newton's binomial. Formalized Mathematics, 23(3):215–229, 2015. doi:10.1515/forma-2015-0018.

Received June 30, 2016

