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Summary. In this article, we formalize in Mizar [1] the notion of uniform
space introduced by André Weil using the concepts of entourages [2].

We present some results between uniform space and pseudo metric space. We
introduce the concepts of left-uniformity and right-uniformity of a topological
group.

Next, we define the concept of the partition topology. Following the Vlach’s
works [11, 10], we define the semi-uniform space induced by a tolerance and the
uniform space induced by an equivalence relation.

Finally, using mostly Gehrke, Grigorieff and Pin [4] works, a Pervin uniform
space defined from the sets of the form ((X \A)× (X \A))∪ (A×A) is presented.
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1. Preliminaries

From now on X denotes a set, D denotes a partition of X, T denotes a non
empty topological group, and A denotes a subset of X.

Now we state the propositions:

(1) A×A ∪ (X \A)× (X \A) ⊆ (X \A)×X ∪X ×A.

(2) {1, 2, 3} \ {1} = {2, 3}.
(3) Suppose X = {1, 2, 3} and A = {1}. Then

(i) 〈〈2, 1〉〉 ∈ (X \A)×X ∪X ×A, and

(ii) 〈〈2, 1〉〉 /∈ A×A ∪ (X \A)× (X \A).
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The theorem is a consequence of (2).

(4) Let us consider a subset A of X. Then (A×A∪(X \A)×(X \A))` = A×
A ∪ (X \A)× (X \A).

(5) Let us consider subsets P1, P2 of D. If
⋃
P1 =

⋃
P2, then P1 = P2.

(6) Let us consider a subset P of D. Then
⋃

(D \ P ) =
⋃
D \
⋃
P .

(7) Let us consider an upper family S1 of subsets of X, and an element S of
S1. Then

⋂
S1 ⊆ S.

(8) Let us consider an additive group G, and subsets A, B, C, D of G. If
A ⊆ B and C ⊆ D, then A+ C ⊆ B +D.

Let us consider an element e of T and a neighbourhood V of 1T . Now we
state the propositions:

(9) {e} · V is a neighbourhood of e.

(10) V · {e} is a neighbourhood of e.

(11) Let us consider a neighbourhood V of 1T . Then V −1 is a neighbourhood
of 1T .

2. Uniform Space

A uniform space is an upper, ∩-closed uniform space structure satisfying
axiom U1, axiom U2, and axiom U3. From now on Q denotes a uniform space.

Now we state the propositions:

(12) Q is a quasi-uniform space.

(13) Q is a semi-uniform space.

Let X be a set and B be a family of subsets of X×X. We say that B satisfies
axiom UP2 if and only if

(Def. 1) for every element B1 of B, there exists an element B2 of B such that
B2 ⊆ B1

`.

Now we state the proposition:

(14) Let us consider an empty set X. Then every empty family of subsets
of X ×X is quasi-basis and satisfies axiom UP1, axiom UP2, and axiom
UP3.

One can verify that there exists a uniform space which is strict.
Now we state the proposition:

(15) Let us consider a set X, and a family S1 of subsets of X ×X. Suppose
X = {∅} and S1 = {X ×X}. Then 〈〈X,S1〉〉 is a uniform space.

Let us observe that there exists a strict uniform space which is non empty.
Now we state the proposition:
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(16) Let us consider a set X, and a family B of subsets of X ×X. Suppose B
is quasi-basis and satisfies axiom UP1, axiom UP2, and axiom UP3. Then
there exists a strict uniform space Q such that

(i) the carrier of Q = X, and

(ii) the entourages Q = [B].

3. Open Set and Uniform Space

Now we state the propositions:

(17) Let us consider a non empty uniform space Q. Then

(i) the carrier of the topological space induced by Q = the carrier of Q,
and

(ii) the topology of the topological space induced by Q = the open set
family of the FMTinduced by Q.

(18) Let us consider a non empty uniform spaceQ, and a subset S of the FMT-
induced by Q. Then S is open if and only if for every element x of Q such
that x ∈ S holds S ∈ Neighborhoodx.

(19) Let us consider a non empty uniform space Q. Then the open set family
of the FMTinduced by Q = the set of all O where O is an open subset of
the FMTinduced by Q.

Let us consider a non empty uniform space Q and a subset S of the FMTin-
duced by Q. Now we state the propositions:

(20) S is open if and only if S ∈ the open set family of the FMTinduced by
Q.

(21) S ∈ the open set family of the FMTinduced by Q if and only if for every
element x of Q such that x ∈ S holds S ∈ Neighborhoodx.

4. Pseudo Metric Space and Uniform Space

Let M be a non empty metric structure and r be a positive real number.
The functor ent(M, r) yielding a subset of (the carrier of M) × (the carrier of
M) is defined by the term

(Def. 2) {〈〈x, y〉〉, where x, y are elements of M : ρ(x, y) ¬ r}.

Let M be a non empty, reflexive metric structure. Let us observe that
ent(M, r) is non empty.

Let M be a non empty metric structure. The functor ENT(M) yielding a non
empty family of subsets of (the carrier of M)× (the carrier of M) is defined by
the term
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(Def. 3) the set of all ent(M, r) where r is a positive real number.

The uniformity induced by M yielding a uniform space structure is defined
by the term

(Def. 4) 〈〈the carrier of M, [ENT(M)]〉〉.
Let M be a pseudo metric space. The uniformity induced by M yielding

a non empty, strict uniform space is defined by the term

(Def. 5) 〈〈the carrier of M, [ENT(M)]〉〉.
Let us consider a pseudo metric space M . Now we state the propositions:

(22) The open set family of the FMTinduced by the uniformity induced by
M = the open set family of M .
Proof: SetX = the open set family of the FMTinduced by the uniformity
induced by M . Set Y = the open set family of M . X ⊆ Y by (18), (20), [5,
(11)]. Reconsider t1 = t as a subset of M . For every element x of the uni-
formity induced by M such that x ∈ t1 holds t1 ∈ Neighborhoodx by [5,
(11)]. �

(23) The topological space induced by the uniformity induced by M = Mtop.
The theorem is a consequence of (22).

5. Uniform Space and Topological Group

Let G be a topological group and Q be a neighbourhood of 1G. The functor
leftU(Q) yielding a subset of (the carrier of G)× (the carrier of G) is defined by
the term

(Def. 6) {〈〈x, y〉〉, where x is an element of G, y is an element of G : x−1 · y ∈ Q}.

Let T be a non empty topological group. The functor SleftU(T ) yielding
a non empty family of subsets of (the carrier of T )× (the carrier of T ) is defined
by the term

(Def. 7) the set of all leftU(Q) where Q is a neighbourhood of 1T .

The left-uniformity T yielding a non empty uniform space is defined by the
term

(Def. 8) 〈〈the carrier of T, [SleftU(T )]〉〉.
Let G be a topological group and Q be a neighbourhood of 1G. The functor

rightU(Q) yielding a subset of (the carrier of G)× (the carrier of G) is defined
by the term

(Def. 9) {〈〈x, y〉〉, where x is an element of G, y is an element of G : y · x−1 ∈ Q}.

Let T be a non empty topological group. The functor SrightU(T ) yielding
a non empty family of subsets of (the carrier of T )× (the carrier of T ) is defined
by the term
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(Def. 10) the set of all rightU(Q) where Q is a neighbourhood of 1T .

The right-uniformity T yielding a non empty uniform space is defined by the
term

(Def. 11) 〈〈the carrier of T, [SrightU(T )]〉〉.
Now we state the propositions:

(24) Let us consider a non empty, commutative topological group T , and
a neighbourhood Q of 1T . Then leftU(Q) = rightU(Q).

(25) Let us consider a non empty, commutative topological group T . Then
the left-uniformity T = the right-uniformity T . The theorem is a conse-
quence of (24).

Let G be a semi additive topological group and Q be a neighbourhood of
0G. The functor leftU(Q) yielding a subset of (the carrier of G) × (the carrier
of G) is defined by the term

(Def. 12) {〈〈x, y〉〉, where x is an element of G, y is an element of G : −x+ y ∈ Q}.

Let T be a non empty semi additive topological group. The functor SleftU(T )
yielding a non empty family of subsets of (the carrier of T )× (the carrier of T )
is defined by the term

(Def. 13) the set of all leftU(Q) where Q is a neighbourhood of 0T .

Let T be a non empty topological additive group. The left-uniformity T

yielding a non empty uniform space is defined by the term

(Def. 14) 〈〈the carrier of T, [SleftU(T )]〉〉.
Let G be a semi additive topological group and Q be a neighbourhood of

0G. The functor rightU(Q) yielding a subset of (the carrier of G)× (the carrier
of G) is defined by the term

(Def. 15) {〈〈x, y〉〉, where x is an element of G, y is an element of G : y+−x ∈ Q}.

Let T be a non empty semi additive topological group. The functor SrightU(T )
yielding a non empty family of subsets of (the carrier of T )× (the carrier of T )
is defined by the term

(Def. 16) the set of all rightU(Q) where Q is a neighbourhood of 0T .

Let T be a non empty topological additive group. The right-uniformity T

yielding a non empty uniform space is defined by the term

(Def. 17) 〈〈the carrier of T, [SrightU(T )]〉〉.
Now we state the propositions:

(26) Let us consider an Abelian semi additive topological group T , and a ne-
ighbourhood Q of 0T . Then leftU(Q) = rightU(Q).

(27) Let us consider a non empty topological additive group T . Suppose T
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is Abelian. Then the left-uniformity T = the right-uniformity T . The the-
orem is a consequence of (26).

(28) The topology of the topological space induced by the left-uniformity
T = the topology of T .
Proof: Set X = the topology of FMT2TopSpace(the FMTinduced by
the left-uniformity T ). Set Y = the topology of T . X ⊆ Y by (9), [6, (7)].
Y ⊆ X by [9, (3)], [6, (6)], [8, (6)]. �

(29) The topology of the topological space induced by the right-uniformity
T = the topology of T .
Proof: Set X = the topology of FMT2TopSpace(the FMTinduced by
the right-uniformity T ). Set Y = the topology of T . X ⊆ Y by (10), [6,
(7)]. Y ⊆ X by [9, (3)], [6, (6)], [8, (6)]. �

6. Function Uniformly Continuous

Let Q1, Q2 be uniform space structures and f be a function from Q1 into
Q2. We say that f is uniformly continuous if and only if

(Def. 18) for every element V of the entourages Q2, there exists an element Q of
the entourages Q1 such that for every objects x, y such that 〈〈x, y〉〉 ∈ Q
holds 〈〈f(x), f(y)〉〉 ∈ V .

Let Q1, Q2 be non empty uniform space structures satisfying axiom U1.
One can check that there exists a function from Q1 into Q2 which is uniformly
continuous.

7. Partition Topology

Now we state the propositions:

(30) the set of all
⋃
P where P is a subset of D = UniCl(D).

(31) X ∈ UniCl(D). The theorem is a consequence of (30).

(32) If D = ∅, then X is empty and UniCl(D) = {∅}.
Let X be a set and D be a partition of X. Let us note that UniCl(D) is

∩-closed and UniCl(D) is union-closed and every family of subsets of X which
is union-closed is also ∪-closed.

Let D be a partition of X. Let us note that UniCl(D) is closed for comple-
ment operator and UniCl(D) is ∪-closed and \-closed.

Now we state the proposition:

(33) UniCl(D) is a ring of sets. The theorem is a consequence of (30).
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Let us consider X and D. One can verify that UniCl(D) has the empty
element.

Let X be a set and D be a partition of X. Let us observe that UniCl(D) is
non empty.

Now we state the proposition:

(34) UniCl(D) is a field of subsets of X.

Let X be a set and D be a partition of X. Observe that UniCl(D) is σ-
additive and UniCl(D) is σ-multiplicative.

Now we state the proposition:

(35) UniCl(D) is a σ-field of subsets of X.

Let X be a set and D be a partition of X. Observe that UniCl(D) is closed
for countable unions and closed for countable meets.

Now we state the proposition:

(36) Let us consider a non empty set Ω, and a partition D of Ω. Then
UniCl(D) is a Dynkin system of Ω.

Let X be a set and D be a partition of X. The partition topology D yielding
a topological space is defined by the term

(Def. 19) 〈X,UniCl(D)〉.
Now we state the propositions:

(37) Every open subset of the partition topology D is closed.

(38) Every closed subset of the partition topology D is open.

(39) Let us consider a subset S of the partition topology D. Then S is open
if and only if S is closed.

Let X be a non empty set and D be a partition of X. Observe that the par-
tition topology D is non empty.

Let us consider a non empty set X and a partition D of X. Now we state
the propositions:

(40) LC(the partition topology D) = UniCl(D). The theorem is a consequ-
ence of (38) and (31).

(41) OpenClosedSet(the partition topologyD) = the topology of the partition
topology D. The theorem is a consequence of (37).

8. Uniform Space and Partition Topology

In the sequel R denotes a binary relation on X.
Let X be a set and R be a binary relation on X. The functor ρ(R) yielding

a non empty family of subsets of X ×X is defined by the term
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(Def. 20) {S, where S is a subset of X ×X : R ⊆ S}.

Now we state the propositions:

(42) [ρ(R)] = ρ(R).

(43) [{R}] = ρ(R).

(44) ρ(R) is upper and ∩-closed.

Let us consider X and R. Observe that ρ(R) is quasi-basis.
Now we state the propositions:

(45) Let us consider a total, reflexive binary relation R on X. Then ρ(R)
satisfies axiom UP1.

(46) Let us consider a symmetric binary relation R on X. Then ρ(R) satisfies
axiom UP2.

(47) Let us consider a total, transitive binary relation R on X. Then ρ(R)
satisfies axiom UP3.

Let X be a set and R be a binary relation on X. The uniformity induced by
R yielding an upper, ∩-closed, strict uniform space structure is defined by the
term

(Def. 21) 〈〈X, ρ(R)〉〉.
Now we state the propositions:

(48) Let us consider a set X, and a total, reflexive binary relation R on X.
Then the uniformity induced by R satisfies axiom U1. The theorem is
a consequence of (45).

(49) Let us consider a set X, and a symmetric binary relation R on X. Then
the uniformity induced by R satisfies axiom U2. The theorem is a conse-
quence of (46).

(50) Let us consider a set X, and a total, transitive binary relation R on
X. Then the uniformity induced by R satisfies axiom U3. The theorem is
a consequence of (47).

Let X be a set and R be a tolerance of X. Note that the uniformity induced
by R yields a strict semi-uniform space. Now we state the proposition:

(51) Let us consider a set X, and an equivalence relation R of X. Then
the uniformity induced by R is a uniform space.

Let X be a set and R be an equivalence relation of X. Observe that the uni-
formity induced by R yields a strict uniform space. Let X be a non empty set
and R be a tolerance of X. Let us note that the uniformity induced by R is non
empty and every non empty uniform space is topological.

Let Q be a non empty uniform space. The functor @Q yielding a topological,
non empty uniform space structure satisfying axiom U1 is defined by the term
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(Def. 22) Q.

Now we state the proposition:

(52) Let us consider a non empty set X, and an equivalence relation R of
X. Then the topological space induced by @(the uniformity induced by
R) = the partition topology ClassesR. The theorem is a consequence of
(30) and (18).

9. Uniformity Induced by a Tolerance or by an Equivalence

Now we state the proposition:

(53) Let us consider an upper uniform space structureQ. Suppose
⋂

(the ento-
urages Q) ∈ the entourages Q. Then there exists a binary relation R on
the carrier of Q such that

(i)
⋂

(the entourages Q) = R, and

(ii) the entourages Q = ρ(R).

Proof: Reconsider R =
⋂

(the entourages Q) as a binary relation on
the carrier of Q. ρ(R) ⊆ the entourages Q. The entourages Q ⊆ ρ(R) by
[7, (3)]. �

Let Q be a uniform space structure. The functor Uniformity2InternalRel(Q)
yielding a binary relation on the carrier of Q is defined by the term

(Def. 23)
⋂

(the entourages Q).

The functor UniformSpaceStr2RelStr(Q) yielding a relational structure is
defined by the term

(Def. 24) 〈the carrier of Q,Uniformity2InternalRel(Q)〉.
Let R1 be a relational structure. The functor InternalRel2Uniformity(R1)

yielding a family of subsets of (the carrier of R1)× (the carrier of R1) is defined
by the term

(Def. 25) {R, where R is a binary relation on the carrier of R1 : the internal
relation of R1 ⊆ R}.

The functor RelStr2UniformSpaceStr(R1) yielding a strict uniform space
structure is defined by the term

(Def. 26) 〈〈the carrier of R1, InternalRel2Uniformity(R1)〉〉.
The functor InternalRel2Element(R1) yielding an element of the entourages

RelStr2UniformSpaceStr(R1) is defined by the term

(Def. 27) the internal relation of R1.

Now we state the propositions:

(54) Let us consider a binary relation R on X. Then
⋂
ρ(R) = R.
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(55) Let us consider a strict relational structureR1. Then UniformSpaceStr2−
RelStr(RelStr2UniformSpaceStr(R1)) = R1. The theorem is a consequence
of (54).

(56) Let us consider a uniform space structure Q. Then

(i) the carrier of RelStr2UniformSpaceStr(UniformSpaceStr2RelStr(Q))

= the carrier of Q, and

(ii) the entourages RelStr2UniformSpaceStr(UniformSpaceStr2RelStr

(Q)) = ρ(
⋂

(the entourages Q)).

(57) Let us consider a family S1 of subsets of X ×X, and a binary relation
R on X. If S1 = ρ(R), then S1 ⊆ ρ(

⋂
S1).

(58) Let us consider an upper family S1 of subsets of X × X. If
⋂
S1 ∈ S1,

then ρ(
⋂
S1) ⊆ S1.

(59) Let us consider an upper family S1 of subsets of X × X, and a binary
relation R on X. Suppose R ∈ S1 and S1 = ρ(R) and

⋂
S1 ∈ S1. Then

ρ(
⋂
S1) = S1.

(60) Let us consider an upper uniform space structure Q. Suppose there exists
a binary relation R on the carrier of Q such that the entourages Q = ρ(R)
and
⋂

(the entourages Q) ∈ the entourages Q. Then the entourages Q =
ρ(
⋂

(the entourages Q)). The theorem is a consequence of (57) and (58).

(61) Let us consider an upper uniform space structure Q, and a binary re-
lation R on the carrier of Q. Suppose the entourages Q = ρ(R) and⋂

(the entourages Q) ∈ the entourages Q.
Then the entourages Q = ρ(

⋂
(the entourages Q)).

Let us consider a tolerance R of X. Now we state the propositions:

(62) (i) the uniformity induced by R is a semi-uniform space, and

(ii) the entourages the uniformity induced by R = ρ(R), and

(iii)
⋂

(the entourages the uniformity induced by R) = R.

(63) RelStr2UniformSpaceStr(UniformSpaceStr2RelStr(the uniformity indu-
ced by R)) = the uniformity induced by R. The theorem is a consequence
of (54).

(64) Let us consider an equivalence relationR ofX. Then RelStr2UniformSpa−
ceStr(UniformSpaceStr2RelStr(the uniformity induced byR)) = the unifor-
mity induced by R. The theorem is a consequence of (54).
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10. Uniform Pervin Space

Let X be a set, S1 be a family of subsets of X, and A be an element of S1.
The functor Block(A) yielding a subset of X ×X is defined by the term

(Def. 28) (X \A)× (X \A) ∪A×A.

From now on S1 denotes a family of subsets of X and A denotes an element
of S1.

Now we state the propositions:

(65) If A = ∅, then Block(A) = X ×X.

(66) Suppose X is not empty. Then Block(A) = {〈〈x, y〉〉, where x, y are ele-
ments of X : x ∈ A iff y ∈ A}.
Proof: Set S = {〈〈x, y〉〉, where x, y are elements of X : x ∈ A iff y ∈ A}.
Block(A) ⊆ S by [3, (87)]. S ⊆ Block(A) by [3, (87)]. �

(67) (i) idX ⊆ Block(A), and

(ii) Block(A) · Block(A) ⊆ Block(A).

Let X be a set and S1 be a family of subsets of X. The functor Blocks(S1)
yielding a family of subsets of X ×X is defined by the term

(Def. 29) the set of all Block(A) where A is an element of S1.

Let us observe that Blocks(S1) is non empty.
The functor FMCBlocks(S1) yielding a family of subsets of X×X is defined

by the term

(Def. 30) FinMeetCl(Blocks(S1)).

Now we state the propositions:

(68) FMCBlocks(S1) is ∩-closed.

(69) FMCBlocks(S1) is quasi-basis. The theorem is a consequence of (68).

(70) FMCBlocks(S1) satisfies axiom UP1.

(71) Let us consider an element A of S1, and a binary relation R on X. If
R = Block(A), then R` = Block(A). The theorem is a consequence of
(65) and (4).

(72) Let us consider a binary relation R on X. Suppose R is an element of
Blocks(S1). Then R` is an element of Blocks(S1). The theorem is a con-
sequence of (71).

Let us consider a non empty family Y of subsets of X × X. Now we state
the propositions:

(73) If Y ⊆ Blocks(S1), then Y [∼] = Y. The theorem is a consequence of
(71).
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(74) If Y ⊆ Blocks(S1), then (
⋂
Y )` =

⋂
Y [∼]. The theorem is a consequence

of (73) and (71).

(75) If Y ⊆ Blocks(S1), then
⋂
Y = (

⋂
Y )`. The theorem is a consequence

of (73) and (74).

(76) FMCBlocks(S1) satisfies axiom UP2. The theorem is a consequence of
(73) and (75).

(77) FMCBlocks(S1) satisfies axiom UP3. The theorem is a consequence of
(67).

Let X be a set and S1 be a family of subsets of X. The Pervin uniform space
of S1 yielding a strict uniform space is defined by the term

(Def. 31) 〈〈X, [FMCBlocks(S1)]〉〉.

Acknowledgement: The author wants to express his gratitude to the ano-
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