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Summary. In this article, we formalize in the Mizar system [1, 4] some
properties of vector spaces over a ring. We formally prove the first isomorphism
theorem of vector spaces over a ring. We also formalize the product space of vector
spaces. Z-modules are useful for lattice problems such as LLL (Lenstra, Lenstra
and Lovász) [5] base reduction algorithm and cryptographic systems [6, 2].
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1. Bijective Linear Transformation

From now on K, F denote rings, V , W denote vector spaces over K, l denotes
a linear combination of V , and T denotes a linear transformation from V to W .

Now we state the propositions:

(1) Let us consider a field K, finite dimensional vector spaces V , W over
K, a subset A of V , a basis B of V , a linear transformation T from V to
W , and a linear combination l of B \A. Suppose A is a basis of kerT and
A ⊆ B. Then T (

∑
l) =
∑

(T @∗ l).
(2) Let us consider a field F , vector spaces X, Y over F , a linear transfor-

mation T from X to Y, and a subset A of X. Suppose T is bijective. Then
A is a basis of X if and only if T ◦A is a basis of Y.
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(3) Let us consider a field F , vector spacesX, Y over F , and a linear transfor-
mation T from X to Y. Suppose T is bijective. Then X is finite dimensional
if and only if Y is finite dimensional.

(4) Let us consider a field F , a finite dimensional vector space X over F ,
a vector space Y over F , and a linear transformation T from X to Y.

Suppose T is bijective. Then

(i) Y is finite dimensional, and

(ii) dim(X) = dim(Y ).

Proof: For every basis I of X, dim(Y ) = I . �

(5) Let us consider a field F , vector spaces X, Y over F , a linear combination
l of X, and a linear transformation T from X to Y. If T is one-to-one, then
T @ l = T @∗ l.
Proof: For every element y of Y, (T @ l)(y) =

∑
CFS(l, T, y). �

2. Properties of Linear Combinations of Modules over a Ring

Now we state the proposition:

(6) Let us consider a field K, a vector space V over K, subspaces W1, W2

of V , a basis I1 of W1, and a basis I2 of W2. If V is the direct sum of W1

and W2, then I1 ∩ I2 = ∅.
Let us consider a field K, a vector space V over K, subspaces W1, W2 of

V , a basis I1 of W1, a basis I2 of W2, and a subset I of V . Now we state the
propositions:

(7) Suppose V is the direct sum of W1 and W2 and I = I1 ∪ I2. Then
Lin(I) = the vector space structure of V .
Proof: Reconsider I3 = I1 as a subset of V . Reconsider I4 = I2 as a subset
of V . For every vector x of V , x ∈W1 +W2 iff x ∈ Lin(I3) + Lin(I4). �

(8) If V is the direct sum of W1 and W2 and I = I1 ∪ I2, then I is linearly
independent.
Proof: Consider l being a linear combination of I such that

∑
l = 0V

and the support of l 6= ∅. I1 ∩ I2 = ∅. I1 misses I2. Reconsider I3 = I1,
I4 = I2 as a subset of V . Consider l1 being a linear combination of I3, l2
being a linear combination of I4 such that l = l1 + l2. Reconsider l3 = l1
as a linear combination of I. Set v1 =

∑
l3. v1 6= 0V by [3, (25)]. �

(9) Let us consider a field K, a vector space V over K, subspaces W1, W2

of V , a basis I1 of W1, and a basis I2 of W2. If W1∩W2 = 0V , then I1∪ I2

is a basis of W1 +W2.



Isomorphism theorem on vector spaces over a ring 173

Proof: Set I = I1 ∪ I2. Reconsider W = W1 +W2 as a strict subspace of
V . Reconsider W3 = W1, W4 = W2 as a subspace of W . Reconsider I0 = I

as a subset of W . For every object x, x ∈ W3 ∩W4 iff x ∈ 0V . For every
object x, x ∈W iff x ∈W3 +W4. I0 is base. �

3. First Isomophism Theorem

Let us consider a field K, a finite dimensional vector space V over K, and
a subspace W of V . Now we state the propositions:

(10) There exists a linear complement S of W and there exists a linear trans-
formation T from S to V /W such that T is bijective and for every vector
v of V such that v ∈ S holds T (v) = v +W .
Proof: Set S = the linear complement of W . Set V1 = V /W . Define
P[vector of V, vector of V1] ≡ $2 = $1 + W . Consider f1 being a function
from the carrier of V into the carrier of V1 such that for every vector v
of V , P[v, f1(v)]. Set T = f1�(the carrier of S). For every vector v of V
such that v ∈ S holds T (v) = v+W . The carrier of V1 ⊆ rng T . For every
objects x1, x2 such that x1, x2 ∈ the carrier of S and T (x1) = T (x2) holds
x1 = x2. �

(11) (i) V /W is finite dimensional, and

(ii) dim(V /W ) + dim(W ) = dim(V ).
The theorem is a consequence of (10) and (4).

Let K be a ring, V , U be vector spaces over K, W be a subspace of V , and f
be a linear transformation from V to U . Assume the carrier of W ⊆ the carrier
of ker f . The functor f/W yielding a linear transformation from V /W to U is
defined by

(Def. 1) for every vectorA of V /W and for every vector a of V such thatA = a+W
holds it(A) = f(a).

The functor CQFunctional f yielding a linear transformation from V /ker f to
U is defined by the term

(Def. 2) f/ker f .

Observe that CQFunctional f is one-to-one.
Now we state the proposition:

(12) Let us consider a ring K, vector spaces V , U over K, and a linear trans-
formation f from V to U . Then there exists a linear transformation T

from V /ker f to im f such that

(i) T = CQFunctional f , and

(ii) T is bijective.
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Proof: Set T = CQFunctional f . For every object x, x ∈ rng T iff x ∈
rng f . �

Let K be a ring, V , U , W be vector spaces over K, f be a linear transfor-
mation from V to U , and g be a linear transformation from U to W . One can
verify that the functor g · f yields a linear transformation from V to W .

4. The Product Space of Vector Spaces

Let K be a ring.
A sequence of vector spaces over K is a non empty finite sequence and is

defined by

(Def. 3) for every set S such that S ∈ rng it holds S is a vector space over K.

Note that every sequence of vector spaces over K is Abelian group yielding.
Let G be a sequence of vector spaces over K and j be an element of domG.

One can check that the functor G(j) yields a vector space over K. Let j be
an element of domG. One can verify that the functor G(j) yields a vector space
over K. The functor multopG yielding a multi-operation of the carrier of K and
G is defined by

(Def. 4) len it = lenG and for every element j of domG, it(j) = the left
multiplication of G(j).

The functor
∏
G yielding a strict, non empty vector space structure over K

is defined by the term

(Def. 5) 〈
∏
G,
∏◦〈+Gi〉i, 〈0Gi〉i,

∏◦multopG〉.
Let us note that

∏
G is Abelian, add-associative, right zeroed, right comple-

mentable, vector distributive, scalar distributive, scalar associative, and scalar
unital.

5. Cartesian Product of Vector Spaces

From now on K denotes a ring.
Let K be a ring and G, F be non empty vector space structures over K. The

functor prodmlt(G,F ) yielding a function from (the carrier of K)×((the carrier
of G)× (the carrier of F )) into (the carrier of G)× (the carrier of F ) is defined
by

(Def. 6) for every element r of K and for every vector g of G and for every vector
f of F , it(r, 〈〈g, f〉〉) = 〈〈r · g, r · f〉〉.

The functor G× F yielding a strict, non empty vector space structure over
K is defined by the term
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(Def. 7) 〈(the carrier of G)× (the carrier of F ), prodadd(G,F ),prodzero(G,F ),
prodmlt(G,F )〉.

Let G, F be Abelian, non empty vector space structures over K. Note that
G× F is Abelian.

Let G, F be add-associative, non empty vector space structures over K. One
can verify that G× F is add-associative.

Let G, F be right zeroed, non empty vector space structures over K. One
can verify that G× F is right zeroed.

Let G, F be right complementable, non empty vector space structures over
K. One can check that G× F is right complementable.

Now we state the propositions:

(13) Let us consider non empty vector space structures G, F over K. Then

(i) for every set x, x is a vector of G × F iff there exists a vector x1 of
G and there exists a vector x2 of F such that x = 〈〈x1, x2〉〉, and

(ii) for every vectors x, y of G×F and for every vectors x1, y1 of G and
for every vectors x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉
holds x+ y = 〈〈x1 + y1, x2 + y2〉〉, and

(iii) 0G×F = 〈〈0G, 0F 〉〉, and

(iv) for every vector x of G×F and for every vector x1 of G and for every
vector x2 of F and for every element a of K such that x = 〈〈x1, x2〉〉
holds a · x = 〈〈a · x1, a · x2〉〉.

(14) Let us consider add-associative, right zeroed, right complementable, non
empty vector space structures G, F over K, a vector x of G×F , a vector
x1 of G, and a vector x2 of F . Suppose x = 〈〈x1, x2〉〉. Then −x = 〈〈−x1,

−x2〉〉.
Let K be a ring and G, F be vector distributive, non empty vector space

structures over K. Let us note that G× F is vector distributive.
Let G, F be scalar distributive, non empty vector space structures over K.

One can check that G× F is scalar distributive.
Let G, F be scalar associative, non empty vector space structures over K.

Let us note that G× F is scalar associative.
Let G, F be scalar unital, non empty vector space structures over K. Let us

observe that G× F is scalar unital.
Let G be a vector space over K. One can check that the functor 〈G〉 yields

a sequence of vector spaces over K. Let G, F be vector spaces over K. Let us
note that the functor 〈G,F 〉 yields a sequence of vector spaces over K. Now we
state the proposition:
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(15) Let us consider a vector space X over K. Then there exists a function I
from X into

∏
〈X〉 such that

(i) I is one-to-one and onto, and

(ii) for every vector x of X, I(x) = 〈x〉, and

(iii) for every vectors v, w of X, I(v + w) = I(v) + I(w), and

(iv) for every vector v of X and for every element r of the carrier of K,
I(r · v) = r · I(v), and

(v) I(0X) = 0∏〈X〉.
Proof: Set C3 = the carrier of X. Consider I being a function from C3

into
∏
〈C3〉 such that I is one-to-one and onto and for every object x such

that x ∈ C3 holds I(x) = 〈x〉. For every vectors v, w of X, I(v + w) =
I(v) + I(w). For every vector v of X and for every element r of the carrier
of K, I(r · v) = r · I(v). �

Let K be a ring and G, F be sequences of vector spaces over K. One can
verify that the functor G a F yields a sequence of vector spaces over K. Now
we state the propositions:

(16) Let us consider vector spaces X, Y over K. Then there exists a function
I from X × Y into

∏
〈X,Y 〉 such that

(i) I is one-to-one and onto, and

(ii) for every vector x of X and for every vector y of Y, I(x, y) = 〈x, y〉,
and

(iii) for every vectors v, w of X × Y, I(v + w) = I(v) + I(w), and

(iv) for every vector v of X × Y and for every element r of K, I(r · v) =
r · I(v), and

(v) I(0X×Y ) = 0∏〈X,Y 〉.
Proof: Set C3 = the carrier of X. Set C4 = the carrier of Y. Consider I
being a function from C3 × C4 into

∏
〈C3, C4〉 such that I is one-to-one

and onto and for every objects x, y such that x ∈ C3 and y ∈ C4 holds
I(x, y) = 〈x, y〉. For every vectors v, w of X × Y, I(v +w) = I(v) + I(w).
For every vector v of X×Y and for every element r of K, I(r ·v) = r ·I(v).
�

(17) Let us consider sequences of vector spaces X, Y over K. Then there
exists a function I from

∏
X ×

∏
Y into

∏
(X a Y ) such that

(i) I is one-to-one and onto, and

(ii) for every vector x of
∏
X and for every vector y of

∏
Y, there exist

finite sequences x1, y1 such that x = x1 and y = y1 and I(x, y) =
x1
a y1, and
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(iii) for every vectors v, w of
∏
X ×

∏
Y, I(v + w) = I(v) + I(w), and

(iv) for every vector v of
∏
X×
∏
Y and for every element r of the carrier

of K, I(r · v) = r · I(v), and

(v) I(0∏X×
∏
Y ) = 0∏(XaY ).

Proof: Reconsider C1 = X, C2 = Y as a non-empty, non empty finite
sequence. Consider I being a function from

∏
C1 ×

∏
C2 into

∏
(C1

a C2)
such that I is one-to-one and onto and for every finite sequences x, y such
that x ∈

∏
C1 and y ∈

∏
C2 holds I(x, y) = x a y. Set P1 =

∏
X. Set

P2 =
∏
Y. For every natural number k such that k ∈ domX a Y holds

X a Y (k) = (C1
aC2)(k). For every vector x of

∏
X and for every vector y

of
∏
Y, there exist finite sequences x1, y1 such that x = x1 and y = y1 and

I(x, y) = x1
a y1. For every vectors v, w of P1×P2, I(v+w) = I(v)+I(w).

For every vector v of P1 × P2 and for every element r of the carrier of K,
I(r · v) = r · I(v) by [7, (9)]. �

(18) Let us consider vector spaces G, F over K. Then

(i) for every set x, x is a vector of
∏
〈G,F 〉 iff there exists a vector x1 of

G and there exists a vector x2 of F such that x = 〈x1, x2〉, and

(ii) for every vectors x, y of
∏
〈G,F 〉 and for every vectors x1, y1 of G

and for every vectors x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1,

y2〉 holds x+ y = 〈x1 + y1, x2 + y2〉, and

(iii) 0∏〈G,F 〉 = 〈0G, 0F 〉, and

(iv) for every vector x of
∏
〈G,F 〉 and for every vector x1 of G and for

every vector x2 of F such that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉,
and

(v) for every vector x of
∏
〈G,F 〉 and for every vector x1 of G and for

every vector x2 of F and for every element a of K such that x = 〈x1,

x2〉 holds a · x = 〈a · x1, a · x2〉.
Proof: Consider I being a function from G×F into

∏
〈G,F 〉 such that I is

one-to-one and onto and for every vector x of G and for every vector y of F ,
I(x, y) = 〈x, y〉 and for every vectors v, w of G×F , I(v+w) = I(v)+I(w)
and for every vector v ofG×F and for every element r ofK, I(r·v) = r·I(v)
and 0∏〈G,F 〉 = I(0G×F ). For every set x, x is a vector of

∏
〈G,F 〉 iff there

exists a vector x1 of G and there exists a vector x2 of F such that x = 〈x1,

x2〉. For every vectors x, y of
∏
〈G,F 〉 and for every vectors x1, y1 of G

and for every vectors x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1, y2〉
holds x+ y = 〈x1 + y1, x2 + y2〉. 0∏〈G,F 〉 = 〈0G, 0F 〉. For every vector x of∏
〈G,F 〉 and for every vector x1 of G and for every vector x2 of F such
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that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉. For every vector x of
∏
〈G,F 〉

and for every vector x1 of G and for every vector x2 of F and for every
element a of K such that x = 〈x1, x2〉 holds a · x = 〈a · x1, a · x2〉. �
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Summary. In this article, we formalize in the Mizar system [1, 4] the F.
Riesz theorem. In the first section, we defined Mizar functor ClstoCmp, compact
topological spaces as closed interval subset of real numbers. Then using the former
definition and referring to the article [10] and the article [5], we defined the
normed spaces of continuous functions on closed interval subset of real numbers,
and defined the normed spaces of bounded functions on closed interval subset of
real numbers. We also proved some related properties.

In Sec.2, we proved some lemmas for the proof of F. Riesz theorem. In Sec.3,
we proved F. Riesz theorem, about the dual space of the space of continuous
functions on closed interval subset of real numbers, finally. We applied Hahn-
Banach theorem (36) in [7], to the proof of the last theorem. For the description
of theorems of this section, we also referred to the article [8] and the article [6].
These formalizations are based on [2], [3], [9], and [11].
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1. The Normed Space of Continuous Functions on Closed Interval

Now we state the propositions:

(1) Let us consider a real number d. Then | sgn d| ¬ 1.

(2) Let us consider a real number x. Then |x| = sgnx · x.
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Let A be a non empty, closed interval subset of R. The functor Cls2Cmp(A)
yielding a strict, compact, non empty topological space is defined by

(Def. 1) there exist real numbers a, b such that a ¬ b and [a, b] = A and it =
[a, b]T.

Now we state the propositions:

(3) Let us consider a strict, non empty subspace X of R1, a real map f of
X, a partial function g from R to R, a point x of X, and a real number
x0. Suppose g = f and x = x0. Then for every subset V of R such that
f(x) ∈ V and V is open there exists a subset W of X such that x ∈ W
and W is open and f◦W ⊆ V if and only if g is continuous in x0.

(4) Let us consider a strict, non empty subspace X of R1, a real map f of
X, and a partial function g from R to R. If g = f , then f is continuous iff
g is continuous. The theorem is a consequence of (3).

(5) Let us consider a non empty, closed interval subsetA of R. Then the carrier
of Cls2Cmp(A) = A.

(6) Let us consider a non empty, closed interval subset A of R, and a function
u. Then u is a point of C(Cls2Cmp(A); R) if and only if domu = A and u
is a continuous partial function from R to R. The theorem is a consequence
of (5) and (4).

(7) Let us consider a non empty, closed interval subset A of R, and a po-
int v of C(Cls2Cmp(A); R). Then v ∈ BoundedFunctions(the carrier of
Cls2Cmp(A)).

2. Preliminaries

Now we state the proposition:

(8) Let us consider a non empty, closed interval subset A of R, and real
numbers a, b. Suppose A = [a, b]. Then there exists a function x from
A into BoundedFunctionsA such that for every real number s such that
s ∈ [a, b] holds if s = a, then x(s) = [a, b] 7−→ 0 and if s 6= a, then
x(s) = ([a, s] 7−→ 1)+·(]s, b] 7−→ 0).
Proof: Define C[object] ≡ $1 = a. Define F(object) = [a, b] 7−→ 0. De-
fine G(object) = ([a, $1(∈ R)] 7−→ 1)+·(]$1(∈ R), b] 7−→ 0). Set B =
BoundedFunctionsA. For every object s such that s ∈ [a, b] holds if C[s],
then F(s) ∈ B and if C[s], then G(s) ∈ B. Consider x being a function
from [a, b] into B such that for every object s such that s ∈ [a, b] holds if
C[s], then x(s) = F(s) and if C[s], then x(s) = G(s). For every real number
s such that s ∈ [a, b] holds if s = a, then x(s) = [a, b] 7−→ 0 and if s 6= a,
then x(s) = ([a, s] 7−→ 1)+·(]s, b] 7−→ 0). �
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Let A be a non empty, closed interval subset of R, D be a partition of A,
m be a function from A into BoundedFunctionsA, and i be a natural number.
Assume i ∈ Seg(lenD+ 1). The functor Dp1(m,D, i) yielding a point of the R-
normed algebra of bounded functions on the carrier of Cls2Cmp(A) is defined
by the term

(Def. 2)

{
m(inf A), if i = 1,
m(D(i− 1)), otherwise.

Let % be a function from A into R. The functor Dp2(%,D, i) yielding a real
number is defined by the term

(Def. 3)

{
%(inf A), if i = 1,
%(D(i− 1)), otherwise.

Now we state the propositions:

(9) Let us consider a non empty, closed interval subset A of R, a partition
D of A, a function m from A into BoundedFunctionsA, and a function %

from A into R. Then there exists a finite sequence s of elements of the R-
normed algebra of bounded functions on the carrier of Cls2Cmp(A) such
that

(i) len s = lenD, and

(ii) for every natural number i such that i ∈ dom s holds s(i) = sgn(Dp2(%,

D, i+ 1)−Dp2(%,D, i)) · (Dp1(m,D, i+ 1)−Dp1(m,D, i)).

Proof: Set V = the R-normed algebra of bounded functions on the carrier
of Cls2Cmp(A). Define P[natural number, set] ≡ $2 = sgn(Dp2(%,D, $1 +
1)−Dp2(%,D, $1)) · (Dp1(m,D, $1 +1)−Dp1(m,D, $1)). Consider s being
a finite sequence of elements of V such that dom s = Seg lenD and for
every natural number i such that i ∈ Seg lenD holds P[i, s(i)]. �

(10) Let us consider a real linear space V , a functional f in V , and a finite
sequence s of elements of V . If f is additive, then f(

∑
s) =

∑
(f · s).

Proof: Define P[natural number] ≡ for every real linear space V for
every functional f in V for every finite sequence s of elements of V such
that len s = $1 and f is additive holds f(

∑
s) =

∑
(f · s). P[0]. For every

natural number n such that P[n] holds P[n+1]. For every natural number
n, P[n]. �

(11) Let us consider a non empty set A. Then every element of the R-normed
algebra of bounded functions on A is a function from A into R.

(12) Let us consider a non empty, closed interval subset A of R, a finite
sequence s of elements of the R-normed algebra of bounded functions on
the carrier of Cls2Cmp(A), a finite sequence z of elements of R, a function
g from A into R, and an element t of A. Suppose len s = len z and g =

∑
s
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and for every natural number k such that k ∈ dom z there exists a function
s1 from A into R such that s1 = s(k) and z(k) = s1(t). Then g(t) =

∑
z.

Proof: Define P[natural number] ≡ for every non empty, closed interval
subset A of R for every finite sequence s of elements of the R-normed
algebra of bounded functions on the carrier of Cls2Cmp(A) for every finite
sequence z of elements of R for every function g from A into R for every
element t of A such that len s = $1 and len s = len z and g =

∑
s and

for every natural number k such that k ∈ dom z there exists a function
s1 from A into R such that s1 = s(k) and z(k) = s1(t) holds g(t) =

∑
z.

P[0]. For every natural number n such that P[n] holds P[n+ 1]. For every
natural number n, P[n]. �

(13) Let us consider a non empty, closed interval subset A of R, a partition
D of A, and an element t of A. Suppose inf A < D(1). Then there exists
an element i of N such that

(i) i ∈ domD, and

(ii) t ∈ divset(D, i), and

(iii) i = 1 or inf divset(D, i) < t ¬ sup divset(D, i).

(14) Let us consider a non empty, closed interval subset A of R, a function
% from A into R, and a real number B. Suppose 0 < vol(A). Suppose for
every partition D of A and for every var-volume K of % and D such that
inf A < D(1) holds

∑
K ¬ B. Let us consider a partition D of A, and

a var-volume K of % and D. Then
∑
K ¬ B.

3. F. Riesz Theorem

Now we state the propositions:

(15) Let us consider a non empty, closed interval subset A of R, a function %
from A into R, and a point f of DualSp C(Cls2Cmp(A); R). Suppose % is
bounded-variation and for every continuous partial function u from R to

R such that domu = A holds f(u) =
∫
%

u(x)dx. Then ‖f‖ ¬ TotalVD(%).

Proof: SetX = C(Cls2Cmp(A); R). For every continuous partial function

u from R to R such that u ∈ the carrier of X holds f(u) =
∫
%

u(x)dx. For

every continuous partial function u from R to R and for every point v of

X such that domu = A and u = v holds |
∫
%

u(x)dx| ¬ ‖v‖ · TotalVD(%).

�
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(16) Let us consider a non empty, closed interval subset A of R, and a point
x of DualSp C(Cls2Cmp(A); R). Suppose 0 < vol(A). Then there exists
a function % from A into R such that

(i) % is bounded-variation, and

(ii) for every continuous partial function u from R to R such that domu =

A holds x(u) =
∫
%

u(x)dx, and

(iii) ‖x‖ = TotalVD(%).

Proof: Set X = C(Cls2Cmp(A); R). Set V = the R-normed algebra of
bounded functions on the carrier of Cls2Cmp(A). Set A1 = the carrier of
Cls2Cmp(A).A1 = A. Reconsider h = x as a Lipschitzian linear functional
in X. Consider f being a Lipschitzian linear functional in V , F being
a point of DualSpV such that f = F and f�(the carrier of X) = h and
‖F‖ = ‖x‖. Consider a, b being real numbers such that a ¬ b and [a, b] = A

and Cls2Cmp(A) = [a, b]T. Consider m being a function from A into
BoundedFunctionsA such that for every real number s such that s ∈ [a, b]
holds if s = a, then m(s) = [a, b] 7−→ 0 and if s 6= a, then m(s) =
([a, s] 7−→ 1)+·(]s, b] 7−→ 0). The carrier of V = BoundedFunctionsA.
Reconsider % = f ·m as a function from A into R. For every partition D

of A and for every var-volume K of % and D such that a < D(1) holds∑
K ¬ ‖x‖. For every partition D of A and for every var-volume K of %

and D,
∑
K ¬ ‖x‖. Consider V1 being a non empty subset of R such that

V1 is upper bounded and V1 = {r, where r is a real number : there exists
a partition t of A and there exists a var-volume F0 of % and t such that
r =
∑
F0} and TotalVD(%) = supV1. For every continuous partial function

u from R to R such that domu = A holds x(u) =
∫
%

u(x)dx. ‖x‖ ¬

TotalVD(%). �
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Summary. In this article we further extend the algebraic theory of polyno-
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1. Preliminaries

From now on n denotes a natural number.
Note that there exists a natural number which is non trivial and non prime.
Now we state the proposition:

(1) Let us consider an even natural number n, and an element x of RF. Then
xn  0RF .
Proof: Define P[natural number] ≡ x2·$1  0RF . For every element x of
RF, x2  0RF . For every natural number k, P[k]. �

Let us consider a ring R and an element a of R. Now we state the proposi-
tions:

(2) 2 ? a = a+ a.

(3) a2 = a · a.
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Let F be a field and a be an element of F . Note that a
1F

reduces to a.
One can check that Z/2 is non trivial and almost left invertible.
Let n be a non trivial, non prime natural number. Note that Z/n is non

integral domain-like and Z/6 is non degenerated.

2. Some More Properties of Polynomials

Let R be a non degenerated ring. Observe that every non zero polynomial
over R is non-zero and every polynomial over R which is monic is also non zero.

Let p be a non zero polynomial over R. One can check that deg p is natural.
Let R be a ring, p be a zero polynomial over R, and q be a polynomial over

R. Let us observe that p ∗ q is zero and q ∗ p is zero.
Let us observe that p+ q reduces to q and q + p reduces to q.
Let p be a polynomial over R. One can check that p ∗ 0.R reduces to 0.R

and p ∗ 1.R reduces to p and 0.R ∗ p reduces to 0.R and 1.R ∗ p reduces to p.
One can check that 1R · p reduces to p.
Now we state the propositions:

(4) Let us consider an integral domain R, a polynomial p over R, and a non
zero element a of R. Then deg(a · p) = deg p.

(5) Let us consider an integral domain R, a polynomial p over R, and an ele-
ment a of R. Then LC(a · p) = a · LC p.

(6) Let us consider an integral domain R, and an element a of R. Then
LC(a�R) = a. The theorem is a consequence of (5).

(7) Let us consider an integral domain R, a polynomial p over R, and ele-
ments v, x of R. Then eval(v · p, x) = v · eval(p, x). The theorem is a con-
sequence of (4).

(8) Let us consider a ring R, and elements a, b of R. Then eval(a�R, b) = a.

Let R be an integral domain and p, q be monic polynomials over R. Let us
note that p ∗ q is monic.

Let a be an element of R and k be a natural number. One can check that
(rpoly(1, a))k is non zero and monic.

Now we state the propositions:

(9) Let us consider a non degenerated ring R, an element a of R, and a non
zero element k of N. Then LC rpoly(k, a) = 1R.

(10) Let us consider a non degenerated, well unital, non empty double loop
structure R, and an element a of R. Then 〈−a, 1R〉 = rpoly(1, a).

(11) Let us consider an integral domain R, a polynomial p over R, and an ele-
ment x of R. Then eval(p, x) = 0R if and only if rpoly(1, x) | p.
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(12) Let us consider an integral domain F , polynomials p, q over F , and
an element a of F . Suppose rpoly(1, a) | p ∗ q. Then

(i) rpoly(1, a) | p, or

(ii) rpoly(1, a) | q.
The theorem is a consequence of (11).

(13) Let us consider an integral domain R, a polynomial p over R, and a non
zero polynomial q over R. If p | q, then deg p ¬ deg q.

(14) Let us consider a non degenerated commutative ring R, a polynomial q
over R, a non zero polynomial p over R, and a non zero element b of R. If
q | p, then q | b · p.

(15) Let us consider a field F , a polynomial q over F , a non zero polynomial
p over F , and a non zero element b of F . Then q | p if and only if q | b · p.
The theorem is a consequence of (14).

Let us consider an integral domain R, a non zero polynomial p over R,
an element a of R, and a non zero element b of R. Now we state the propositions:

(16) rpoly(1, a) | p if and only if rpoly(1, a) | b · p. The theorem is a consequ-
ence of (11), (7), and (14).

(17) (rpoly(1, a))n | p if and only if (rpoly(1, a))n | b · p.
Proof: Define P[natural number] ≡ if (rpoly(1, a))$1 | b · p, then
(rpoly(1, a))$1 | p. For every natural number k, P[k]. �

Let R be an integral domain, p be a non zero polynomial over R, and b be
a non zero element of R. Let us note that b · p is non zero.

3. On Roots of Polynomials

Let R be a non degenerated ring. One can check that 1.R and has not roots.
Let a be a non zero element of R. One can verify that a�R and has not

roots and every polynomial over R which is non zero and has roots is also non
constant and every polynomial over R which and has not roots is also non zero.

Let a be an element of R. One can check that rpoly(1, a) is non zero and
has roots and there exists a polynomial over R which is non zero and has not
roots and there exists a polynomial over R which is non zero and has roots.

Let R be an integral domain, p be a polynomial over R with non roots, and
a be a non zero element of R. Let us note that a · p and has not roots.

Let p be a polynomial over R with roots and a be an element of R. Note
that a · p has roots.

Let R be a non degenerated commutative ring and q be a polynomial over
R. One can verify that p ∗ q has roots.



188 christoph schwarzweller

Let R be an integral domain and p, q be polynomials over R with non roots.
One can check that p ∗ q and has not roots.

Let R be a non degenerated commutative ring, a be an element of R, and
k be a non zero element of N. Let us note that rpoly(k, a) is non constant and
monic and has roots.

Let R be a non degenerated ring. Let us observe that there exists a polyno-
mial over R which is non constant and monic.

Let R be an integral domain, a be an element of R, k be a non zero natural
number, and n be a non zero element of N. Note that (rpoly(n, a))k is non
constant and monic and has roots.

Let R be a ring and p be a polynomial over R with roots. Note that Roots(p)
is non empty.

Let R be a non degenerated ring and p be a polynomial over R with non
roots. Let us observe that Roots(p) is empty.

Let R be an integral domain. One can check that there exists a polynomial
over R which is monic and has roots and there exists a polynomial over R which
is monic and has not roots.

Now we state the propositions:

(18) Let us consider a non degenerated ring R, and an element a of R. Then
Roots(rpoly(1, a)) = {a}.

(19) Let us consider an integral domain F , a polynomial p over F , and a non
zero element b of F . Then Roots(b · p) = Roots(p). The theorem is a con-
sequence of (7).

(20) There exist polynomials p, q over Z/6 such that Roots(p∗q) 6⊆ Roots(p)∪
Roots(q).

(21) Let us consider an integral domain R, and elements a, b of R. Then
rpoly(1, a) | rpoly(1, b) if and only if a = b. The theorem is a consequence
of (18).

(22) Let us consider an integral domain R, and a non zero polynomial p over

R. Then Roots(p) ¬ deg p.

4. More about Bags

Let X be a non empty set and B be a bag of X. We introduce the notation
B as a synonym of

∑
B.

Observe that there exists a bag of X which is zero and there exists a bag of
X which is non zero.

Let b1 be a bag of X and b2 be a bag of X. One can check that b1 + b2 is
X-defined and b1 + b2 is total.
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Let us consider a non empty set X and a bag b of X. Now we state the
propositions:

(23) b = 0 if and only if support b = ∅.
(24) b is zero if and only if support b = ∅.
(25) b is zero if and only if rng b = {0}.

Let X be a non empty set, b1 be a non zero bag of X, and b2 be a bag of X.
One can check that b1 + b2 is non zero.

(26) Let us consider a non empty set X, a bag b of X, and an element x of
X. Suppose support b = {x}. Then b = ({x}, b(x)) -bag.

(27) Let us consider a non empty set X, a non empty bag b of X, and an ele-
ment x of X. Then support b = {x} if and only if b = ({x}, b(x)) -bag and
b(x) 6= 0. The theorem is a consequence of (26).

Let X be a set and S be a finite subset of X. The functor Bag(S) yielding
a bag of X is defined by the term

(Def. 1) (S, 1) -bag.

Let X be a non empty set and S be a non empty, finite subset of X. Observe
that Bag(S) is non zero.

Let b be a bag of X and a be an element of X. The functor b \ a yielding
a bag of X is defined by the term

(Def. 2) b+· (a, 0).

Let us consider a non empty set X, a bag b of X, and an element a of X.
Now we state the propositions:

(28) b \ a = b if and only if a /∈ support b.

(29) support(b \ a) = support b \ {a}.
(30) (b \ a) + ({a}, b(a)) -bag = b.

(31) Let us consider a non empty set X, an element a of X, and an element

n of N. Then ({a}, n) -bag = n. The theorem is a consequence of (23).

5. On Multiple Roots of Polynomials

Let R be an integral domain and p be a non zero polynomial over R with
roots. One can verify that BRoots(p) is non zero.

Now we state the propositions:

(32) Let us consider a non degenerated commutative ring R, a non zero po-
lynomial p over R, and an element a of R. Then multiplicity(p, a) = 0 if
and only if rpoly(1, a) - p.
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(33) Let us consider an integral domain R, a non zero polynomial p over
R, and an element a of R. Then multiplicity(p, a) = n if and only if
(rpoly(1, a))n | p and (rpoly(1, a))n+1 - p. The theorem is a consequence
of (10).

(34) Let us consider an integral domain R, and an element a of R. Then
multiplicity(rpoly(1, a), a) = 1. The theorem is a consequence of (13) and
(33).

(35) Let us consider an integral domain R, and elements a, b of R. If b 6= a,
then multiplicity(rpoly(1, a), b) = 0. The theorem is a consequence of (21)
and (32).

(36) Let us consider an integral domain R, a non zero polynomial p over R,
a non zero element b of R, and an element a of R. Then multiplicity(p, a) =
multiplicity(b · p, a). The theorem is a consequence of (33), (14), and (17).

(37) Let us consider an integral domain R, a non zero polynomial p over R,
and a non zero element b of R. Then BRoots(b · p) = BRoots(p). The
theorem is a consequence of (36).

(38) Let us consider an integral domain R, and a non zero polynomial p over
R without roots. Then BRoots(p) = EmptyBag(the carrier of R).

(39) Let us consider an integral domain R, and a non zero element a of R.

Then BRoots(a�R) = 0. The theorem is a consequence of (23).

(40) Let us consider an integral domain R, and an element a of R. Then

BRoots(rpoly(1, a)) = 1. The theorem is a consequence of (10).

(41) Let us consider an integral domain R, and non zero polynomials p, q

over R. Then BRoots(p ∗ q) = BRoots(p) + BRoots(q).

(42) Let us consider an integral domain R, and a non zero polynomial p over

R. Then BRoots(p) ¬ deg p.
Proof: Define P[natural number] ≡ for every non zero polynomial p over

R such that deg p = $1 holds BRoots(p) ¬ deg p. P[0]. For every natural
number k, P[k]. �
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6. The Polynomial Xn + 1

Let R be a unital, non empty double loop structure and n be a natural
number. The functor npoly(R,n) yielding a sequence of R is defined by the
term

(Def. 3) 0.R+·[0 7−→ 1R, n 7−→ 1R].

One can check that npoly(R,n) is finite-Support and npoly(R,n) is non zero.

Let us consider a unital, non degenerated double loop structure R. Now we
state the propositions:

(43) deg npoly(R,n) = n.

(44) LC npoly(R,n) = 1R.

(45) Let us consider a non degenerated ring R, and an element x of R. Then
eval(npoly(R, 0), x) = 1R.

(46) Let us consider a non degenerated ring R, a non zero natural number n,
and an element x of R. Then eval(npoly(R,n), x) = xn + 1R.

Proof: Set q = npoly(R,n). Consider F being a finite sequence of ele-
ments of R such that eval(q, x) =

∑
F and lenF = len q and for every

element j of N such that j ∈ domF holds F (j) = q(j−′1)·powerR(x, j−′1).
Consider f1 being a sequence of the carrier of R such that

∑
F = f1(lenF )

and f1(0) = 0R and for every natural number j and for every element v
of R such that j < lenF and v = F (j + 1) holds f1(j + 1) = f1(j) + v.
Define P[element of N] ≡ $1 = 0 and f1($1) = 0R or 0 < $1 < lenF and
f1($1) = 1R or $1 = lenF and f1($1) = xn + 1R. For every element j of N
such that 0 ¬ j ¬ lenF holds P[j]. �

(47) Let us consider an even natural number n, and an element x of RF.
Then eval(npoly(RF, n), x) > 0RF . The theorem is a consequence of (45),
(1), and (46).

(48) Let us consider an odd natural number n. Then eval(npoly(RF, n),−1RF)

= 0RF . The theorem is a consequence of (46).

(49) eval(npoly(Z/2, 2), 1Z/2) = 0Z/2. The theorem is a consequence of (46)
and (2).

Let n be an even natural number. Let us note that npoly(RF, n) and has not
roots.

Let n be an odd natural number. Observe that npoly(RF, n) has roots and
npoly(Z/2, 2) has roots.
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7. The Polynomials (x− a1) ∗ (x− a2) ∗ . . . ∗ (x− an)

Let R be a ring.
A product of linear polynomials of R is a polynomial over R and is defined

by

(Def. 4) there exists a non empty finite sequence F of elements of PolyRing(R)
such that it =

∏
F and for every natural number i such that i ∈ domF

there exists an element a of R such that F (i) = rpoly(1, a).

Let R be an integral domain. One can verify that every product of linear
polynomials of R is non constant and monic and has roots.

Now we state the propositions:

(50) Let us consider an integral domain R, and a product of linear polyno-
mials p of R. Then LC p = 1R.

(51) Let us consider an integral domain R, and an element a of R. Then
rpoly(1, a) is a product of linear polynomials of R.

(52) Let us consider an integral domain R, and products of linear polynomials
p, q of R. Then p ∗ q is a product of linear polynomials of R.

Let R be an integral domain and B be a non zero bag of the carrier of R.
A product of linear polynomials of R and B is a product of linear polynomials

of R and is defined by

(Def. 5) deg it = B and for every element a of R, multiplicity(it , a) = B(a).

Let us consider an integral domain R, a non zero bag B of the carrier of R,
a product of linear polynomials p of R and B, and an element a of R. Now we
state the propositions:

(53) If a ∈ supportB, then eval(p, a) = 0R. The theorem is a consequence of
(11).

(54) (i) (rpoly(1, a))B(a) | p, and

(ii) (rpoly(1, a))B(a)+1 - p.
The theorem is a consequence of (33).

Let us consider an integral domain R, a non zero bag B of the carrier of R,
and a product of linear polynomials p of R and B. Now we state the propositions:

(55) BRoots(p) = B.

(56) deg p = BRoots(p). The theorem is a consequence of (55).

(57) Let us consider an integral domain R, and an element a of R. Then
rpoly(1, a) is a product of linear polynomials of R and Bag({a}). The
theorem is a consequence of (51), (34), and (35).

(58) Let us consider an integral domain R, non zero bags B1, B2 of the carrier
of R, a product of linear polynomials p of R and B1, and a product of linear
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polynomials q of R and B2. Then p ∗ q is a product of linear polynomials
of R and B1 +B2. The theorem is a consequence of (52), (56), and (55).

(59) Let us consider an integral domain R. Then every product of linear
polynomials of R is a product of linear polynomials of R and BRoots(p).
Proof: Define P[natural number] ≡ for every product of linear polyno-
mials p of R such that deg p = $1 holds p is a product of linear polynomials
of R and BRoots(p). P[1]. For every natural number k such that k  1
holds P[k]. �

Let R be an integral domain and S be a non empty, finite subset of R.
A product of linear polynomials of R and S is a product of linear polynomials

of R and Bag(S). Now we state the proposition:

(60) Let us consider an integral domain R, a non empty, finite subset S of R,
and a product of linear polynomials p of R and S. Then deg p = S .

Let us consider an integral domain R, a non empty, finite subset S of R,
a product of linear polynomials p of R and S, and an element a of R. Now we
state the propositions:

(61) If a ∈ S, then rpoly(1, a) | p and (rpoly(1, a))2 - p. The theorem is
a consequence of (54).

(62) If a ∈ S, then eval(p, a) = 0R. The theorem is a consequence of (61).

(63) Let us consider an integral domain R, a non empty, finite subset S of R,
and a product of linear polynomials p of R and S. Then Roots(p) = S.
The theorem is a consequence of (62), (22), and (60).

8. Main Theorems

Now we state the proposition:

(64) Let us consider an integral domain R, and a non zero polynomial p over
R with roots. Then there exists a product of linear polynomials q of R and
BRoots(p) and there exists a polynomial r over R with non roots such that
p = q ∗ r and Roots(q) = Roots(p).
Proof: Define P[natural number] ≡ for every non zero polynomial p
over R with roots such that deg p = $1 there exists a product of linear
polynomials q of R and BRoots(p) and there exists a polynomial r over R
with non roots such that p = q ∗ r and Roots(q) = Roots(p). P[1] by (11),
[9, (1)], (51), [8, (23), (27), (24)]. For every natural number k such that
1 ¬ k holds P[k]. Consider d being a natural number such that deg p = d.
�

Let us consider an integral domain R and a non zero polynomial p over R.
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(65) Roots(p) ¬ BRoots(p). The theorem is a consequence of (64), (56), (55),
(22), and (38).

(66) BRoots(p) = deg p if and only if there exists an element a of R and
there exists a product of linear polynomials q of R such that p = a · q. The
theorem is a consequence of (64), (56), (55), (59), (4), (37), and (38).

Now we state the proposition:

(67) Let us consider an integral domain R, and polynomials p, q over R.
Suppose there exists a subset S of R such that S = max(deg p,deg q) + 1
and for every element a of R such that a ∈ S holds eval(p, a) = eval(q, a).
Then p = q. The theorem is a consequence of (22).

Let F be an algebraic closed field. Note that every non constant polynomial
over F has roots and RF is non algebraic closed and every finite integral domain
is non algebraic closed and every ring which is algebraic closed is also almost
right invertible.

Now we state the propositions:

(68) Let us consider an algebraic closed field F , and a non constant poly-
nomial p over F . Then there exists an element a of F and there exists
a product of linear polynomials q of F and BRoots(p) such that a · q = p.
The theorem is a consequence of (64).

(69) Let us consider an algebraic closed field F . Then every non constant,
monic polynomial over F is a product of linear polynomials of F and
BRoots(p). The theorem is a consequence of (68).

(70) Let us consider a field F . Then F is algebraic closed if and only if every
non constant, monic polynomial over F is a product of linear polynomials
of F . The theorem is a consequence of (69).
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Summary. In this article we formalize several basic theorems that cor-
respond to Pell’s equation. We focus on two aspects: that the Pell’s equation
x2−Dy2 = 1 has infinitely many solutions in positive integers for a given D not
being a perfect square, and that based on the least fundamental solution of the
equation when we can simply calculate algebraically each remaining solution.

“Solutions to Pell’s Equation” are listed as item #39 from the “Formalizing
100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.
Wiedijk/100/ .
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0. Introduction

Pell’s equation (alternatively called the Pell-Fermat equation) is a type of a
diophantine equation of the form x2−Dy2 = 1 for a natural number D. If D is a
perfect square, then Pell’s equation can be rewritten as (x−

√
dy)·(x+

√
dy) = 1.

Similarly, the trivial solution (x, y) = (1, 0) is not very interesting. Therefore
it is often assumed that D is not a square and only nontrivial solutions (non
zero pairs of integers) are considered. The first nontrivial solution (x1, y1), if the
solutions are ordered by their magnitude, is called the fundamental solution and
determine all other solutions since the n-th solution xn, yn can be expressed in
terms of the fundamental solution by xn + yn

√
D = (x1 + y1

√
D)n.
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Pell’s equation has an exceptional history, described in detail in [5, 10].
Firstly, John Pell (1611–1685) has nothing to do with the equation, except the
fact that Leonhard Euler (1707–1783) mistakenly attributed to Pell a solution
method founded by William Brouncker (1620–1684). Solutions of Pell’s equation
for special cases (e.g., D = 2) were even considered in India and Greece around
400 BC. The first description of a method which allowed to construct a nontrivial
solution of the equation for an arbitrary D can be found, e.g. in Euler’s Algebra,
but the method was described without any justification guaranteeing that it
would find at least one solution. The first proof of correctness was published by
Joseph Louis Lagrange [4].

Motivation The solution of Pell’s equation has been applied in many branches
of mathematics. Most basically, the sequence of fractions xi

yi
approximates

√
D

arbitrarily closely, where (xi, yi) is i-th solution for a given not square natural
D. Note also that Stormer’s theorem applies Pell’s equations to find pairs of
consecutive smooth numbers.

From our point of view, the most significant application of Pell’s equation
was done in the proof of Matiyasevich’s theorem [6] that we try to formalize in
the Mizar system [1]. That theorem states that every computable enumerable
set is diophantine. It implies the undecidability of Hilbert’s 10th problem. The
proof is based mainly on a particular case

x2 − (a2 − 1)y2 = 1, (0.1)

where a is a natural number. Note that the pair (a, 1) is the fundamental solution
of the equation, so it seems that we do not need to consider a complicated con-
struction of the fundamental solution for an arbitrary non square D to analyze
all solutions of (0.1). Such a case of Pell’s equation has been already formalized
in HOL Light [2] and Metamath [7]. However, in our formalization we consider
Pell’s equation in the general case. This decision is a consequence of the fact
that Matiyasevich to show that the equality yn(a) = y is diophantine used Pell’s
equation for D = (a2 − 1) · (2 · y2)2, where yn(a) is the n-th solution of (0.1).
From Amthor’s approach [3] to the cattle problem we can obtain a solution of
Pell’s equation for D based on the fundamental solution of (0.1), since for each
solution (x, y) calculated for D there exists some n such that

x+ y · (2 · y2) = (a+ 1
√
a)n. (0.2)

But this approach is more difficult to formalize than Dirichlet’s argumentation
to obtain existence of the fundamental solution in the general case, as considered
by W. Sierpiński [9].
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Contributions We formalize theorems related to the solvability of Pell’s equ-
ation imitating the approach considered in [9]. We formalize the Dirichlet’s ap-
proximation theorem as Theorem 9, to show that |x− y

√
D| can be arbitrarily

close to 0. Then we show in Theorem 12 that there exist infinitely many pairs
(x, y) where |x2 − Dy2| < 2

√
D + 1. Next, using several times the infinite va-

riant of the pigeonhole principle in the justification of Theorem 13, we indicate
two pairs of such solutions that fulfill the additional list of congruence, suffi-
cient to construct a nontrivial solution of Pell’s equation for a given non square
D in the proof of Theorem 14. Since we can give another nontrivial solution
(ac + Dbd, cb + ad) based on any two nontrivial solutions (a, b), (c, d) we show
in Theorem 17 that there exist infinitely many solutions in positive integers for
a given not square D. Then we show in Theorem 19 that such solutions can
be ordered and we specify the fundamental solution in Definition 3. Finally,
we show in Theorem 21 that each nontrivial solution can easily be calculated
algebraically based on the fundamental solution.

1. Preliminaries

From now on n, n1, n2, k, D denote natural numbers, r, r1, r2 denote real
numbers, and x, y denote integers.

Now we state the propositions:

(1) Let us consider integers i, j. If j < 0, then j < i mod j ¬ 0.

(2) Let us consider integers i, j. If j 6= 0, then |i mod j| < |j|. The theorem
is a consequence of (1).

(3) Let us consider a natural number D, and integers a, b, c, d. If a + (b ·√
D) = c+ (d ·

√
D), then a = c and b = d.

(4) Let us consider natural numbers c, d, n. Then there exist natural num-
bers a, b such that a+ (b ·

√
D) = (c+ (d ·

√
D))

n
.

Proof: Set c1 = c + (d ·
√
D). Define P[natural number] ≡ there exist

natural numbers a, b such that a + (b ·
√
D) = c1

$1 . P[0]. If P[n], then
P[n+ 1]. P[n]. �

(5) Let us consider integers c, d, and a natural number n. Then there exist
integers a, b such that a+ (b ·

√
D) = (c+ (d ·

√
D))

n
.

Proof: Set c1 = c + (d ·
√
D). Define P[natural number] ≡ there exist

integers a, b such that a + (b ·
√
D) = c1

$1 . P[0]. If P[n], then P[n + 1].
P[n]. �

(6) Let us consider a natural number D, integers a, b, c, d, and a natural
number n. Suppose a + (b ·

√
D) = (c+ (d ·

√
D))

n
. Then a− (b ·

√
D) =

(c− (d ·
√
D))

n
.
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Proof: Set S =
√
D. Define P[natural number] ≡ for every integers a, b,

c, d such that a+ (b ·S) = (c+ (d · S))$1 holds a− (b ·S) = (c− (d · S))$1 .
P[0]. If P[n], then P[n+ 1]. P[n]. �

2. Solutions to Pell’s Equation – Construction

Now we state the propositions:

(7) There exists a finite sequence F of elements of N such that

(i) lenF = n+ 1, and

(ii) for every k such that k ∈ domF holds F (k) = bk − 1 ·
√
Dc+ 1, and

(iii) if D is not square, then F is one-to-one.

Proof: Define F(natural number) = b$1 − 1 ·
√
Dc+ 1. Consider p being

a finite sequence such that len p = n+1 and for every k such that k ∈ dom p

holds p(k) = F(k). rng p ⊆ N. �

(8) Let us consider real numbers a, b, and a finite sequence F of elements of
R. Suppose n > 1 and lenF = n+ 1 and for every k such that k ∈ domF

holds a < F (k) ¬ b. Then there exist natural numbers i, j such that

(i) i, j ∈ domF , and

(ii) i 6= j, and

(iii) F (i) ¬ F (j), and

(iv) F (j)− F (i) < b−a
n .

Proof: Define P(natural number) = ]a + $1−1·(b−a)
n , a + $1·(b−a)

n ]. Define
H[object, object] ≡ for every natural number k such that $1 ∈ P(k) holds
k = $2. For every object x such that x ∈ ]a, b] there exists a natural number
k such that x ∈ P(k) and k ∈ Seg n. For every object x such that x ∈ ]a, b]
there exists an object y such that H[x, y]. Consider f being a function
such that dom f = ]a, b] and for every object x such that x ∈ ]a, b] holds
H[x, f(x)]. Set f1 = f ·F . rngF ⊆ dom f . rng f1 ⊆ Seg n. f1 is one-to-one.
�

(9) If D is not square and n > 1, then there exist integers x, y such that
y 6= 0 and |y| ¬ n and 0 < x− (y ·

√
D) < 1

n .
Proof: Consider x being a finite sequence of elements of N such that
lenx = n + 1 and for every k such that k ∈ domx holds x(k) = bk − 1 ·√
Dc + 1 and if D is not square, then x is one-to-one. Define U(natural

number) = x($1)− ($1 − 1 ·
√
D). Consider u being a finite sequence such

that lenu = n+ 1 and for every k such that k ∈ domu holds u(k) = U(k).
rng u ⊆ R. For every k such that k ∈ domu holds 0 < u(k) ¬ 1. Consider
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n1, n2 being natural numbers such that n1, n2 ∈ domu and n1 6= n2 and
u(n1) ¬ u(n2) and u(n2)− u(n1) < 1−0

n . u(n1) 6= u(n2). �

(10) Suppose D is not square and n 6= 0 and |y| ¬ n and 0 < x−(y ·
√
D) < 1

n .
Then |x2 − (D · y2)| ¬ 2 ·

√
D + 1

n2
.

(11) If D is not square, then there exist integers x, y such that y 6= 0 and
0 < x − (y ·

√
D) and |x2 − (D · y2)| < 2 ·

√
D + 1. The theorem is

a consequence of (9) and (10).

(12) Suppose D is not square. Then {〈〈x, y〉〉, where x, y are integers : y 6= 0
and |x2 − (D · y2)| < 2 ·

√
D + 1 and 0 < x− (y ·

√
D)} is infinite.

Proof: Set S = {〈〈x, y〉〉, where x, y are integers : y 6= 0 and |x2 − (D ·
y2)| < 2 ·

√
D+ 1 and 0 < x− (y ·

√
D)}. There exists a function f from S

into R such that for every integers x, y such that 〈〈x, y〉〉 ∈ S holds f(〈〈x,
y〉〉) = x− (y ·

√
D). Consider f being a function from S into R such that

for every integers x, y such that 〈〈x, y〉〉 ∈ S holds f(〈〈x, y〉〉) = x− (y ·
√
D).

S is not empty. Reconsider R = rng f as a finite, non empty subset of
R. inf R > 0. Consider n being a natural number such that 1

n < inf R
and n > 1. Consider x, y being integers such that y 6= 0 and |y| ¬ n and
0 < x−(y ·

√
D) < 1

n . |x2−(D ·y2)| ¬ 2 ·
√
D+ 1

n2
. 2 ·
√
D+ 1

n2
< 2 ·

√
D+1.

�

(13) Suppose D is not square. Then there exist integers k, a, b, c, d such that

(i) 0 6= k, and

(ii) a2 − (D · b2) = k = c2 − (D · d2), and

(iii) a ≡ c (mod k), and

(iv) b ≡ d (mod k), and

(v) |a| 6= |c| or |b| 6= |d|.
Proof: Set S = {〈〈x, y〉〉, where x is an integer, y is an integer : y 6= 0 and
|x2−(D·y2)| < 2·

√
D+1 and 0 < x−(y ·

√
D)}. Define P[object, object] ≡

for every integers x, y such that 〈〈x, y〉〉 = $1 holds $2 = x2 − (D · y2). For
every object x1 such that x1 ∈ S there exists an object u such that P[x1, u].
Consider f being a function such that dom f = S and for every object x1

such that x1 ∈ S holds P[x1, f(x1)]. Reconsider M = d2 ·
√
D + 1e as

an element of N. Define P[integer] ≡ $1 6= 0. Define F(set) = $1. Set
S1 = {F(i), where i is an element of Z : −M ¬ i ¬ M and P[i]}. S1 is
finite. rng f ⊆ S1. Consider k1 being an object such that k1 ∈ rng f and
f−1({k1}) is infinite. Consider k being an element of Z such that k = k1

and −M ¬ k ¬M and P[k]. Set Z = f−1({k}). DefineR[object, object] ≡
for every integers x, y such that 〈〈x, y〉〉 = $1 holds $2 = 〈〈x mod k,

y mod k〉〉. For every object x1 such that x1 ∈ Z there exists an object u
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such that R[x1, u]. Consider g being a function such that dom g = Z

and for every object x1 such that x1 ∈ Z holds R[x1, g(x1)]. Define
R[object] ≡ not contradiction. Set K = {F(i), where i is an element of
Z : −|k| ¬ i ¬ |k| and R[i]}. K is finite. rng g ⊆ K×K. Consider a1 being
an object such that a1 ∈ rng g and g−1({a1}) is infinite. Consider X being
an object such that X ∈ g−1({a1}). Consider x, y being integers such that
X = 〈〈x, y〉〉 and y 6= 0 and |x2−(D ·y2)| < 2 ·

√
D+1 and 0 < x−(y ·

√
D).

There exist integers a, b, c, d such that a2 − (D · b2) = k = c2 − (D · d2)
and a ≡ c (mod k) and b ≡ d (mod k) and (|a| 6= |c| or |b| 6= |d|). �

3. Pell’s Equation

Now we state the proposition:

(14) #39: Solutions to Pell’s Equation:
If D is not square, then there exist natural numbers x, y such that x2 −
(D · y2) = 1 and y 6= 0. The theorem is a consequence of (13).

Let D be a natural number.
A Pell’s solution of D is an element of Z× Z and is defined by

(Def. 1) ((it)1)2 − (D · ((it)2)2) = 1.

Let D1, D2 be real-membered, non empty sets and p be an element of D1×
D2. We say that p is positive if and only if

(Def. 2) (p)1 is positive and (p)2 is positive.

One can check that there exists an element of Z× Z which is positive.
Let p be a positive element of Z×Z. Observe that (p)1 is positive as an integer

and (p)2 is positive as an integer.
Now we state the propositions:

(15) Let us consider square natural number D, and a positive element p of
Z× Z. If D > 0, then p is not a Pell’s solution of D.

(16) If D is not square, then there exists a Pell’s solution p of D such that p
is positive. The theorem is a consequence of (14).

Let D be a natural number. One can verify that there exists a Pell’s solution
of D which is positive.

(17) The Cardinality of the Pell’s Solutions:
Let us consider a natural number D. Then the set of all a1 where a1 is
a positive Pell’s solution of D is infinite.
Proof: Set P = the set of all a1 where a1 is a positive Pell’s solution
of D. Set a1 = the positive Pell’s solution of D. π2(P ) ⊆ N. Reconsider
P2 = π2(P ) as a finite, non empty subset of N. Set b = maxP2. Consider
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a being an object such that 〈〈a, b〉〉 ∈ P . Consider a1 being a positive Pell’s
solution of D such that 〈〈a, b〉〉 = a1. �

4. Solutions to Pell’s Equation – Shape

In the sequel p, p1, p2 denote Pell’s solutions of D.
Now we state the propositions:

(18) If D is not square, then p is positive iff (p)1 + ((p)2 ·
√
D) > 1.

Proof: If p is positive, then (p)1 + ((p)2 ·
√
D) > 1. �

(19) Suppose 1 < (p1)1 + ((p1)2 ·
√
D) < (p2)1 + ((p2)2 ·

√
D) and D is not

square. Then

(i) (p1)1 < (p2)1, and

(ii) (p1)2 < (p2)2.

The theorem is a consequence of (18).

(20) Let us consider a natural number D, a positive Pell’s solution p of D,
integers a, b, and a natural number n. Suppose n > 0 and a+ (b ·

√
D) =

((p)1 + ((p)2 ·
√
D))

n
. Then 〈〈a, b〉〉 is a positive Pell’s solution of D. The

theorem is a consequence of (6) and (18).

Let D be a natural number. The minimal Pell’s solution of D yielding a po-
sitive Pell’s solution of D is defined by

(Def. 3) for every positive Pell’s solution p of D, (it)1 ¬ (p)1 and (it)2 ¬ (p)2.

Now we state the proposition:

(21) Let us consider a natural number D, and an element p of Z×Z. Then p is
a positive Pell’s solution of D if and only if there exists a positive natural
number n such that (p)1 + ((p)2 ·

√
D) = ((the minimal Pell’s solution of

D)1 + ((the minimal Pell’s solution of D)2 ·
√
D))

n
.

Proof: Set m = the minimal Pell’s solution of D. Set t = (m)1. Set
u = (m)2. Set S =

√
D. Set x = (p)1. Set y = (p)2. If p is a positive Pell’s

solution of D, then there exists a positive natural number n such that
x+ (y ·S) = (t+ (u · S))n by (18), (19), [8, (51), (57)]. 〈〈x, y〉〉 is a positive
Pell’s solution of D. �

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17


204 marcin acewicz and karol pąk

[2] John Harrison. The HOL Light system REFERENCE. 2014. http://www.cl.cam.ac.
uk/~jrh13/hol-light/reference.pdf.

[3] B. Krumbiegel and A. Amthor. Das Problema Bovinum des Archimedes. Historisch-
literarische Abteilung der Zeitschrift fur Mathematik und Physik, 25:121–136, 153–171,
1880.

[4] Joseph L. Lagrange. Solution d’un probleème d’arithmétique. Mélanges de philosophie et
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Summary. In this paper we give a formal definition of the notion of no-
minative data with simple names and complex values [15, 16, 19] and formal
definitions of the basic operations on such data, including naming, denaming
and overlapping, following the work [19].

The notion of nominative data plays an important role in the composition-
nominative approach to program formalization [15, 16] which is a development
of composition programming [18]. Both approaches are compared in [14].

The composition-nominative approach considers mathematical models of com-
puter software and data on various levels of abstraction and generality and pro-
vides mathematical tools for reasoning about their properties. In particular, no-
minative data are mathematical models of data which are stored and processed
in computer systems. The composition-nominative approach considers different
types [14, 19] of nominative data, but all of them are based on the name-value
relation. One powerful type of nominative data, which is suitable for representing
many kinds of data commonly used in programming like lists, multidimensional
arrays, trees, tables, etc. is the type of nominative data with simple (abstract)
names and complex (structured) values. The set of nominative data of given type
together with a number of basic operations on them like naming, denaming and
overlapping [19] form an algebra which is called data algebra.
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In the composition-nominative approach computer programs which process
data are modeled as partial functions which map nominative data from the car-
rier of a given data algebra (input data) to nominative data (output data). Such
functions are also called binominative functions. Programs which evaluate con-
ditions are modeled as partial predicates on nominative data (nominative pre-
dicates). Programming language constructs like sequential execution, branching,
cycle, etc. which construct programs from the existing programs are modeled as
operations which take binominative functions and predicates and produce bino-
minative functions. Such operations are called compositions. A set of binominati-
ve functions and a set of predicates together with appropriate compositions form
an algebra which is called program algebra. This algebra serves as a semantic
model of a programming language.

For functions over nominative data a special computability called abstract
computability is introduces and complete classes of computable functions are
specified [16].

For reasoning about properties of programs modeled as binominative func-
tions a Floyd-Hoare style logic [1, 2] is introduced and applied [12, 13, 8, 11, 9, 10].
One advantage of this approach to reasoning about programs is that it naturally
handles programs which process complex data structures (which can be quite
straightforwardly represented as nominative data). Also, unlike classical Floyd-
Hoare logic, the mentioned logic allows reasoning about assertions which include
partial pre- and post-conditions [11].

Besides modeling data processed by programs, nominative data can be also
applied to modeling data processed by signal processing systems in the context
of the mathematical systems theory [4, 6, 7, 5, 3].

MSC: 68Q60 03B70 03B35

Keywords: program semantics; software verification; nominative data

MML identifier: NOMIN 1, version: 8.1.06 5.44.1305

1. Preliminaries

From now on a, a1, a2, v, v1, v2, x denote objects, V , A denote sets, m, n
denote natural numbers, and S, S1, S2 denote finite sequences.

Now we state the propositions:

(1) Let us consider a finite sequence f . If n ∈ dom f , then (〈x〉a f)(n+1) =
f(n).

(2) Let us consider a function f . Suppose dom f = N. Then f� Seg n is
a finite sequence.

(3) Let us consider finite sequences f , g. Then

(i) dom f ⊆ dom g, or

(ii) dom g ⊆ dom f .

http://zbmath.org/classification/?q=cc:68Q60
http://zbmath.org/classification/?q=cc:03B70
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/nomin_1.miz
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Let f , g be finite sequences. One can check that f+·g is finite sequence-like.
Let f1, f2 be functions. Note that f2 ∪ f1�(dom f1 \ dom f2) is function-like.
Let f , g be functions and x, y be objects. We say that f(x) ∼= g(y) if and

only if

(Def. 1) (x ∈ dom f iff y ∈ dom g) and if x ∈ dom f , then f(x) = g(y).

2. Definition of Simple-Named Complex-Valued Nominative Data

Let us consider V and A.
A nominative set of V and A is a partial function from V to A. Let us note

that there exists a nominative set of V and A which is finite.
A nominative data with simple names from V and simple values from A is

a finite nominative set of V and A. The functor NDSS(V,A) yielding a set is
defined by the term

(Def. 2) the set of all d where d is a nominative data with simple names from V

and simple values from A.

Let us note that NDSS(V,A) is non empty.
Now we state the propositions:

(4) If x ∈ NDSS(V,A), then x is a nominative data with simple names from
V and simple values from A.

(5) NDSS(V,A) ⊆ V →̇A.

(6) ∅ ∈ NDSS(V,A).

(7) Let us consider sets A, B. If A ⊆ B, then NDSS(V,A) ⊆ NDSS(V,B).

(8) Let us consider finite functions f , g. Suppose f ≈ g and f , g ∈ NDSS(V,A).
Then f ∪ g ∈ NDSS(V,A). The theorem is a consequence of (4).

Let us consider V and A. The functor FNDSC(V,A) yielding a function is
defined by

(Def. 3) dom it = N and it(0) = A and for every natural number n, it(n + 1) =
NDSS(V,A ∪ it(n)).

Now we state the propositions:

(9) (FNDSC(V,A))(1) = NDSS(V,A).

(10) (FNDSC(V,A))(2) = NDSS(V,A∪NDSS(V,A)). The theorem is a conse-
quence of (9).

(11) A ⊆
⋃

FNDSC(V,A).

(12) If 1 ¬ n, then ∅ ∈ (FNDSC(V,A))(n). The theorem is a consequence of
(6).
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Let us consider V , A, and n. One can check that FNDSC(V,A)� Seg n is finite
sequence-like.

Now we state the proposition:

(13) If m 6= 0 and m ¬ n, then (FNDSC(V,A))(m) ⊆ (FNDSC(V,A))(n).
Proof: Set S = FNDSC(V,A). Define P[natural number] ≡ if m ¬ $1,
then S(m) ⊆ S($1). For every natural number k such that P[k] holds
P[k + 1]. For every natural number k, P[k]. �

Let us consider V and A. Let S be a finite sequence. We say that S is a rank
sequence if and only if

(Def. 4) S(1) = NDSS(V,A) and for every natural number n such that n, n+ 1 ∈
domS holds S(n+ 1) = NDSS(V,A ∪ S(n)).

Now we state the propositions:

(14) If S is a rank sequence, then S 6= ∅.
(15) If S is a rank sequence and S1 ⊆ S and S1 6= ∅, then S1 is a rank

sequence.

(16) If S is a rank sequence and n ∈ domS, then S�n is a rank sequence. The
theorem is a consequence of (15).

(17) If S is a rank sequence, then S a 〈NDSS(V,A ∪ S(lenS))〉 is a rank
sequence.

(18) If 1 ¬ n, then FNDSC(V,A)� Seg n is a rank sequence. The theorem is
a consequence of (9).

(19) If S is a rank sequence and n ∈ domS, then S(n) = (FNDSC(V,A))(n).
Proof: Set F = FNDSC(V,A). Define P[natural number] ≡ if $1 ∈ domS,
then S($1) = F ($1). For every n such that P[n] holds P[n+ 1]. For every
n, P[n]. �

(20) If S is a rank sequence, then S = FNDSC(V,A)� domS. The theorem is
a consequence of (19).

(21) If S1 is a rank sequence and S2 is a rank sequence, then S1 ≈ S2.
Proof: Define P[natural number] ≡ if $1 ∈ domS1∩domS2, then S1($1) =
S2($1). P[0]. For every n such that P[n] holds P[n+ 1]. For every n, P[n].
�

(22) If S1 is a rank sequence and S2 is a rank sequence, then S1 ⊆ S2 or
S2 ⊆ S1. The theorem is a consequence of (20) and (3).

(23) If S1 is a rank sequence and S2 is a rank sequence, then S1+·S2 = S1 or
S1+·S2 = S2. The theorem is a consequence of (21) and (3).

(24) If S1 is a rank sequence and S2 is a rank sequence, then S1+·S2 is a rank
sequence.
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(25) If S is a rank sequence and m ¬ n and n ∈ domS, then S(m) ⊆ S(n).
The theorem is a consequence of (19) and (13).

(26) Let us consider a finite sequence F . Suppose F is a rank sequence. Then
there exists a finite sequence S such that

(i) lenS = 1 + lenF , and

(ii) S is a rank sequence, and

(iii) for every natural number n such that n ∈ domS holds S(n) =
NDSS(V,A ∪ (〈A〉 a F )(n)).

Proof: SetG = 〈A〉aF . Define F(object) = NDSS(V,A∪G($1)). Consider
S being a finite sequence such that lenS = lenG and for every natural
number n such that n ∈ domS holds S(n) = F(n). For every natural
number n such that n ∈ domF holds G(n + 1) = F (n). S is a rank
sequence by (1), [17, (20)]. �

(27) 〈NDSS(V,A)〉 is a rank sequence.

(28) 〈NDSS(V,A),NDSS(V,A∪NDSS(V,A))〉 is a rank sequence. The theorem
is a consequence of (27) and (17).

(29) 〈NDSS(V,A),NDSS(V,A∪NDSS(V,A)),NDSS(V,A∪NDSS(V,A∪NDSS(V,
A)))〉 is a rank sequence. The theorem is a consequence of (17) and (28).

Let us consider V and A.
A non-atomic nominative data of V and A is a function and is defined by

(Def. 5) there exists a finite sequence S such that S is a rank sequence and
it ∈
⋃
S.

From now on D, D1, D2 denote non-atomic nominative data of V and A.
Now we state the propositions:

(30) ∅ is a non-atomic nominative data of V and A. The theorem is a conse-
quence of (27).

(31) D ∈
⋃

FNDSC(V,A).

(32) Let us consider a set d. If d ⊆ D, then d is a non-atomic nominative
data of V and A. The theorem is a consequence of (4).

(33) There exists a natural number n such that D is a nominative data with
simple names from V and simple values from A∪ (FNDSC(V,A))(n). The
theorem is a consequence of (19) and (4).

Let us consider V and A. Note that every non-atomic nominative data of V
and A is finite.

Now we state the propositions:

(34) If D1 ≈ D2 and S is a rank sequence and D1, D2 ∈ S(m), then D1∪D2 ∈
S(m). The theorem is a consequence of (4) and (8).
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(35) If D1 ≈ D2 and S2 is a rank sequence and S1 ⊆ S2 and D1 ∈
⋃
S1 and

D2 ∈
⋃
S2, then D1 ∪ D2 ∈

⋃
S2. The theorem is a consequence of (25)

and (34).

(36) If D1 ≈ D2, then D1 ∪D2 is a non-atomic nominative data of V and A.
The theorem is a consequence of (22) and (35).

(37) If D1 ≈ D2, then D1+·D2 is a non-atomic nominative data of V and A.
The theorem is a consequence of (36).

Let us consider V and A. A nominative data with simple names from V and
complex values from A is a set and is defined by

(Def. 6) it ∈ A or it is a non-atomic nominative data of V and A.

The functor NDSC(V,A) yielding a set is defined by the term

(Def. 7) the set of all D where D is a nominative data with simple names from
V and complex values from A.

Let us observe that NDSC(V,A) is non empty. Now we state the propositions:

(38) ∅ ∈ NDSC(V,A). The theorem is a consequence of (30).

(39) If x ∈ NDSC(V,A), then x is a nominative data with simple names from
V and complex values from A.

(40) NDSC(V,A) =
⋃

FNDSC(V,A). The theorem is a consequence of (39),
(11), (31), (4), and (18).

(41) D ∈ NDSC(V,A).

(42) If D /∈ A, then D ∈ NDSC(V,A) \ A. The theorem is a consequence of
(41).

(43) If x ∈ NDSC(V,A)\A, then x is a non-atomic nominative data of V andA.

(44) Let us consider a nominative data D with simple names from V and
complex values from A. Then D ∈

⋃
FNDSC(V,A). The theorem is a con-

sequence of (11) and (31).

3. Examples of Simple-Named Complex-Valued Nominative Data

Let us consider v and a. The functor ND(v, a) yielding a set is defined by
the term

(Def. 8) v 7−→. a.

Observe that ND(v, a) is function-like and relation-like.
Now we state the propositions:

(45) If v ∈ V and a ∈ A, then ND(v, a) ∈ NDSS(V,A).

(46) If v ∈ V and a ∈ A, then ND(v, a) is a non-atomic nominative data of
V and A. The theorem is a consequence of (27) and (45).
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Let V , A be non empty sets, v be an element of V , and a be an element of
A. Observe that the functor ND(v, a) yields a non-atomic nominative data of V
and A. Now we state the proposition:

(47) If v ∈ V and a ∈ A, then ND(v, a) is a nominative data with simple
names from V and complex values from A. The theorem is a consequence
of (46).

Let us consider v, v1, and a1. The functor ND(v, v1, a1) yielding a set is
defined by the term

(Def. 9) v 7−→. (v1 7−→. a1).

Note that ND(v, v1, a1) is function-like and relation-like.
Now we state the propositions:

(48) If {v, v1} ⊆ V and a1 ∈ A, then ND(v, v1, a1) ∈ NDSS(V,A∪NDSS(V,A)).

(49) If {v, v1} ⊆ V and a1 ∈ A, then ND(v, v1, a1) is a non-atomic nominative
data of V and A. The theorem is a consequence of (28) and (48).

Let V , A be non empty sets, v, v1 be elements of V , and a be an element
of A. Let us note that the functor ND(v, v1, a) yields a non-atomic nominative
data of V and A. Now we state the proposition:

(50) If {v, v1} ⊆ V and a1 ∈ A, then ND(v, v1, a1) is a nominative data
with simple names from V and complex values from A. The theorem is
a consequence of (49).

Let us consider v, v1, a, and a1. The functor ND(v, v1, a, a1) yielding a set
is defined by the term

(Def. 10) [v 7−→ a, v1 7−→ a1].

Let us note that ND(v, v1, a, a1) is function-like and relation-like.
Now we state the propositions:

(51) If {v, v1} ⊆ V and {a, a1} ⊆ A, then ND(v, v1, a, a1) ∈ NDSS(V,A). The
theorem is a consequence of (45) and (8).

(52) If {v, v1} ⊆ V and {a, a1} ⊆ A, then ND(v, v1, a, a1) is a non-atomic
nominative data of V and A. The theorem is a consequence of (27) and
(51).

Let V , A be non empty sets, v, v1 be elements of V , and a, a1 be elements
of A. Let us observe that the functor ND(v, v1, a, a1) yields a non-atomic nomi-
native data of V and A. Now we state the proposition:

(53) Suppose {v, v1} ⊆ V and {a, a1} ⊆ A. Then ND(v, v1, a, a1) is a nomi-
native data with simple names from V and complex values from A. The
theorem is a consequence of (52).

Let us consider v, v1, v2, a, and a1. The functor ND(v, v1, v2, a, a1) yielding
a set is defined by the term
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(Def. 11) [v 7−→ a, v1 7−→ v2 7−→. a1].

Let us note that ND(v, v1, v2, a, a1) is function-like and relation-like.
Now we state the propositions:

(54) Suppose {v, v1, v2} ⊆ V and {a, a1} ⊆ A. Then ND(v, v1, v2, a, a1) ∈
NDSS(V,A ∪NDSS(V,A)).
Proof: Set g = ND(v, v1, v2, a, a1). rng g ⊆ A ∪NDSS(V,A). �

(55) If {v, v1, v2} ⊆ V and {a, a1} ⊆ A, then ND(v, v1, v2, a, a1) is a non-
atomic nominative data of V and A. The theorem is a consequence of (54)
and (28).

Let V , A be non empty sets, v, v1, v2 be elements of V , and a, a1 be elements
of A. One can check that the functor ND(v, v1, v2, a, a1) yields a non-atomic
nominative data of V and A. Now we state the propositions:

(56) Suppose {v, v1, v2} ⊆ V and {a, a1} ⊆ A. Then ND(v, v1, v2, a, a1) is
a nominative data with simple names from V and complex values from A.
The theorem is a consequence of (55).

(57) 〈x〉 is a non-atomic nominative data of {1} and {x}.
Proof: 〈x〉 ∈ NDSS({1}, {x}). �

4. Operations on Simple-Named Complex-Valued Nominative Data

Let us consider V , A, v, and D. Assume v ∈ domD. The functor v ⇒a D

yielding a nominative data with simple names from V and complex values from
A is defined by the term

(Def. 12) D(v).

Let v, D be objects. Assume D is a nominative data with simple names from
V and complex values from A. Assume v ∈ V . The functor ⇒v(D) yielding
a non-atomic nominative data of V and A is defined by the term

(Def. 13) v 7−→. D.

Let a be an object and f be a V -valued finite sequence. Assume len f > 0.
The functor ⇒(V,A, f, a) yielding a finite sequence is defined by

(Def. 14) len it = len f and it(1) = ⇒(f(len f))(a) and for every natural number
n such that 1 ¬ n < len it holds it(n+ 1) =⇒(f(len f − n))(it(n)).

Now we state the proposition:

(58) Let us consider a V -valued finite sequence f . Suppose 1 ¬ n ¬ len f .
Then (⇒(V,A, f, a))(n) is a non-atomic nominative data of V and A.

Let us consider V and A. Let f be a V -valued finite sequence and a be
an object. The functor ⇒f(a) yielding a set is defined by the term
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(Def. 15) (⇒(V,A, f, a))(len⇒(V,A, f, a)).

Now we state the propositions:

(59) Let us consider a V -valued finite sequence f . Suppose len f > 0. Then
⇒f(a) is a non-atomic nominative data of V and A. The theorem is a con-
sequence of (58).

(60) Let us consider a non empty set V , and an element v of V . Then
⇒〈v〉(a) =⇒v(a).

(61) Let us consider a non empty set V , and elements v1, v2 of V . Suppose a
is a nominative data with simple names from V and complex values from
A. Then ⇒〈v1, v2〉(a) = v1 7−→. (v2 7−→. a). The theorem is a consequence of
(58).

(62) Let us consider a nominative data D with simple names from V and
complex values from A. If v ∈ V , then v ⇒a ⇒v(D) = D.

(63) If v ∈ domD, then ⇒v(v ⇒a D) = v 7−→. D(v). The theorem is a conse-
quence of (33).

Let us consider V and A. Let d1, d2 be objects. Assume d1 is a nominative
data with simple names from V and complex values from A and d2 is a nomi-
native data with simple names from V and complex values from A.

The functor d1∇ad2 yielding a nominative data with simple names from V

and complex values from A is defined by

(Def. 16) (i) there exist functions f1, f2 such that f1 = d1 and f2 = d2 and
it = f2 ∪ f1�(dom f1 \ dom f2), if d1 /∈ A and d2 /∈ A,

(ii) it = d2, otherwise.

Let d1, d2, v be objects.
The functor d1∇vad2 yielding a nominative data with simple names from V

and complex values from A is defined by the term

(Def. 17) d1∇a(⇒v(d2)).

Now we state the propositions:

(64) If D1 /∈ A and D2 /∈ A, then D1∇aD2 = D2 ∪D1�(domD1 \ domD2).

(65) If D1 /∈ A and D2 /∈ A and domD1 ⊆ domD2, then D1∇aD2 = D2. The
theorem is a consequence of (64).

(66) If D /∈ A, then D∇aD = D. The theorem is a consequence of (65).

(67) Suppose v ∈ V and v 7−→. a1 /∈ A and v 7−→. a2 /∈ A and a1 is a nominative
data with simple names from V and complex values from A and a2 is
a nominative data with simple names from V and complex values from
A. Then (v 7−→. a1)∇a(v 7−→. a2) = v 7−→. a2. The theorem is a consequence of
(65).
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(68) Suppose {v1, v2} ⊆ V and v1 6= v2 and v1 7−→. a1 /∈ A and v2 7−→. a2 /∈ A
and a1 is a nominative data with simple names from V and complex values
from A and a2 is a nominative data with simple names from V and complex
values from A. Then (v1 7−→. a1)∇a(v2 7−→. a2) = [v2 7−→ a2, v1 7−→ a1]. The
theorem is a consequence of (64).

(69) Suppose {v, v1, v2} ⊆ V and v 6= v1 and a2 ∈ A and v1 7−→. a1 /∈ A

and v 7−→. (v2 7−→. a2) /∈ A and a1 is a nominative data with simple names
from V and complex values from A. Then (v1 7−→. a1)∇va(v2 7−→. a2) = [v 7−→
v2 7−→. a2, v1 7−→ a1]. The theorem is a consequence of (47) and (68).

Let us consider V , A, and v. The functor v ⇒a yielding a partial function
from NDSC(V,A) to NDSC(V,A) is defined by

(Def. 18) dom it = {d, where d is a non-atomic nominative data of V and A : v ∈
dom d} and for every non-atomic nominative data D of V and A such that
D ∈ dom it holds it(D) = v ⇒a D.

The functor ⇒v yielding a function from NDSC(V,A) into NDSC(V,A) is
defined by

(Def. 19) for every nominative data D with simple names from V and complex
values from A, it(D) =⇒v(D).

The functor ∇va yielding a partial function from NDSC(V,A) × NDSC(V,A)
to NDSC(V,A) is defined by

(Def. 20) dom it = (NDSC(V,A) \ A)× NDSC(V,A) and for every non-atomic no-
minative data d1 of V and A and for every object d2 such that d1 /∈ A and
d2 ∈ NDSC(V,A) holds it(〈〈d1, d2〉〉) = d1∇vad2.
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systems. In Erika Ábrahám and Sergiy Bogomolov, editors, Proceedings 3rd International
Workshop on Symbolic and Numerical Methods for Reachability Analysis, SNR@ETAPS
2017, Uppsala, Sweden, 22nd April 2017, volume 247 of EPTCS, pages 46–51, 2017.
doi:10.4204/EPTCS.247.4.

[4] Ievgen Ivanov. On representations of abstract systems with partial inputs and outputs. In
T. V. Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and
Applications of Models of Computation – 11th Annual Conference, TAMC 2014, Chennai,
India, April 11–13, 2014. Proceedings, volume 8402 of Lecture Notes in Computer Science,
pages 104–123. Springer, 2014. ISBN 978-3-319-06088-0. doi:10.1007/978-3-319-06089-7 8.

[5] Ievgen Ivanov. On local characterization of global timed bisimulation for abstract
continuous-time systems. In Ichiro Hasuo, editor, Coalgebraic Methods in Computer Scien-
ce – 13th IFIP WG 1.3 International Workshop, CMCS 2016, Colocated with ETAPS
2016, Eindhoven, The Netherlands, April 2–3, 2016, Revised Selected Papers, volume

https://doi.org/10.4204/EPTCS.247.4
https://doi.org/10.4204/EPTCS.247.4
http://dx.doi.org/10.4204/EPTCS.247.4
https://doi.org/10.1007/978-3-319-06089-7_8
http://dx.doi.org/10.1007/978-3-319-06089-7_8
https://doi.org/10.1007/978-3-319-40370-0_13
https://doi.org/10.1007/978-3-319-40370-0_13


Simple-named complex-valued nominative data – definition ... 215

9608 of Lecture Notes in Computer Science, pages 216–234. Springer, 2016. ISBN 978-3-
319-40369-4. doi:10.1007/978-3-319-40370-0 13.

[6] Ievgen Ivanov, Mykola Nikitchenko, and Uri Abraham. On a decidable formal theory for
abstract continuous-time dynamical systems. In Vadim Ermolayev, Heinrich C. Mayr,
Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Infor-
mation and Communication Technologies in Education, Research, and Industrial Applica-
tions, volume 469 of Communications in Computer and Information Science, pages 78–99.
Springer International Publishing, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-
13206-8 4.

[7] Ievgen Ivanov, Mykola Nikitchenko, and Uri Abraham. Event-based proof of the mutual
exclusion property of Peterson’s algorithm. Formalized Mathematics, 23(4):325–331, 2015.
doi:10.1515/forma-2015-0026.

[8] Ievgen Ivanov, Mykola Nikitchenko, and Volodymyr G. Skobelev. Proving properties of
programs on hierarchical nominative data. The Computer Science Journal of Moldova,
24(3):371–398, 2016.

[9] Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formaliza-
tion of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek,
and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Compu-
ter Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September
3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.

[10] Artur Kornilowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Forma-
lization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy
Świątek, and Zofia Wilimowska, editors, Information Systems Architecture and Techno-
logy: Proceedings of 38th International Conference on Information Systems Architecture
and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017,
volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer,
2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8 16.

[11] Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An ap-
proach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick
Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchen-
ko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spi-
vakovsky, editors, Proceedings of the 13th International Conference on ICT in Education,
Research and Industrial Applications. Integration, Harmonization and Knowledge Trans-
fer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages
504–523. CEUR-WS.org, 2017.

[12] Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare
Logic for Partial Pre- and Postconditions, pages 355–378. Springer International Publi-
shing, 2013. ISBN 978-3-319-03998-5. doi:10.1007/978-3-319-03998-5 18.

[13] Mykola Nikitchenko and Andrii Kryvolap. Properties of inference systems for Floyd-
Hoare logic with partial predicates. Acta Electrotechnica et Informatica, 13(4):70–78,
2013. doi:10.15546/aeei-2013-0052.

[14] Mykola S. Nikitchenko. Composition-nominative aspects of address programming. Cyber-
netics and Systems Analysis, 45(864), 2009. doi:10.1007/s10559-009-9159-4. (Translated
from Kibernetika i Sistemnyi Analiz, No. 6, pp. 24–35, November–December 2009).

[15] Nikolaj S. Nikitchenko. A composition nominative approach to program semantics. Tech-
nical Report IT-TR 1998-020, Department of Information Technology, Technical Univer-
sity of Denmark, 1998.

[16] N.S. Nikitchenko. Abstract computability of non-deterministic programs over various
data structures. In Zamulin A.V. Bjorner D., Broy M., editor, Perspectives of System
Informatics: 4th International Andrei Ershov Memorial Conference, PSI 2001, volume
2244 of Lecture Notes in Computer Science, pages 468–481. Springer, Berlin, Heidelberg,
2001. doi:10.1007/3-540-45575-2 45.

[17] Robin Nittka. Conway’s games and some of their basic properties. Formalized Mathema-
tics, 19(2):73–81, 2011. doi:10.2478/v10037-011-0013-6.

[18] V.N. Red’ko. Backgrounds of compositional programming. Programming [in Russian],
(3):3–13, 1979.

[19] Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties
of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Ni-
kitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and

http://dx.doi.org/10.1007/978-3-319-40370-0_13
http://dx.doi.org/10.1007/978-3-319-13206-8_4
http://dx.doi.org/10.1007/978-3-319-13206-8_4
http://dx.doi.org/10.1007/978-3-319-13206-8_4
http://dx.doi.org/10.1007/978-3-319-13206-8_4
http://dx.doi.org/10.1515/forma-2015-0026
https://doi.org/10.15439/2017F301
https://doi.org/10.15439/2017F301
http://dx.doi.org/10.15439/2017F301
https://doi.org/10.1007/978-3-319-67229-8_16
https://doi.org/10.1007/978-3-319-67229-8_16
http://dx.doi.org/10.1007/978-3-319-67229-8_16
http://ceur-ws.org/Vol-1844/10000504.pdf
http://ceur-ws.org/Vol-1844/10000504.pdf
http://dx.doi.org/10.1007/978-3-319-03998-5_18
https://doi.org/10.15546/aeei-2013-0052
https://doi.org/10.15546/aeei-2013-0052
http://dx.doi.org/10.15546/aeei-2013-0052
https://doi.org/10.1007/s10559-009-9159-4
http://dx.doi.org/10.1007/s10559-009-9159-4
https://doi.org/10.1007/3-540-45575-2_45
https://doi.org/10.1007/3-540-45575-2_45
http://dx.doi.org/10.1007/3-540-45575-2_45
http://dx.doi.org/10.2478/v10037-011-0013-6
https://doi.org/10.1007/978-3-319-13206-8_6
https://doi.org/10.1007/978-3-319-13206-8_6


216 ievgen ivanov et al.

Communication Technologies in Education, Research, and Industrial Applications – 10th
International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised
Selected Papers, volume 469 of Communications in Computer and Information Science,
pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8 6.

Received August 30, 2017

The English version of this volume of Formalized Mathematics was financed
under agreement 548/P-DUN/2016 with the funds from the Polish Minister
of Science and Higher Education for the dissemination of science.

http://dx.doi.org/10.1007/978-3-319-13206-8_6


FORMALIZED MATHEMATICS

Vol. 25, No. 3, Pages 217–225, 2017
DOI: 10.1515/forma-2017-0021 degruyter.com/view/j/forma

Gauge Integral

Roland Coghetto
Rue de la Brasserie 5

7100 La Louvière, Belgium

Summary. Some authors have formalized the integral in the Mizar Ma-
thematical Library (MML). The first article in a series on the Darboux/Riemann
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In the last section, we verified that a real-valued bounded integrable (in sense
Darboux/Riemann [6, 7, 8]) function over a interval a, b is Gauge integrable.
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(1) If a− b ¬ c and b ¬ a, then |b− a| ¬ c.
(2) If b− a ¬ c and a ¬ b, then |b− a| ¬ c.
(3) If a ¬ b ¬ c and |a− d| ¬ e and |c− d| ¬ e, then |b− d| ¬ e.
(4) If for every c such that 0 < c holds |a− b| ¬ c, then a = b.

(5) Let us consider non negative real numbers b, c, d. Suppose d < e
2·b·|c| .

Then

(i) b is positive, and

(ii) c is positive.

(6) If a 6= 0, then a · b
2·a = b

2 .

(7) Let us consider non negative real numbers b, c, d. Suppose a ¬ b · c · d
and d < e

2·b·|c| . Then a ¬ e
2 . The theorem is a consequence of (5) and (6).

2. Vector Lattice / Riesz Space

Let X be a non empty set and f , g be functions from X into R. The functor
min(f, g) yielding a function from X into R is defined by

(Def. 1) for every element x of X, it(x) = min(f(x), g(x)).

One can verify that the functor is commutative. The functor max(f, g) yielding
a function from X into R is defined by

(Def. 2) for every element x of X, it(x) = max(f(x), g(x)).

Note that the functor is commutative.
Let f , g be positive yielding functions from X into R. One can check that

min(f, g) is positive yielding and max(f, g) is positive yielding.
Let f , g be functions from X into R. We say that f ¬ g if and only if

(Def. 3) for every element x of X, f(x) ¬ g(x).

Now we state the proposition:

(8) Let us consider a non empty set X, and functions f , g from X into R.
Then min(f, g) ¬ f .

Let us consider a non empty, real-membered set X. Now we state the pro-
positions:

(9) If for every real number r such that r ∈ X holds supX = r, then there
exists a real number r such that X = {r}.

(10) If for every real number r such that r ∈ X holds inf X = r, then there
exists a real number r such that X = {r}.

(11) Let us consider a non empty, lower bounded, upper bounded, real-
membered set X. Suppose supX = inf X. Then there exists a real number
r such that X = {r}. The theorem is a consequence of (9).
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3. Some Properties of the χ Function

In the sequel X, Y denote sets, Z denotes a non empty set, r denotes a real
number, s denotes an extended real, A denotes a subset of R, and f denotes
a real-valued function.

Now we state the propositions:

(12) χX,Y is a function from Y into R.

(13) If A ⊆ ]r, s[, then A is lower bounded.

(14) If A ⊆ ]s, r[, then A is upper bounded.

(15) If rng f ⊆ [a, b], then f is bounded.

(16) If a ¬ b, then {a, b} ⊆ [a, b].

(17) χX,Y is bounded. The theorem is a consequence of (16) and (15).

(18) If X misses Y, then for every element x of X, χY,X(x) = 0.

(19) Let us consider a function f from Z into R. Then f is constant if and
only if there exists a real number r such that f = r · χZ,Z .

(20) χX,X is positive yielding.

4. Refinement of Tagged Partition

In the sequel I denotes a non empty, closed interval subset of R, T1 denotes
a tagged partition of I, D denotes a partition of I, T denotes an element of
the set of tagged partitions of D, and f denotes a partial function from I to R.

Now we state the propositions:

(21) If f is lower integrable, then lower sum(f,D) ¬ lower integral f .

(22) If f is upper integrable, then upper integral f ¬ upper sum(f,D).

LetA be a non empty, closed interval subset of R. The functor tagged-divs(A)
yielding a set is defined by

(Def. 4) for every set x, x ∈ it iff x is a tagged partition of A.

One can check that tagged-divs(A) is non empty.
Let T1 be a tagged partition of A. The functor T1-tags yielding a non empty,

non-decreasing finite sequence of elements of R is defined by

(Def. 5) there exists a partition D of A and there exists an element T of the set
of tagged partitions of D such that it = T and T1 = 〈〈D, T 〉〉.

Now we state the propositions:

(23) If T1 = 〈〈D, T 〉〉, then T = T1-tags and D = T1-partition.

(24) len(T1-tags) = len(T1-partition). The theorem is a consequence of (23).



220 roland coghetto

Let A be a non empty, closed interval subset of R and T1 be a tagged partition
of A. The functor lenT1 yielding an element of N is defined by the term

(Def. 6) len(T1-partition).

The functor domT1 yielding a set is defined by the term

(Def. 7) dom(T1-partition).

Now we state the propositions:

(25) Let us consider a non empty, closed interval subset I of R, a partition D
of I, and an element T of the set of tagged partitions of D. Then rng T ⊆ I.

(26) Let us consider a non empty, closed interval subset I of R, positive
yielding functions j1, j2 from I into R, and a j1-fine tagged partition T1

of I. If j1 ¬ j2, then T1 is a j2-fine tagged partition of I. The theorem is
a consequence of (23), (24), and (25).

5. Definition of the Gauge Integral on a Real Bounded Interval

Let I be a non empty, closed interval subset of R, f be a partial function
from I to R, and T1 be a tagged partition of I. The functor tagged-volume(f, T1)
yielding a finite sequence of elements of R is defined by

(Def. 8) len it = lenT1 and for every natural number i such that i ∈ domT1 holds
it(i) = f((T1-tags)(i)) · vol(divset(T1-partition, i)).

The functor tagged-sum(f, T1) yielding a real number is defined by the term

(Def. 9)
∑

(tagged-volume(f, T1)).

Now we state the proposition:

(27) If Y ⊆ X, then χX,Y = χY,Y .

From now on f denotes a function from I into R.
Now we state the propositions:

(28) If I is non empty and trivial, then vol(I) = 0.

(29) Let us consider a real number r. If I = {r}, then for every partition D

of I, D = 〈r〉.
Let I be a non empty, closed interval subset of R and f be a function from

I into R. We say that f is HK-integrable if and only if

(Def. 10) there exists a real number J such that for every real number ε such
that ε > 0 there exists a positive yielding function j from I into R
such that for every tagged partition T1 of I such that T1 is j-fine holds
| tagged-sum(f, T1)− J | ¬ ε.

Assume f is HK-integrable. The functor HK-integral(f) yielding a real num-
ber is defined by
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(Def. 11) for every real number ε such that ε > 0 there exists a positive yielding
function j from I into R such that for every tagged partition T1 of I such
that T1 is j-fine holds | tagged-sum(f, T1)− it | ¬ ε.

Now we state the propositions:

(30) Let us consider a function f from I into R. Suppose I is trivial. Then

(i) f is HK-integrable, and

(ii) HK-integral(f) = 0.

The theorem is a consequence of (20), (12), and (29).

(31) If A misses I and f = χA,I , then tagged-sum(f, T1) = 0.
Proof: For every natural number i such that i ∈ domT1 holds
(tagged-volume(f, T1))(i) = 0. �

(32) If A misses I and f = χA,I , then f is HK-integrable and
HK-integral(f) = 0. The theorem is a consequence of (12) and (31).

(33) If I ⊆ A and f = χA,I , then f is HK-integrable and HK-integral(f)
= vol(I). The theorem is a consequence of (12) and (27).

Let I be a non empty, closed interval subset of R. One can check that there
exists a function from I into R which is HK-integrable.

6. The Linearity Property of the Gauge Integral

In the sequel f , g denote HK-integrable functions from I into R and r denotes
a real number.

Now we state the propositions:

(34) Let us consider a natural number i. Suppose i ∈ domT1.
Then (tagged-volume(r · f, T1))(i) =
r · f((T1-tags)(i)) · vol(divset(T1-partition, i)).

(35) tagged-volume(r · f, T1) = r · (tagged-volume(f, T1)).
Proof: For every natural number i such that
i ∈ dom(tagged-volume(r · f, T1)) holds (tagged-volume(r · f, T1))(i) =
(r · (tagged-volume(f, T1)))(i). �

(36) Let us consider a natural number i. Suppose i ∈ domT1. Then (tagged-
volume(f + g, T1))(i) = f((T1-tags)(i)) · vol(divset(T1-partition,
i)) + (g((T1-tags)(i)) · vol(divset(T1-partition, i))). The theorem is a con-
sequence of (23), (24), and (25).

(37) tagged-volume(f + g, T1) =
(tagged-volume(f, T1)) + (tagged-volume(g, T1)).
Proof: For every natural number i such that i ∈ dom(tagged-volume
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(f + g, T1)) holds (tagged-volume(f + g, T1))(i) = ((tagged-volume(f,
T1)) + (tagged-volume(g, T1)))(i). �

(38) Suppose f is HK-integrable. Then

(i) r · f is an HK-integrable function from I into R, and

(ii) HK-integral(r · f) = r ·HK-integral(f).

Proof: Consider J being a real number such that for every real number
ε such that ε > 0 there exists a positive yielding function j from I into
R such that for every tagged partition T1 of I such that T1 is j-fine holds
| tagged-sum(f, T1)−J | ¬ ε. For every real number ε such that ε > 0 there
exists a positive yielding function j from I into R such that for every tagged
partition T1 of I such that T1 is j-fine holds | tagged-sum(r·f, T1)−(r·J)| ¬
ε. �

(39) (i) f + g is an HK-integrable function from I into R, and

(ii) HK-integral(f + g) = HK-integral(f) + HK-integral(g).
Proof: Consider J1 being a real number such that for every real number
ε such that ε > 0 there exists a positive yielding function j from I into
R such that for every tagged partition T1 of I such that T1 is j-fine holds
| tagged-sum(f, T1)− J1| ¬ ε. Consider J2 being a real number such that
for every real number ε such that ε > 0 there exists a positive yielding
function j from I into R such that for every tagged partition T1 of I such
that T1 is j-fine holds | tagged-sum(g, T1)−J2| ¬ ε. For every real number
ε such that ε > 0 there exists a positive yielding function j from I into
R such that for every tagged partition T1 of I such that T1 is j-fine holds
| tagged-sum(f + g, T1)− (J1 + J2)| ¬ ε. �

(40) Let us consider a function f from I into R. Suppose f is constant. Then

(i) f is HK-integrable, and

(ii) there exists a real number r such that f = r · χI,I and

HK-integral(f) = r · vol(I).

The theorem is a consequence of (19), (12), (33), and (38).

7. Riemann Integrability and Gauge Integrability

Let I be a non empty, closed interval subset of R. Note that there exists
a function from I into R which is integrable.

Let X be a non empty set. Observe that there exists a function from X into
R which is bounded.

Now we state the proposition:
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(41) Let us consider a bounded function f from I into R.
Then | sup rng f − inf rng f | = 0 if and only if f is constant. The theorem
is a consequence of (11).

Let I be a non empty, closed interval subset of R. Observe that there exists
an integrable function from I into R which is bounded.

Let us consider a partial function f from I to R. Now we state the proposi-
tions:

(42) If f is upper integrable, then there exists a real number r such that for
every partition D of I, r < upper sum(f,D).

(43) If f is lower integrable, then there exists a real number r such that for
every partition D of I, lower sum(f,D) < r.

(44) Let us consider a function f from I into R, and partitions D, D1 of I.
Suppose D(1) = inf I and D1 = D�1. Then

(i) upper sum(f,D1) = upper sum(f,D), and

(ii) lower sum(f,D1) = lower sum(f,D).

Proof: (upper volume(f,D))(1) = 0 by [5, (50)]. (lower volume(f,
D))(1) = 0 by [5, (50)]. �

In the sequel f denotes a bounded, integrable function from I into R.
Now we state the propositions:

(45) Let us consider a natural number i. Suppose i ∈ domT1. Then (lower vo-
lume(f, T1-partition))(i) ¬ (tagged-volume(f, T1))(i) ¬ (upper volume(f,
T1-partition))(i). The theorem is a consequence of (23).

(46)
∑

lower volume(f, T1-partition) ¬
∑

(tagged-volume(f, T1)) ¬∑
upper volume(f, T1-partition). The theorem is a consequence of (45).

(47) Let us consider a real number ε. Suppose I is not trivial and 0 < ε. Then
there exists a partition D of I such that

(i) D(1) 6= inf I, and

(ii) upper sum(f,D) < integral f + ε
2 , and

(iii) integral f − ε
2 < lower sum(f,D), and

(iv) upper sum(f,D)− lower sum(f,D) < ε.

The theorem is a consequence of (44).

From now on j denotes a positive yielding function from I into R.

(48) If j = r · χI,I , then 0 < r.

In the sequel D denotes a tagged partition of I. Now we state the proposition:

(49) If j = r · χI,I and D is j-fine, then δD-partition ¬ r.
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Proof: Reconsider g = χI,I as a function from I into R. For every natural
number i such that i ∈ dom(D-partition) holds
(upper volume(g,D-partition))(i) ¬ r. δD-partition ¬ r. �

From now on r1, r2, s denote real numbers, D, D1 denote partitions of I,
and f1 denotes a function from I into R. Now we state the propositions:

(50) There exists a natural number i such that

(i) i ∈ domD, and

(ii) min rng upper volume(f1, D) = (upper volume(f1, D))(i).

(51) Let us consider a function f from I into R, and a real number ε.
Suppose f1 = χI,I and r1 = min rng upper volume(f1, D1) and r2 =

ε
2·lenD1·| sup rng f−inf rng f | and 0 < r1 and 0 < r2 and s = min(r1,r2)

2 and
j = s · f1 and T1 is j-fine. Then

(i) δT1-partition < min rng upper volume(f1, D1), and

(ii) δT1-partition <
ε

2·lenD1·| sup rng f−inf rng f | .

The theorem is a consequence of (49).

(52) Let us consider a finite sequence p of elements of R. Suppose for every
natural number i such that i ∈ dom p holds r ¬ p(i) and there exists
a natural number i0 such that i0 ∈ dom p and p(i0) = r. Then r = inf rng p.

(53) Suppose f1 = χI,I . Then

(i) 0 ¬ min rng upper volume(f1, D), and

(ii) 0 = min rng upper volume(f1, D) iff divset(D, 1) = [D(1), D(1)].

Proof: Consider i0 being a natural number such that i0 ∈ domD and
min rng upper volume(f1, D) = (upper volume(f1, D))(i0). 0 =
min rng upper volume(f1, D) iff divset(D, 1) = [D(1), D(1)]. �

(54) If divset(D, 1) = [D(1), D(1)], then D(1) = inf I.

(55) Let us consider a bounded, integrable function f from I into R. Then

(i) f is HK-integrable, and

(ii) HK-integral(f) = integral f .

The theorem is a consequence of (40), (12), (17), (28), (30), (47), (53),
(54), (41), (20), (46), (51), (21), (22), (7), (1), (2), and (3).

Let I be a non empty, closed interval subset of R. Note that every function
from I into R which is bounded and integrable is also HK-integrable.
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Summary. In this article, we formalize in the Mizar system [1, 7] the Le-
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1. Preliminaries

Let X be a non empty set and f be a non-negative partial function from X

to R. Observe that −f is non-positive.
Let f be a non-positive partial function from X to R. One can check that

−f is non-negative.
Now we state the propositions:

(1) Let us consider a non empty set X, a non-positive partial function f

from X to R, and a set E. Then f�E is non-positive.

(2) Let us consider a non empty set X, a set A, a real number r, and a partial
function f from X to R. Then (r · f)�A = r · (f�A).

(3) Let us consider a non empty set X, a set A, and a partial function f

from X to R. Then −f�A = (−f)�A. The theorem is a consequence of (2).

(4) Let us consider a non empty set X, a partial function f from X to R,
and a real number c. Suppose f is non-positive. Then

(i) if 0 ¬ c, then c · f is non-positive, and

(ii) if c ¬ 0, then c · f is non-negative.
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(5) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. Then

(i) max+(f) is non-negative, and

(ii) max−(f) is non-negative, and

(iii) |f | is non-negative.

(6) Let us consider a non empty set X, a partial function f from X to R,
and an object x. Then

(i) f(x) ¬ (max+(f))(x), and

(ii) f(x)  −(max−(f))(x).

(7) Let us consider a non empty set X, a partial function f from X to R,
and a positive real number r. Then LE-dom(f, r) = LE-dom(max+(f), r).

(8) Let us consider a non empty set X, a partial function f from X to R, and
a non positive real number r. Then LE-dom(f, r) = GT-dom(max−(f),−r).

(9) Let us consider a non empty set X, partial functions f , g from X to R,
an extended real a, and a real number r. Suppose r 6= 0 and g = r · f .
Then EQ-dom(f, a) = EQ-dom(g, a · r).

(10) Let us consider a non empty set X, a σ-field S of subsets of X, a partial
function f from X to R, and an element A of S. Suppose A ⊆ dom f .
Then f is measurable on A if and only if max+(f) is measurable on A and
max−(f) is measurable on A.

Let X be a non empty set, f be a function from X into R, and r be a real
number. Note that the functor r · f yields a function from X into R. Now we
state the proposition:

(11) Let us consider a non empty set X, a real number r, and a without +∞
function f from X into R. If r  0, then r · f is without +∞.

Let X be a non empty set, f be a without +∞ function from X into R,
and r be a non negative real number. Let us note that r · f is without +∞ as
a function from X into R.

Now we state the proposition:

(12) Let us consider a non empty set X, a real number r, and a without +∞
function f from X into R. If r ¬ 0, then r · f is without −∞.

Let X be a non empty set, f be a without +∞ function from X into R, and
r be a non positive real number. One can check that r · f is without −∞.

Now we state the proposition:

(13) Let us consider a non empty set X, a real number r, and a without −∞
function f from X into R. If r  0, then r · f is without −∞.
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Let X be a non empty set, f be a without −∞ function from X into R, and
r be a non negative real number. One can check that r · f is without −∞.

Now we state the proposition:

(14) Let us consider a non empty set X, a real number r, and a without −∞
function f from X into R. If r ¬ 0, then r · f is without +∞.

Let X be a non empty set, f be a without −∞ function from X into R, and
r be a non positive real number. One can check that r · f is without +∞.

Now we state the proposition:

(15) Let us consider a non empty set X, a real number r, and a without −∞,
without +∞ function f from X into R. Then r · f is without −∞ and
without +∞.

Let X be a non empty set, f be a without −∞, without +∞ function from
X into R, and r be a real number. Note that r · f is without −∞ and without
+∞.

Now we state the propositions:

(16) Let us consider a non empty set X, a positive real number r, and a func-
tion f from X into R. Then f is without +∞ if and only if r ·f is without
+∞.

(17) Let us consider a non empty set X, a negative real number r, and a func-
tion f from X into R. Then f is without +∞ if and only if r ·f is without
−∞.

(18) Let us consider a non empty set X, a positive real number r, and a func-
tion f from X into R. Then f is without −∞ if and only if r ·f is without
−∞.

(19) Let us consider a non empty set X, a negative real number r, and a func-
tion f from X into R. Then f is without −∞ if and only if r ·f is without
+∞.

(20) Let us consider a non empty set X, a non zero real number r, and
a function f from X into R. Then f is without −∞ and without +∞ if and
only if r ·f is without −∞ and without +∞. The theorem is a consequence
of (16), (18), (17), and (19).

(21) Let us consider non empty sets X, Y, a partial function f from X to R,
and a real number r. Suppose f = Y 7−→ r. Then f is without −∞ and
without +∞.

(22) Let us consider a non empty set X, and a function f from X into R.
Then

(i) 0 · f = X 7−→ 0, and

(ii) 0 · f is without −∞ and without +∞.
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Proof: For every element x of X, (0 · f)(x) = (X 7−→ 0)(x). �

(23) Let us consider a non empty set X, and partial functions f , g from X

to R. Suppose f is without −∞ and without +∞. Then

(i) dom(f + g) = dom f ∩ dom g, and

(ii) dom(f − g) = dom f ∩ dom g, and

(iii) dom(g − f) = dom f ∩ dom g.

Let us consider a non empty set X and functions f1, f2 from X into R. Now
we state the propositions:

(24) Suppose f2 is without −∞ and without +∞. Then

(i) f1 + f2 is a function from X into R, and

(ii) for every element x of X, (f1 + f2)(x) = f1(x) + f2(x).

The theorem is a consequence of (23).

(25) Suppose f1 is without −∞ and without +∞. Then

(i) f1 − f2 is a function from X into R, and

(ii) for every element x of X, (f1 − f2)(x) = f1(x)− f2(x).

The theorem is a consequence of (23).

(26) Suppose f2 is without −∞ and without +∞. Then

(i) f1 − f2 is a function from X into R, and

(ii) for every element x of X, (f1 − f2)(x) = f1(x)− f2(x).

The theorem is a consequence of (23).

(27) Let us consider non empty sets X, Y, and partial functions f1, f2 from
X to R. Suppose dom f1 ⊆ Y and f2 = Y 7−→ 0. Then

(i) f1 + f2 = f1, and

(ii) f1 − f2 = f1, and

(iii) f2 − f1 = −f1.

The theorem is a consequence of (21) and (23).

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, and partial functions f , g from X to R. Now we state the propositions:

(28) If f is simple function in S and g is simple function in S, then f + g is
simple function in S.
Proof: Consider F being a finite sequence of separated subsets of S, a
being a finite sequence of elements of R such that F and a are represen-
tation of f . Consider G being a finite sequence of separated subsets of S,
b being a finite sequence of elements of R such that G and b are repre-
sentation of g. Set l1 = len a. Set l2 = len b. Define H(natural number) =
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F (($1−′ 1 div l2) + 1)∩G(($1−′ 1 mod l2) + 1). Consider F1 being a finite
sequence such that lenF1 = l1 ·l2 and for every natural number k such that
k ∈ domF1 holds F1(k) = H(k). For every natural numbers k, l such that
k, l ∈ domF1 and k 6= l holds F1(k) misses F1(l). dom(f + g) =

⋃
rngF1.

For every natural number k and for every elements x, y of X such that
k ∈ domF1 and x, y ∈ F1(k) holds (f + g)(x) = (f + g)(y). �

(29) If f is simple function in S and g is simple function in S, then f − g is
simple function in S. The theorem is a consequence of (28).

(30) Let us consider a non empty set X, a σ-field S of subsets of X, and
a partial function f from X to R. If f is simple function in S, then −f is
simple function in S.

(31) Let us consider a non empty set X, and a non-negative partial function
f from X to R. Then f = max+(f).
Proof: For every element x of X such that x ∈ dom f holds f(x) =
(max+(f))(x). �

(32) Let us consider a non empty set X, and a non-positive partial function
f from X to R. Then f = −max−(f).
Proof: For every element x of X such that x ∈ dom f holds f(x) =
(−max−(f))(x). �

(33) Let us consider a non empty set C, a partial function f from C to R,
and a real number c. Suppose c ¬ 0. Then

(i) max+(c · f) = (−c) ·max−(f), and

(ii) max−(c · f) = (−c) ·max+(f).

Proof: For every element x of C such that x ∈ dom max+(c · f) holds
(max+(c · f))(x) = ((−c) · max−(f))(x). For every element x of C such
that x ∈ dom max−(c · f) holds (max−(c · f))(x) = ((−c) ·max+(f))(x). �

(34) Let us consider a non empty set X, and a partial function f from X to
R. Then max+(f) = max−(−f). The theorem is a consequence of (33).

(35) Let us consider a non empty set X, a partial function f from X to R,
and real numbers r1, r2. Then r1 · (r2 · f) = (r1 · r2) · f .

(36) Let us consider a non empty set X, and partial functions f , g from X

to R. If f = −g, then g = −f . The theorem is a consequence of (35).

Let X be a non empty set, F be a sequence of partial functions from X

into R, and r be a real number. The functor r · F yielding a sequence of partial
functions from X into R is defined by

(Def. 1) for every natural number n, it(n) = r · F (n).

The functor −F yielding a sequence of partial functions from X into R is
defined by the term
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(Def. 2) (−1) · F .

Now we state the proposition:

(37) Let us consider a non empty set X, a sequence F of partial functions
from X into R, and a natural number n. Then (−F )(n) = −F (n).

Let us consider a non empty set X, a sequence F of partial functions from
X into R, and an element x of X. Now we state the propositions:

(38) (−F )#x = −F#x. The theorem is a consequence of (37).

(39) (i) F#x is convergent to +∞ iff (−F )#x is convergent to −∞, and

(ii) F#x is convergent to −∞ iff (−F )#x is convergent to +∞, and

(iii) F#x is convergent to a finite limit iff (−F )#x is convergent to a
finite limit, and

(iv) F#x is convergent iff (−F )#x is convergent, and

(v) if F#x is convergent, then lim((−F )#x) = −lim(F#x).
The theorem is a consequence of (38).

Let us consider a non empty set X and a sequence F of partial functions
from X into R. Now we state the propositions:

(40) If F has the same dom, then −F has the same dom. The theorem is
a consequence of (37).

(41) If F is additive, then −F is additive. The theorem is a consequence of
(37).

(42) Let us consider a non empty set X, a sequence F of partial functions
from X into R, and a natural number n. Then (

∑κ
α=0(−F )(α))κ∈N(n) =

(−(
∑κ
α=0 F (α))κ∈N)(n).

Proof: Define P[natural number] ≡ (
∑κ
α=0(−F )(α))κ∈N($1) =

(−(
∑κ
α=0 F (α))κ∈N)($1). P[0]. For every natural number k such that P[k]

holds P[k + 1]. For every natural number k, P[k]. �

(43) Let us consider a sequence s of extended reals, and a natural number n.
Then (

∑κ
α=0(−s)(α))κ∈N(n) = −(

∑κ
α=0 s(α))κ∈N(n).

Proof: Define P[natural number] ≡ (
∑κ
α=0(−s)(α))κ∈N($1) =

−(
∑κ
α=0 s(α))κ∈N($1). For every natural number k such that P[k] holds

P[k + 1]. For every natural number k, P[k]. �

Let us consider a sequence s of extended reals. Now we state the propositions:

(44) (
∑κ
α=0(−s)(α))κ∈N = −(

∑κ
α=0 s(α))κ∈N. The theorem is a consequence

of (43).

(45) If s is summable, then −s is summable. The theorem is a consequence
of (44).
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Let us consider a non empty set X and a sequence F of partial functions
from X into R. Now we state the propositions:

(46) If for every natural number n, F (n) is without +∞, then F is additive.

(47) If for every natural number n, F (n) is without −∞, then F is additive.

(48) Let us consider a non empty set X, a sequence F of partial functions
from X into R, and an element x of X. Suppose F#x is summable. Then

(i) (−F )#x is summable, and

(ii)
∑

((−F )#x) = −
∑

(F#x).

The theorem is a consequence of (45), (38), and (44).

(49) Let us consider a non empty set X, a σ-field S of subsets of X, and a se-
quence F of partial functions from X into R. Suppose F is additive and has
the same dom and for every element x of X such that x ∈ dom(F (0)) holds
F#x is summable. Then lim(

∑κ
α=0(−F )(α))κ∈N = −lim(

∑κ
α=0 F (α))κ∈N.

Proof: Set G = −F . For every element n of N, (
∑κ
α=0G(α))κ∈N(n) =

(−(
∑κ
α=0 F (α))κ∈N)(n). For every element x of X such that x ∈ dom lim

(
∑κ
α=0G(α))κ∈N holds (lim(

∑κ
α=0G(α))κ∈N)(x) =

(−lim(
∑κ
α=0 F (α))κ∈N)(x). �

(50) Let us consider a non empty set X, a σ-field S of subsets of X, sequ-
ences F , G of partial functions from X into R, and an element E of S.
Suppose E ⊆ dom(F (0)) and F is additive and has the same dom and
for every natural number n, G(n) = F (n)�E. Then lim(

∑κ
α=0G(α))κ∈N =

lim(
∑κ
α=0 F (α))κ∈N�E.

Proof: For every element x of X such that x ∈ E holds F#x = G#x.
Set P1 = (

∑κ
α=0 F (α))κ∈N. Set P2 = (

∑κ
α=0G(α))κ∈N. For every element

x of X such that x ∈ dom limP2 holds (limP2)(x) = (limP1)(x). For
every element x of X such that x ∈ dom(limP2�E) holds (limP2�E)(x) =
(limP1�E)(x). �

2. Integral of Non Positive Measurable Functions

Now we state the propositions:

(51) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a non-negative partial function f from X to R.
Then

∫ ′max−(−f) dM =
∫ ′ f dM . The theorem is a consequence of (32),

(36), and (35).

(52) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and an element A of S.
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Suppose A = dom f and f is measurable on A. Then
∫
−f dM = −

∫
f dM .

The theorem is a consequence of (36), (10), (5), and (34).

(53) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a non-negative partial function f from X to R, and
an element E of S. Suppose E = dom f and f is measurable on E. Then

(i)
∫

max−(f) dM = 0, and

(ii)
∫+ max−(f) dM = 0.

Proof: max−(f) is measurable on E. For every object x such that x ∈
dom max−(f) holds (max−(f))(x) = 0. �

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, a partial function f from X to R, and an element E of S. Now we
state the propositions:

(54) If E = dom f and f is measurable on E, then
∫
f dM =

∫
max+(f) dM−∫

max−(f) dM . The theorem is a consequence of (10) and (5).

(55) If E ⊆ dom f and f is measurable on E, then
∫

(−f)�E dM = −
∫
f�E dM .

The theorem is a consequence of (3) and (52).

(56) Let us consider a non empty set X, a σ-field S of subsets of X, and
a partial function f from X to R. Suppose there exists an element A of
S such that A = dom f and f is measurable on A and (f qua extended
real-valued function) is non-positive. Then there exists a sequence F of
partial functions from X into R such that

(i) for every natural number n, F (n) is simple function in S and

dom(F (n)) = dom f , and

(ii) for every natural number n, F (n) is non-positive, and

(iii) for every natural numbers n, m such that n ¬ m for every element x
of X such that x ∈ dom f holds F (n)(x)  F (m)(x), and

(iv) for every element x of X such that x ∈ dom f holds F#x is conver-
gent and lim(F#x) = f(x).

The theorem is a consequence of (37), (30), and (39).

(57) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and a non-positive partial function f
from X to R. Suppose there exists an element A of S such that A = dom f

and f is measurable on A. Then

(i)
∫
f dM = −

∫+ max−(f) dM , and

(ii)
∫
f dM = −

∫+−f dM , and

(iii)
∫
f dM = −

∫
−f dM .
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Proof: Consider A being an element of S such that A = dom f and f is
measurable on A. f = −max−(f). −f = max−(f). For every element x of
X such that x ∈ dom max+(f) holds (max+(f))(x) = 0. �

(58) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a non-positive partial function f from X to R.
Suppose f is simple function in S. Then

(i)
∫
f dM = −

∫ ′−f dM , and

(ii)
∫
f dM = −

∫ ′max−(f) dM .

The theorem is a consequence of (30), (57), (32), and (36).

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, a partial function f from X to R, and a real number c. Now we state
the propositions:

(59) If f is simple function in S and f is non-negative, then
∫
c · f dM =

c ·
∫ ′ f dM .

(60) Suppose f is simple function in S and f is non-positive. Then

(i)
∫
c · f dM = −c ·

∫ ′−f dM , and

(ii)
∫
c · f dM = −(c ·

∫ ′−f dM).

The theorem is a consequence of (35), (30), and (59).

(61) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, and a partial function f from X to R. Suppose there
exists an element A of S such that A = dom f and f is measurable on A

and f is non-positive. Then 0 
∫
f dM . The theorem is a consequence of

(57).

(62) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, B, E
of S. Suppose E = dom f and f is measurable on E and f is non-positive
and A misses B. Then

∫
f�(A ∪ B) dM =

∫
f�AdM +

∫
f�B dM . The

theorem is a consequence of (3) and (52).

(63) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, E of
S. Suppose E = dom f and f is measurable on E and f is non-positive.
Then 0 

∫
f�AdM . The theorem is a consequence of (61) and (1).

(64) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a partial function f from X to R, and elements A, B, E
of S. Suppose E = dom f and f is measurable on E and f is non-positive
and A ⊆ B. Then

∫
f�AdM 

∫
f�B dM . The theorem is a consequence

of (3) and (52).
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3. Convergence Theorems for Non Positive Function’s Integration

Now we state the propositions:

(65) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and a partial function f from X to
R. Suppose E = dom f and f is measurable on E and f is non-positive
and M(E ∩ EQ-dom(f,−∞)) 6= 0. Then

∫
f dM = −∞. The theorem is

a consequence of (9) and (52).

(66) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and partial functions f , g from X to
R. Suppose E ⊆ dom f and E ⊆ dom g and f is measurable on E and g is
measurable on E and f is non-positive and for every element x of X such
that x ∈ E holds g(x) ¬ f(x). Then

∫
g�E dM ¬

∫
f�E dM . The theorem

is a consequence of (3) and (52).

(67) Let us consider a non empty set X, a sequence F of partial functions
from X into R, a σ-field S of subsets of X, an element E of S, and
a natural number m. Suppose F has the same dom and E = dom(F (0))
and for every natural number n, F (n) is measurable on E and F (n) is
without +∞. Then (

∑κ
α=0 F (α))κ∈N(m) is measurable on E. The theorem

is a consequence of (37), (42), and (46).

(68) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a sequence F of partial functions from X into R,
an element E of S, a sequence I of extended reals, and a natural number
m. Suppose E = dom(F (0)) and F is additive and has the same dom
and for every natural number n, F (n) is measurable on E and F (n) is
non-positive and I(n) =

∫
F (n) dM . Then

∫
(
∑κ
α=0 F (α))κ∈N(m) dM =

(
∑κ
α=0 I(α))κ∈N(m).

Proof: Set G = −F . Set J = −I. G(0) = −F (0). G has the same
dom. For every natural number n, F (n) is measurable on E and F (n) is
without +∞. For every natural number n, G(n) is measurable on E and
G(n) is non-negative and J(n) =

∫
G(n) dM .

∫
(
∑κ
α=0G(α))κ∈N(m) dM =

(
∑κ
α=0 J(α))κ∈N(m).

∫
(−(
∑κ
α=0 F (α))κ∈N)(m) dM = (

∑κ
α=0 J(α))κ∈N(m).∫

(−(
∑κ
α=0 F (α))κ∈N)(m) dM = −(

∑κ
α=0 I(α))κ∈N(m).∫

−(
∑κ
α=0 F (α))κ∈N(m) dM = −(

∑κ
α=0 I(α))κ∈N(m).

−
∫

(
∑κ
α=0 F (α))κ∈N(m) dM = −(

∑κ
α=0 I(α))κ∈N(m). �

(69) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, a sequence F of partial functions from X into R, an ele-
ment E of S, and a partial function f from X to R. Suppose E ⊆ dom f

and f is non-positive and f is measurable on E and for every natural
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number n, F (n) is simple function in S and F (n) is non-positive and
E ⊆ dom(F (n)) and for every element x of X such that x ∈ E holds
F#x is summable and f(x) =

∑
(F#x). Then there exists a sequence I

of extended reals such that

(i) for every natural number n, I(n) =
∫
F (n)�E dM , and

(ii) I is summable, and

(iii)
∫
f�E dM =

∑
I.

Proof: Set g = −f . Set G = −F . G is additive. For every natural
number n, G(n) is simple function in S and G(n) is non-negative and
E ⊆ dom(G(n)). For every element x of X such that x ∈ E holds G#x
is summable and g(x) =

∑
(G#x). Consider J being a sequence of exten-

ded reals such that for every natural number n, J(n) =
∫
G(n)�E dM

and J is summable and
∫
g�E dM =

∑
J . For every natural number n,

I(n) =
∫
F (n)�E dM .

∫
g�E dM = −

∫
f�E dM . lim(

∑κ
α=0 I(α))κ∈N =

−
∫
g�E dM . �

(70) Let us consider a non empty set X, a σ-field S of subsets of X, a σ-
measure M on S, an element E of S, and a partial function f from X to
R. Suppose E ⊆ dom f and f is non-positive and f is measurable on E.
Then there exists a sequence F of partial functions from X into R such
that

(i) F is additive, and

(ii) for every natural number n, F (n) is simple function in S and F (n)
is non-positive and F (n) is measurable on E, and

(iii) for every element x of X such that x ∈ E holds F#x is summable
and f(x) =

∑
(F#x), and

(iv) there exists a sequence I of extended reals such that for every natural
number n, I(n) =

∫
F (n)�E dM and I is summable and

∫
f�E dM =∑

I.

Proof: Set g = −f . Consider G being a sequence of partial functions from
X into R such that G is additive and for every natural number n, G(n) is
simple function in S and G(n) is non-negative and G(n) is measurable on
E and for every element x of X such that x ∈ E holds G#x is summable
and g(x) =

∑
(G#x) and there exists a sequence J of extended reals

such that for every natural number n, J(n) =
∫
G(n)�E dM and J is

summable and
∫
g�E dM =

∑
J . For every natural number n, F (n) is

simple function in S and F (n) is non-positive and F (n) is measurable on
E. For every element x of X such that x ∈ E holds F#x is summable and
f(x) =

∑
(F#x). There exists a sequence I of extended reals such that



238 noboru endou

for every natural number n, I(n) =
∫
F (n)�E dM and I is summable and∫

f�E dM =
∑
I. �

Let us consider a non empty set X, a σ-field S of subsets of X, a σ-measure
M on S, a sequence F of partial functions from X into R, and an element E of
S. Now we state the propositions:

(71) Suppose E = dom(F (0)) and F has the same dom and for every natu-
ral number n, F (n) is non-positive and F (n) is measurable on E. Then
there exists a sequence F1 of (X→̇R)N such that for every natural num-
ber n, for every natural number m, F1(n)(m) is simple function in S and
dom(F1(n)(m)) = dom(F (n)) and for every natural number m, F1(n)(m)
is non-positive and for every natural numbers j, k such that j ¬ k for every
element x of X such that x ∈ dom(F (n)) holds F1(n)(j)(x)  F1(n)(k)(x)
and for every element x of X such that x ∈ dom(F (n)) holds F1(n)#x is
convergent and lim(F1(n)#x) = F (n)(x).
Proof: Define Q[element of N, set] ≡ for every sequence G of partial
functions from X into R such that $2 = G holds for every natural number
m, G(m) is simple function in S and dom(G(m)) = dom(F ($1)) and
for every natural number m, G(m) is non-positive and for every natural
numbers j, k such that j ¬ k for every element x of X such that x ∈
dom(F ($1)) holds G(j)(x)  G(k)(x) and for every element x of X such
that x ∈ dom(F ($1)) holds G#x is convergent and lim(G#x) = F ($1)(x).
For every element n of N, there exists a sequence G of partial functions
from X into R such that for every natural number m, G(m) is simple
function in S and dom(G(m)) = dom(F (n)) and for every natural number
m, G(m) is non-positive and for every natural numbers j, k such that
j ¬ k for every element x of X such that x ∈ dom(F (n)) holds G(j)(x) 
G(k)(x) and for every element x of X such that x ∈ dom(F (n)) holds
G#x is convergent and lim(G#x) = F (n)(x). For every element n of N,
there exists an element G of (X→̇R)N such thatQ[n,G]. Consider F1 being
a sequence of (X→̇R)N such that for every element n of N, Q[n, F1(n)]. For
every natural number n, for every natural number m, F1(n)(m) is simple
function in S and dom(F1(n)(m)) = dom(F (n)) and for every natural
number m, F1(n)(m) is non-positive and for every natural numbers j, k
such that j ¬ k for every element x of X such that x ∈ dom(F (n)) holds
F1(n)(j)(x)  F1(n)(k)(x) and for every element x of X such that x ∈
dom(F (n)) holds F1(n)#x is convergent and lim(F1(n)#x) = F (n)(x). �

(72) Suppose E = dom(F (0)) and F is additive and has the same dom and
for every natural number n, F (n) is measurable on E and F (n) is non-
positive. Then there exists a sequence I of extended reals such that for eve-
ry natural number n, I(n) =

∫
F (n) dM and

∫
(
∑κ
α=0 F (α))κ∈N(n) dM =
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(
∑κ
α=0 I(α))κ∈N(n).

Proof: Set G = −F . G(0) = −F (0). G has the same dom. For every natu-
ral number n, G(n) is measurable on E and G(n) is non-negative. Consider
J being a sequence of extended reals such that for every natural number n,
J(n) =

∫
G(n) dM and

∫
(
∑κ
α=0G(α))κ∈N(n) dM = (

∑κ
α=0 J(α))κ∈N(n).

For every natural number n, F (n) is measurable on E and F (n) is without
+∞. �

(73) Suppose E ⊆ dom(F (0)) and F is additive and has the same dom and for
every natural number n, F (n) is non-positive and F (n) is measurable on
E and for every element x of X such that x ∈ E holds F#x is summable.
Then there exists a sequence I of extended reals such that

(i) for every natural number n, I(n) =
∫
F (n)�E dM , and

(ii) I is summable, and

(iii)
∫

lim(
∑κ
α=0 F (α))κ∈N�E dM =

∑
I.

Proof: Set G = −F . G(0) = −F (0). G is additive. G has the same dom.
For every natural number n, G(n) is non-negative and G(n) is measu-
rable on E. For every element x of X such that x ∈ E holds G#x is
summable. Consider J being a sequence of extended reals such that for
every natural number n, J(n) =

∫
G(n)�E dM and J is summable and∫

lim(
∑κ
α=0G(α))κ∈N�E dM =

∑
J . For every natural number n, I(n) =∫

F (n)�E dM . Define H(natural number) = F ($1)�E. Consider H being
a sequence of partial functions from X into R such that for every natural
number n, H(n) = H(n). lim(

∑κ
α=0H(α))κ∈N = lim(

∑κ
α=0 F (α))κ∈N�E.

Define K(natural number) = G($1)�E. Consider K being a sequence of
partial functions from X into R such that for every natural number n,
K(n) = K(n). lim(

∑κ
α=0K(α))κ∈N = lim(

∑κ
α=0G(α))κ∈N�E. For every

element n of N, H(n) = (−K)(n). lim(
∑κ
α=0H(α))κ∈N =

−lim(
∑κ
α=0K(α))κ∈N. For every natural number n, K(n) is measura-

ble on E and K(n) is without −∞.
∫

(−lim(
∑κ
α=0K(α))κ∈N)�E dM =

−
∫

lim(
∑κ
α=0K(α))κ∈N�E dM . �

(74) Suppose E = dom(F (0)) and F (0) is non-positive and F has the same
dom and for every natural number n, F (n) is measurable on E and for
every natural numbers n, m such that n ¬ m for every element x of X
such that x ∈ E holds F (n)(x)  F (m)(x) and for every element x of X
such that x ∈ E holds F#x is convergent. Then there exists a sequence I
of extended reals such that

(i) for every natural number n, I(n) =
∫
F (n) dM , and

(ii) I is convergent, and
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(iii)
∫

limF dM = lim I.

Proof: Set G = −F . G(0) = −F (0). For every natural number n, G(n)
is measurable on E by [4, (63)], (37). For every natural numbers n, m
such that n ¬ m for every element x of X such that x ∈ E holds
G(n)(x) ¬ G(m)(x). For every element x of X such that x ∈ E holds
G#x is convergent. Consider J being a sequence of extended reals such
that for every natural number n, J(n) =

∫
G(n) dM and J is convergent

and
∫

limGdM = lim J . Set I = −J . For every natural number n, I(n) =∫
F (n) dM . For every element x of X such that x ∈ dom limG holds

(limG)(x) = (−limF )(x) by (38), [3, (17)].
∫

limGdM = −
∫

limF dM .
�
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Summary. In the article we present in the Mizar system the catalogue of
nine basic fuzzy implications, used especially in the theory of fuzzy sets. This
work is a continuation of the development of fuzzy sets in Mizar; it could be
used to give a variety of more general operations, and also it could be a good
starting point towards the formalization of fuzzy logic (together with t-norms
and t-conorms, formalized previously).
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0. Introduction

As it is well known, the implication operator plays a crucial role in the clas-
sical two-valued logic. Based on this logical connective, we can define binary
conjunction and disjunction, and also unary negation operator. In the field of
fuzzy logic, the notions of t-norm and t-conorm are an abstraction of the clas-
sical conjunction and disjunction. Similarly, we can treat the notion of a fuzzy
implication, as a generalization of a classical implication.

Fuzzy sets, a tool for modelling uncertainty, proposed by Zadeh [12], were
formally introduced in Mizar in [10]. This approach is quite natural in the Mizar
Mathematical Library [9], has rich continuation there [3] as it is significantly
closer to set theory than another tool for doing so, namely rough sets by Pawlak
[11], as recalled in the context of lattice theory in [5].

In order to cope with basic constructions present in the theory of fuzzy im-
plications, we had to define a number of examples of binary connectives. It is
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especially important to have some, because taking into account the expressive
power of registrations of clusters in the Mizar system and the role of attributes,
most of theorems are stated in the form of the abovementioned registrations.
Having prepared such formal background, properties can be calculated automa-
tically via the mechanism of the type expansion.

In our formal approach, we follow closely the book [1].
A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies, for

all x, x1, x2, y1, y2 ∈ [0, 1], the following conditions:

if x1 ¬ x2, then I(x1, y)  I(x2, y), (I3)

if y1 ¬ y2, then I(x, y1) ¬ I(x, y2), (I4)

I(0, 0) = 1, (I5)

I(1, 1) = 1, (I6)

I(1, 0) = 0. (I7)

The functions satisfying equations (I3), (I4), and (I5) are called in our for-
malism, 00-dominant (Def. 3), 11-dominant (Def. 4), and 10-weak (Def. 5),
respectively.

The mutual independence of the axioms was shown using I−1, I−2, I−3, I−4,

I−5 (see definitions Def. 9 – Def. 13 in the present paper) – each one violating
exactly one among properties (I1) – (I5). Of course, these are not examples
of fuzzy implications in the current setting, although Zadeh implication I−1 is
considered in the literature as multi-valued implication.

In the set of all fuzzy implications, denoted by FI, we have I0 and I1 as
the least and the greatest elements (with the ordinary pointwise ordering of
functions) for arbitrary x, y ∈ [0, 1] as

I0(x, y) =

{
1, if x = 0 or y = 1
0, otherwise

I1(x, y) =

{
1, if x < 1 or y > 0
0, otherwise

Together with formal description of triangular norms and conorms (introdu-
ced in [2] and described in [7]) introducing fuzzy implications is the fundamental
step towards defining fuzzy logic within the Mizar Mathematical Library. Both
formal aproaches to the theory of rough and fuzzy sets could be compared in a
more sophisticated way as initiated in [8]. Of course, the Mizar system is much
more efficient in the logical reasoning than in calculations in the style of compu-
ter algebra systems (although in the field of rough sets it resulted in a number
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Table 0.1: Nine basic fuzzy implications ([1], p. 4)
Name Def. Defining formula
Łukasiewicz Def. 14 ILK(x, y) = min(1, 1− x+ y)

Gödel Def. 16 IGD(x, y) =

{
1, if x ¬ y
y, otherwise

Reichenbach Def. 17 IRC(x, y) = 1− x+ xy

Kleene-Dienes Def. 18 IKD(x, y) = max(1− x, y)

Goguen Def. 19 IGG(x, y) =

{
1, if x ¬ y
y
x , otherwise

Rescher Def. 20 IRS(x, y) =

{
1, if x ¬ y
0, if x > y

Yager Def. 21 IYG(x, y) =

{
1, if x = 0 and y = 0
yx, if x > 0 or y > 0

Weber Def. 22 IWB(x, y) =

{
1, if x < 1
y, if x = 1

Fodor Def. 23 IFD(x, y) =

{
1, if x ¬ y
max(1− x, y), if x > y

of quite interesting observations [6]), hence formalizing fuzzy numbers [4] is less
promising than the present one.

The main aim of the Mizar article was to introduce formally nine important
examples of fuzzy implications (see Table 0.1).

1. Preliminaries

Let us consider elements a, b of [0, 1]. Now we state the propositions:

(1) max(b,min(1− a, 1− b)) ∈ [0, 1].

(2) min(1, 1− a+ b) ∈ [0, 1].

(3) 1− a+ (a · b) ∈ [0, 1].

(4) max(1− a, b) ∈ [0, 1].

(5) If a > 0 or b > 0, then ba ∈ [0, 1].

(6) If a > b, then b
a ∈ [0, 1].
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2. Basic Attributes Defining Fuzzy Implications

Let f be a binary operation on [0, 1]. We say that f is antitone w.r.t. 1st
coordinate if and only if

(Def. 1) for every elements x1, x2, y of [0, 1] such that x1 ¬ x2 holds f(x1, y) 
f(x2, y).

We say that f is isotone w.r.t. 2nd coordinate if and only if

(Def. 2) for every elements x, y1, y2 of [0, 1] such that y1 ¬ y2 holds f(x, y1) ¬
f(x, y2).

We say that f is 00-dominant if and only if

(Def. 3) f(0, 0) = 1.

We say that f is 11-dominant if and only if

(Def. 4) f(1, 1) = 1.

We say that f is 10-weak if and only if

(Def. 5) f(1, 0) = 0.

We say that f is 01-dominant if and only if

(Def. 6) f(0, 1) = 1.

We say that f has properties of a fuzzy implication if and only if

(Def. 7) f is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd coordinate, 00-
dominant, 11-dominant, and 10-weak.

We say that f has properties of a classical implication if and only if

(Def. 8) f is 00-dominant, 01-dominant, 11-dominant, and 10-weak.

3. Examples Showing Independence of Axioms

The functor I−1 yielding a binary operation on [0, 1] is defined by

(Def. 9) for every elements x, y of [0, 1], it(x, y) = max(1− x,min(x, y)).

One can verify that I−1 is isotone w.r.t. 2nd coordinate, 00-dominant, 11-
dominant, and 10-weak.

The functor I−2 yielding a binary operation on [0, 1] is defined by

(Def. 10) for every elements x, y of [0, 1], it(x, y) = max(y,min(1− x, 1− y)).

Let us note that I−2 is antitone w.r.t. 1st coordinate, 00-dominant, 11-
dominant, and 10-weak.

The functor I−3 yielding a binary operation on [0, 1] is defined by

(Def. 11) for every elements x, y of [0, 1], if y < 1, then it(x, y) = 0 and if y = 1,
then it(x, y) = 1.
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Let us observe that I−3 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd
coordinate, non 00-dominant, 11-dominant, and 10-weak.

The functor I−4 yielding a binary operation on [0, 1] is defined by

(Def. 12) for every elements x, y of [0, 1], if x = 0, then it(x, y) = 1 and if x > 0,
then it(x, y) = 0.

Observe that I−4 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd coordi-
nate, 00-dominant, non 11-dominant, and 10-weak.

The functor I−5 yielding a binary operation on [0, 1] is defined by

(Def. 13) for every elements x, y of [0, 1], it(x, y) = 1.

Observe that I−5 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd coordi-
nate, 00-dominant, 11-dominant, and non 10-weak.

4. Catalogue of Fuzzy Implications

The Łukasiewicz implication yielding a binary operation on [0, 1] is defined
by

(Def. 14) for every elements x, y of [0, 1], it(x, y) = min(1, 1− x+ y).

Note that the Łukasiewicz implication is antitone w.r.t. 1st coordinate, iso-
tone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak and there
exists a binary operation on [0, 1] which has properties of a fuzzy implication
and every binary operation on [0, 1] which has properties of a fuzzy implication
is also antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd coordinate, 00-dominant,
11-dominant, 10-weak.

Every binary operation on [0, 1] which is antitone w.r.t. 1st coordinate, isoto-
ne w.r.t. 2nd coordinate, 00-dominant, 01-dominant, 11-dominant, and 10-weak
has also properties of a fuzzy implication and every binary operation on [0, 1]
which has properties of a classical implication is also 00-dominant, 01-dominant,
11-dominant, 10-weak.

Every binary operation on [0, 1] which is 00-dominant, 01-dominant, 11-
dominant, and 10-weak has also properties of a classical implication and every
binary operation on [0, 1] which has properties of a fuzzy implication has also
properties of a classical implication.

A fuzzy implication is an antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd
coordinate, 00-dominant, 11-dominant, 10-weak binary operation on [0, 1].
The functor FI yielding a set is defined by the term

(Def. 15) the set of all f where f is a fuzzy implication.

The Gödel implication yielding a binary operation on [0, 1] is defined by

(Def. 16) for every elements x, y of [0, 1], if x ¬ y, then it(x, y) = 1 and if x > y,
then it(x, y) = y.
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Let us note that the Gödel implication is antitone w.r.t. 1st coordinate,
isotone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.

The Reichenbach implication yielding a binary operation on [0, 1] is defined
by

(Def. 17) for every elements x, y of [0, 1], it(x, y) = 1− x+ (x · y).

Let us note that the Reichenbach implication is antitone w.r.t. 1st coordi-
nate, isotone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.

The Kleene-Dienes implication yielding a binary operation on [0, 1] is defined
by

(Def. 18) for every elements x, y of [0, 1], it(x, y) = max(1− x, y).

Let us observe that the Kleene-Dienes implication is antitone w.r.t. 1st coor-
dinate, isotone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.

The Goguen implication yielding a binary operation on [0, 1] is defined by

(Def. 19) for every elements x, y of [0, 1], if x ¬ y, then it(x, y) = 1 and if x > y,
then it(x, y) = y

x .

One can verify that the Goguen implication is antitone w.r.t. 1st coordinate,
isotone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.

The Rescher implication yielding a binary operation on [0, 1] is defined by

(Def. 20) for every elements x, y of [0, 1], if x ¬ y, then it(x, y) = 1 and if x > y,
then it(x, y) = 0.

Let us note that the Rescher implication is antitone w.r.t. 1st coordinate,
isotone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.

The Yager implication yielding a binary operation on [0, 1] is defined by

(Def. 21) for every elements x, y of [0, 1], if x = y = 0, then it(x, y) = 1 and if
x > 0 or y > 0, then it(x, y) = yx.

One can check that the Yager implication is antitone w.r.t. 1st coordinate,
isotone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.

The Weber implication yielding a binary operation on [0, 1] is defined by

(Def. 22) for every elements x, y of [0, 1], if x < 1, then it(x, y) = 1 and if x = 1,
then it(x, y) = y.

Let us note that the Weber implication is antitone w.r.t. 1st coordinate,
isotone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.

The Fodor implication yielding a binary operation on [0, 1] is defined by

(Def. 23) for every elements x, y of [0, 1], if x ¬ y, then it(x, y) = 1 and if x > y,
then it(x, y) = max(1− x, y).

One can check that the Fodor implication is antitone w.r.t. 1st coordinate,
isotone w.r.t. 2nd coordinate, 00-dominant, 11-dominant, and 10-weak.
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5. Boundary Fuzzy Implications

The functor I0 yielding a binary operation on [0, 1] is defined by

(Def. 24) for every elements x, y of [0, 1], if x = 0 or y = 1, then it(x, y) = 1 and
if x > 0 and y < 1, then it(x, y) = 0.

One can verify that I0 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd
coordinate, 00-dominant, 11-dominant, and 10-weak.

The functor I1 yielding a binary operation on [0, 1] is defined by

(Def. 25) for every elements x, y of [0, 1], if x < 1 or y > 0, then it(x, y) = 1 and
if x = 1 and y = 0, then it(x, y) = 0.

One can verify that I1 is antitone w.r.t. 1st coordinate, isotone w.r.t. 2nd
coordinate, 00-dominant, 11-dominant, and 10-weak.

Let f be a binary operation on [0, 1]. We say that f satisfies (LB) if and
only if

(Def. 26) for every element y of [0, 1], f(0, y) = 1.

We say that f satisfies (RB) if and only if

(Def. 27) for every element x of [0, 1], f(x, 1) = 1.

Now we state the propositions:

(7) Let us consider a fuzzy implication I, and an element y of [0, 1]. Then
I(0, y) = 1.

(8) Let us consider a fuzzy implication I, and an element x of [0, 1]. Then
I(x, 1) = 1.

Observe that every fuzzy implication satisfies (LB) and (RB).
Let us consider a fuzzy implication I. Now we state the propositions:

(9) I0 ¬ I. The theorem is a consequence of (7) and (8).

(10) I ¬ I1.
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